COMP4161: Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Ramana Kumar, Miki Tanaka S2/2017

data61.csiro.au

DATA

Content

ment	DATA 61
→ Intro & motivation, getting started	[1]
 → Foundations & Principles Lambda Calculus, natural deduction 	[1 2]
 Higher Order Logic Term rewriting 	[1,2] [3 ^a] [4]
➔ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	[6, 7]
 Hoare logic, proofs about programs, C verification (mid-semester break) 	[8 ^b ,9]
Writing Automated Proof Methods	[10]
 Isar, codegen, typeclasses, locales 	[11 ^c ,12]

^aa1 due; ^ba2 due; ^ca3 due

Last Time

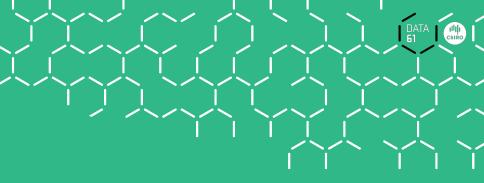
➔ Sets

Last Time

- → Sets
- → Type Definitions

Last Time

- → Sets
- → Type Definitions
- ➔ Inductive Definitions



Inductive Definitions

How They Work

$$\frac{n \in N}{n+1 \in N}$$

5 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

$$\frac{n \in N}{n+1 \in N}$$

 \rightarrow N is the set of natural numbers \mathbb{N}

$$\frac{n \in N}{n+1 \in N}$$

- \rightarrow N is the set of natural numbers \mathbb{N}
- → But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \implies n+1 \in \mathbb{R}$

$$\frac{n \in N}{n+1 \in N}$$

- \rightarrow N is the set of natural numbers \mathbb{N}
- → But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- \rightarrow \mathbb{N} is the smallest set that is consistent with the rules.

$$\frac{n \in N}{n+1 \in N}$$

- \rightarrow N is the set of natural numbers \mathbb{N}
- → But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- \rightarrow \mathbb{N} is the smallest set that is consistent with the rules.

Why the smallest set?

$$\frac{n \in N}{n+1 \in N}$$

- \rightarrow N is the set of natural numbers \mathbb{N}
- → But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- \rightarrow \mathbb{N} is the smallest set that is consistent with the rules.

Why the smallest set?

→ Objective: **no junk**. Only what must be in X shall be in X.

$$\frac{n \in N}{n+1 \in N}$$

- \rightarrow N is the set of natural numbers \mathbb{N}
- → But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- \rightarrow \mathbb{N} is the smallest set that is consistent with the rules.

Why the smallest set?

- → Objective: **no junk**. Only what must be in X shall be in X.
- → Gives rise to a nice proof principle (rule induction)

Rules $\frac{a_1 \in X \quad \dots \quad a_n \in X}{a \in X}$ with $a_1, \dots, a_n, a \in A$ define set $X \subset A$

Formally:

6 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Rules
$$\frac{a_1 \in X \quad \dots \quad a_n \in X}{a \in X}$$
 with $a_1, \dots, a_n, a \in A$
define set $X \subseteq A$

Formally: set of rules $R \subseteq A$ set $\times A$ (R, X possibly infinite) **Applying rules** R to a set B:

Rules
$$\frac{a_1 \in X \quad \dots \quad a_n \in X}{a \in X}$$
 with $a_1, \dots, a_n, a \in A$
define set $X \subseteq A$

Formally: set of rules $R \subseteq A$ set $\times A$ (R, X possibly infinite) **Applying rules** R to a set B: $\hat{R} B \equiv \{x. \exists H. (H, x) \in R \land H \subseteq B\}$ **Example:**

Rules
$$\frac{a_1 \in X \quad \dots \quad a_n \in X}{a \in X}$$
 with $a_1, \dots, a_n, a \in A$
define set $X \subseteq A$

Formally: set of rules $R \subseteq A$ set $\times A$ (R, X possibly infinite) **Applying rules** R to a set B: $\hat{R} B \equiv \{x. \exists H. (H, x) \in R \land H \subseteq B\}$

Example:

 $\begin{array}{ll} R & \equiv & \{(\{\},0)\} \cup \{(\{n\},n+1). \ n \in {\rm I\!R}\} \\ \hat{R} \ \{3,6,10\} & = \end{array}$

Rules
$$\frac{a_1 \in X \quad \dots \quad a_n \in X}{a \in X}$$
 with $a_1, \dots, a_n, a \in A$
define set $X \subseteq A$

Formally: set of rules $R \subseteq A$ set $\times A$ (R, X possibly infinite) **Applying rules** R to a set B: $\hat{R} B \equiv \{x. \exists H. (H, x) \in R \land H \subseteq B\}$

Example:

$$\begin{array}{lll} R & \equiv & \{(\{\},0)\} \cup \{(\{n\},n+1). \ n \in {\rm I\!R}\} \\ \hat{R} \ \{3,6,10\} & = & \{0,4,7,11\} \end{array}$$

The Set

Definition: *B* is *R*-closed iff $\hat{R} B \subseteq B$

7 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

The Set

Definition: *B* is *R*-closed iff $\hat{R} \ B \subseteq B$

Definition: X is the least R-closed subset of A

This does always exist:

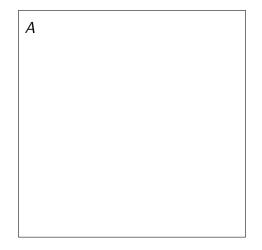
The Set

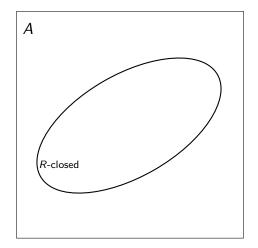
Definition: *B* is *R*-closed iff $\hat{R} \ B \subseteq B$

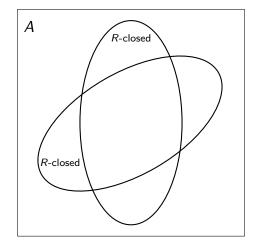
Definition: X is the least R-closed subset of A

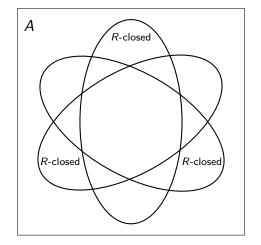
This does always exist:

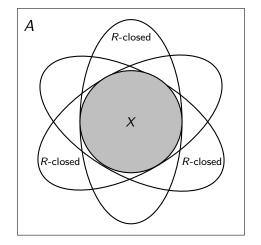
Fact: $X = \bigcap \{ B \subseteq A. \ B \ R - closed \}$











Rule Induction

 $\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$

induces induction principle

 $\llbracket P 0; \land n. P n \Longrightarrow P (n+1) \rrbracket \Longrightarrow \forall x \in X. P x$

Rule Induction

 $\frac{n \in N}{n+1 \in N}$

induces induction principle

 $\llbracket P \ 0; \ \bigwedge n. \ P \ n \Longrightarrow P \ (n+1) \rrbracket \Longrightarrow \forall x \in X. \ P \ x$

In general:

$$\frac{\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$

$$\frac{\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$
$$\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a$$

says

$$\frac{\forall (\{a_1, \dots, a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$
$$\forall (\{a_1, \dots, a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a$$
says
$$\{x. \ P \ x\} \text{ is } R\text{-closed}$$

but:

10 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

$$\frac{\forall (\{a_1, \dots, a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$
$$\forall (\{a_1, \dots, a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a$$
says
$$\{x. \ P \ x\} \text{ is } R\text{-closed}$$

but: X is the least *R*-closed set **hence:**

$$\frac{\forall (\{a_1,\ldots a_n\},a) \in R. \ P \ a_1 \land \ldots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$

$$orall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \wedge \dots \wedge P \ a_n \Longrightarrow P \ a$$

says
 $\{x. \ P \ x\}$ is *R*-closed

but:X is the least R-closed sethence: $X \subseteq \{x. P x\}$ which means:

$$\frac{\forall (\{a_1,\ldots a_n\},a) \in R. \ P \ a_1 \land \ldots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$

$$\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \wedge \dots \wedge P \ a_n \Longrightarrow P \ a$$
says
$$\{x. \ P \ x\} \text{ is } R\text{-closed}$$

but:	X is the least R -closed set
hence:	$X \subseteq \{x. P x\}$
which means:	$\forall x \in X. P x$

$$\frac{\forall (\{a_1,\ldots a_n\},a) \in R. \ P \ a_1 \land \ldots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$

$$\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a$$
says
$$\{x. \ P \ x\} \text{ is } R\text{-closed}$$

but:	X is the least R -closed set
hence:	$X \subseteq \{x. P x\}$
which means:	$\forall x \in X. P x$

qed

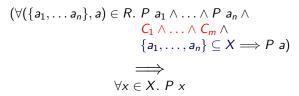
Rules with side conditions

$$\frac{a_1 \in X \quad \dots \quad a_n \in X \quad C_1 \quad \dots \quad C_m}{a \in X}$$

Rules with side conditions

$$\frac{a_1 \in X \quad \dots \quad a_n \in X \quad C_1 \quad \dots \quad C_m}{a \in X}$$

induction scheme:



How to compute X?

How to compute X? $X = \bigcap \{ B \subseteq A. \ B \ R - closed \}$ hard to work with.

Instead:

How to compute X? $X = \bigcap \{B \subseteq A. \ B \ R - \text{closed}\} \text{ hard to work with.}$

Instead: view X as least fixpoint, X least set with $\hat{R} X = X$.

How to compute X? $X = \bigcap \{B \subseteq A. \ B \ R - \text{closed}\} \text{ hard to work with.}$

Instead: view X as least fixpoint, X least set with $\hat{R} X = X$.

$$X_0 = \hat{R}^0 \{\} = \{\}$$

How to compute X? $X = \bigcap \{B \subseteq A. B R - \text{closed}\}\$ hard to work with.

Instead: view X as least fixpoint, X least set with $\hat{R} X = X$.

$$X_0 = \hat{R}^0 \{\} = \{\}$$

$$X_1 = \hat{R}^1 \{\} = \text{rules without hypotheses}$$

$$\vdots$$

How to compute X? $X = \bigcap \{B \subseteq A. B R - \text{closed}\} \text{ hard to work with.}$

Instead: view X as least fixpoint, X least set with $\hat{R} X = X$.

$$X_0 = \hat{R}^0 \{\} = \{\}$$

$$X_1 = \hat{R}^1 \{\} = \text{rules without hypotheses}$$

$$\vdots$$

$$X_n = \hat{R}^n \{\}$$

How to compute X? $X = \bigcap \{ B \subseteq A. \ B \ R - \text{closed} \} \text{ hard to work with.}$

Instead: view X as least fixpoint, X least set with $\hat{R} X = X$.

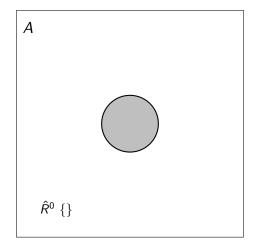
$$X_0 = \hat{R}^0 \{\} = \{\}$$

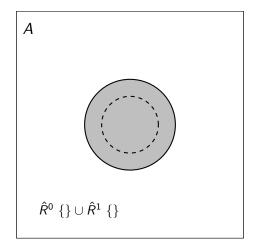
$$X_1 = \hat{R}^1 \{\} = \text{rules without hypotheses}$$

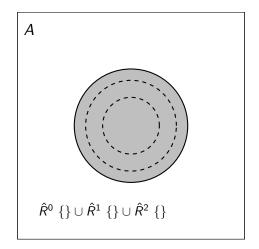
$$\vdots$$

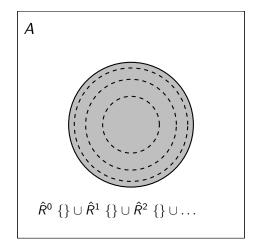
$$X_n = \hat{R}^n \{\}$$

$$X_\omega = \bigcup_{n \in \mathbb{N}} (R^n \{\}) = X$$









Knaster-Tarski Fixpoint Theorem:

Let (A, \leq) be a complete lattice, and $f :: A \Rightarrow A$ a monotone function. Then the fixpoints of f again form a complete lattice.

Knaster-Tarski Fixpoint Theorem:

Let (A, \leq) be a complete lattice, and $f :: A \Rightarrow A$ a monotone function. Then the fixpoints of f again form a complete lattice.

Lattice:

Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Knaster-Tarski Fixpoint Theorem:

Let (A, \leq) be a complete lattice, and $f :: A \Rightarrow A$ a monotone function. Then the fixpoints of f again form a complete lattice.

Lattice:

Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Complete Lattice:

All subsets have a greatest lower bound and least upper bound.

Knaster-Tarski Fixpoint Theorem:

Let (A, \leq) be a complete lattice, and $f :: A \Rightarrow A$ a monotone function. Then the fixpoints of f again form a complete lattice.

Lattice:

Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Complete Lattice:

All subsets have a greatest lower bound and least upper bound.

Implications:

→ least and greatest fixpoints exist (complete lattice always non-empty).

Knaster-Tarski Fixpoint Theorem:

Let (A, \leq) be a complete lattice, and $f :: A \Rightarrow A$ a monotone function. Then the fixpoints of f again form a complete lattice.

Lattice:

Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Complete Lattice:

All subsets have a greatest lower bound and least upper bound.

Implications:

- → least and greatest fixpoints exist (complete lattice always non-empty).
- → can be reached by (possibly infinite) iteration. (Why?)

Exercise

Formalize this lecture in Isabelle:

- → Define closed $f A :: (\alpha \text{ set} \Rightarrow \alpha \text{ set}) \Rightarrow \alpha \text{ set} \Rightarrow \text{bool}$
- → Show closed f A ∧ closed f B ⇒ closed f (A ∩ B) if f is monotone (mono is predefined)
- → Define **Ifpt** *f* as the intersection of all *f*-closed sets
- \rightarrow Show that lfpt f is a fixpoint of f if f is monotone
- → Show that lfpt f is the least fixpoint of f
- → Declare a constant $R :: (\alpha \text{ set } \times \alpha)$ set
- → Define $\hat{R} :: \alpha$ set $\Rightarrow \alpha$ set in terms of R
- → Show soundness of rule induction using R and lfpt \hat{R}

→ Formal background of inductive definitions

- → Formal background of inductive definitions
- ➔ Definition by intersection

- → Formal background of inductive definitions
- ➔ Definition by intersection
- ➔ Computation by iteration

- → Formal background of inductive definitions
- ➔ Definition by intersection
- ➔ Computation by iteration
- ➔ Formalisation in Isabelle