

Gerwin Klein, June Andronick, Ramana Kumar, Miki Tanaka S2/2017

Content

- → Intro & motivation, getting started
- → Foundations & Principles

 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	[3 ^a]
 Term rewriting 	[4]

→ Proof & Specification Techniques

 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	[6, 7]
 Hoare logic, proofs about programs, C verification 	$[8^{b}, 9]$

- (mid-semester break)
- Writing Automated Proof Methods [10]
- Isar, codegen, typeclasses, locales [11^c,12]

^aa1 due; ^ba2 due; ^ca3 due

Last Time

- → Sets
- → Type Definitions
- → Inductive Definitions



How They Work

The Nat Example

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

- \rightarrow N is the set of natural numbers IN
- \rightarrow But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- → N is the **smallest** set that is **consistent** with the rules.

Why the smallest set?

- \rightarrow Objective: **no junk**. Only what must be in X shall be in X.
- → Gives rise to a nice proof principle (rule induction)

Formally

Rules
$$\frac{a_1 \in X \quad \dots \quad a_n \in X}{a \in X}$$
 with $a_1, \dots, a_n, a \in A$ define set $X \subseteq A$

Formally: set of rules $R \subseteq A$ set $\times A$ (R, X) possibly infinite)

Applying rules R to a set B:

$$\hat{R} \ B \equiv \{x. \ \exists H. \ (H, x) \in R \land H \subseteq B\}$$

Example:

$$\begin{array}{lcl} R & \equiv & \{(\{\},0)\} \cup \{(\{n\},n+1). \ n \in \rm I\!R\} \\ \hat{R} \ \{3,6,10\} & = & \{0,4,7,11\} \end{array}$$

The Set

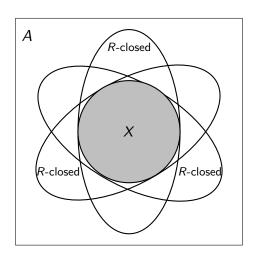
Definition: B is R-closed iff \hat{R} $B \subseteq B$

Definition: X is the least R-closed subset of A

This does always exist:

Fact: $X = \bigcap \{B \subseteq A. \ B \ R - \mathsf{closed}\}$

Generation from Above



Rule Induction

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

induces induction principle

$$\llbracket P \ 0; \ \land n. \ P \ n \Longrightarrow P \ (n+1) \rrbracket \Longrightarrow \forall x \in X. \ P \ x$$

In general:

$$\frac{\forall (\{a_1,\ldots a_n\},a)\in R.\ P\ a_1\wedge\ldots\wedge P\ a_n\Longrightarrow P\ a}{\forall x\in X.\ P\ x}$$

Why does this work?

$$\frac{\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \wedge \dots \wedge P \ a_n \Longrightarrow P \ a_n}{\forall x \in X. \ P \ x}$$

$$\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \wedge \dots \wedge P \ a_n \Longrightarrow P \ a_n$$

$$\forall (\{a_1, \dots a_n\}, a) \in R. \ F \ a_1 \land \dots \land F \ a_n \Longrightarrow F \ a_n \implies F \ a_n = F \ a_n \implies F$$

but: X is the least R-closed set

hence: $X \subseteq \{x. \ P \ x\}$ which means: $\forall x \in X. \ P \ x$

qed

Rules with side conditions

$$\frac{a_1 \in X \quad \dots \quad a_n \in X \quad C_1 \quad \dots \quad C_m}{a \in X}$$

induction scheme:

$$(\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \land \\ C_1 \land \dots \land C_m \land \\ \{a_1, \dots, a_n\} \subseteq X \Longrightarrow P \ a)$$
$$\Longrightarrow \\ \forall x \in X. \ P \ x$$

X as Fixpoint

How to compute X?

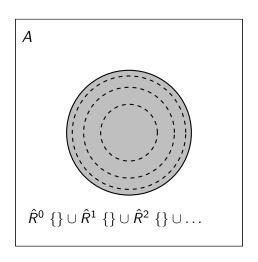
$$X = \bigcap \{B \subseteq A. \ B \ R - \mathsf{closed}\}\ \mathsf{hard}\ \mathsf{to}\ \mathsf{work}\ \mathsf{with}.$$

Instead: view X as least fixpoint, X least set with $\hat{R} X = X$.

Fixpoints can be approximated by iteration:

$$X_0 = \hat{R}^0 \ \{\} = \{\}$$
 $X_1 = \hat{R}^1 \ \{\} = \text{rules without hypotheses}$
 \vdots
 $X_n = \hat{R}^n \ \{\}$
 $X_\omega = \bigcup_{n \in \mathbb{N}} (R^n \ \{\}) = X$

Generation from Below



Does this always work?

Knaster-Tarski Fixpoint Theorem:

Let (A, \leq) be a complete lattice, and $f :: A \Rightarrow A$ a monotone function.

Then the fixpoints of f again form a complete lattice.

Lattice:

Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Complete Lattice:

All subsets have a greatest lower bound and least upper bound.

Implications:

- → least and greatest fixpoints exist (complete lattice always non-empty).
- → can be reached by (possibly infinite) iteration. (Why?)

Exercise

Formalize this lecture in Isabelle:

- **→** Define **closed** f A :: $(\alpha \text{ set} \Rightarrow \alpha \text{ set}) \Rightarrow \alpha \text{ set} \Rightarrow \text{bool}$
- → Show closed $f \ A \land \text{closed} \ f \ B \Longrightarrow \text{closed} \ f \ (A \cap B)$ if f is monotone (**mono** is predefined)
- \rightarrow Define **Ifpt** f as the intersection of all f-closed sets
- \rightarrow Show that Ifpt f is a fixpoint of f if f is monotone
- \rightarrow Show that Ifpt f is the least fixpoint of f
- **→** Declare a constant $R :: (\alpha \operatorname{set} \times \alpha) \operatorname{set}$
- \rightarrow Define $\hat{R} :: \alpha \text{ set} \Rightarrow \alpha \text{ set in terms of } R$
- \Rightarrow Show soundness of rule induction using R and Ifpt \hat{R}

We have learned today ...

- → Formal background of inductive definitions
- → Definition by intersection
- → Computation by iteration
- → Formalisation in Isabelle