

COMP4161: Advanced Topics in Software Verification

fun

Gerwin Klein, June Andronick, Ramana Kumar, Miki Tanaka S2/2017

Content

- → Intro & motivation, getting started
- → Foundations & Principles

 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	[3 ^a]
 Term rewriting 	[4]

→ Proof & Specification Techniques

 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	[6, 7]
 Hoare logic, proofs about programs, C verification 	$[8^{b}, 9]$

- (mid-semester break)
- Writing Automated Proof Methods [10]
- Isar, codegen, typeclasses, locales [11^c,12]

^aa1 due; ^ba2 due; ^ca3 due

General Recursion

The Choice

- → Limited expressiveness, automatic termination
 - primrec
- → High expressiveness, termination proof may fail
 - fun
- → High expressiveness, tweakable, termination proof manual
 - function

fun — examples


```
fun sep :: "'a \Rightarrow 'a list \Rightarrow 'a list"
where
    "sep a (x \# y \# zs) = x \# a \# sep a (y \# zs)"
    "sep a xs = xs"
fun ack :: "nat \Rightarrow nat \Rightarrow nat"
where
    "ack 0 \text{ n} = \text{Suc n}"
    "ack (Suc m) 0 = ack m 1"
    "ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"
```

fun

- → The definition:
 - pattern matching in all parameters
 - arbitrary, linear constructor patterns
 - reads equations sequentially like in Haskell (top to bottom)
 - proves termination automatically in many cases (tries lexicographic order)
- → Generates own induction principle
- → May fail to prove termination:
 - use function (sequential) instead
 - allows you to prove termination manually

fun — induction principle

- → Each **fun** definition induces an induction principle
- → For each equation: show P holds for lhs, provided P holds for each recursive call on rhs
- → Example **sep.induct**:

Termination

Isabelle tries to prove termination automatically

- → For most functions this works with a lexicographic termination relation.
- → Sometimes not ⇒ error message with unsolved subgoal
- → You can prove automation separately.

```
function (sequential) quicksort where quicksort [] = [] |
```

```
quicksort [y \leftarrow xs.y \le x]@[x]@ quicksort [y \leftarrow xs.y \le x]@[x]@ quicksort [y \leftarrow xs.x < y]
```

by pat_completeness auto

termination

by (relation "measure length") (auto simp: less_Suc_eq_le)

function is the fully tweakable, manual version of fun

How does fun/function work?

Recall **primrec**:

- → defined one recursion operator per datatype D
- → inductive definition of its graph $(x, f \ x) \in D_{-rel}$
- → prove totality: $\forall x. \exists y. (x, y) \in D_{-rel}$
- \rightarrow prove uniqueness: $(x, y) \in D_{-rel} \Rightarrow (x, z) \in D_{-rel} \Rightarrow y = z$
- \rightarrow recursion operator for datatype D_{-rec} , defined via THE.
- → primrec: apply datatype recursion operator

How does fun/function work?

Similar strategy for **fun**:

- → a new inductive definition for each fun f
- \rightarrow extract recursion scheme for equations in f
- \rightarrow define graph f_rel inductively, encoding recursion scheme
- → prove totality (= termination)
- → prove uniqueness (automatic)
- → derive original equations from f_rel
- → export induction scheme from f_rel

How does fun/function work?

Can separate and defer termination proof:

- → skip proof of totality
- \rightarrow instead derive equations of the form: $x \in f_dom \Rightarrow f \ x = \dots$
- → similarly, conditional induction principle
- \rightarrow $f_dom = acc f_rel$
- \rightarrow acc = accessible part of f_rel
- → the part that can be reached in finitely many steps
- → termination = $\forall x. \ x \in f_dom$
- → still have conditional equations for partial functions

Proving Termination

Command termination fun_name sets up termination goal

 $\forall x. \ x \in fun_name_dom$

Three main proof methods:

- → lexicographic_order (default tried by fun)
- → size_change (different automated technique)
- → relation R (manual proof via well-founded relation)

Well Founded Orders

Definition

$$<_r$$
 is well founded if well founded induction holds wf $r \equiv \forall P$. $(\forall x. (\forall y <_r x.P y) \longrightarrow P x) \longrightarrow (\forall x. P x)$

Well founded induction rule:

$$\frac{\text{wf } r \quad \bigwedge x. \ (\forall y <_r x. \ P \ y) \Longrightarrow P \ x}{P \ a}$$

Alternative definition (equivalent):

there are no infinite descending chains, or (equivalent): every nonempty set has a minimal element wrt $<_r$ min $r \ Q \ x \equiv \forall y \in Q. \ y \not<_r \ x$ wf $r = (\forall Q \neq \{\}. \ \exists m \in Q. \ \text{min} \ r \ Q \ m)$

Well Founded Orders: Examples

- → < on N is well founded well founded induction = complete induction
- \Rightarrow > and < on \mathbb{N} are **not** well founded
- → $x <_r y = x \text{ dvd } y \land x \neq 1 \text{ on } \mathbb{N}$ is well founded the minimal elements are the prime numbers
- \Rightarrow $(a,b)<_r(x,y)=a<_1x\lor a=x\land b<_2y$ is well founded if $<_1$ and $<_2$ are
- → $A <_r B = A \subset B \land \text{ finite } B \text{ is well founded}$
- \rightarrow \subseteq and \subset in general are **not** well founded

More about well founded relations: Term Rewriting and All That

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme?

Not fixed anymore as in primrec.

Examples:

→ fun fib where

```
 \begin{array}{l} \mbox{fib } 0 = 1 \mid \\ \mbox{fib } (\mbox{Suc } 0) = 1 \mid \\ \mbox{fib } (\mbox{Suc } (\mbox{Suc } n)) = \mbox{fib } n + \mbox{fib } (\mbox{Suc } n) \end{array}
```

Recursion: Suc (Suc n) \rightsquigarrow n, Suc (Suc n) \rightsquigarrow Suc n

 \rightarrow fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: $x \neq 0 \Longrightarrow x \rightsquigarrow x - 1$

Extracting the Recursion Scheme

Higher Oder:

```
→ datatype 'a tree = Leaf 'a | Branch 'a tree list
fun treemap :: ('a ⇒ 'a) ⇒ 'a tree ⇒ 'a tree where
treemap fn (Leaf n) = Leaf (fn n) |
treemap fn (Branch I) = Branch (map (treemap fn) I)
```

```
Recursion: x \in \text{set } I \Longrightarrow (\text{fn, Branch } I) \leadsto (\text{fn, } x)
```

How to extract the context information for the call?

Extracting the Recursion Scheme

Extracting context for equations

$$\Rightarrow$$

Congruence Rules!

Recall rule if_cong:

[| b = c; c
$$\Longrightarrow$$
 x = u; \neg c \Longrightarrow y = v |] \Longrightarrow (if b then x else y) = (if c then u else v)

Read: for transforming x, use b as context information, for y use $\neg b$.

In fun_def: for recursion in x, use b as context, for y use $\neg b$.

Congruence Rules for fun_defs

The same works for function definitions.

declare my_rule[fundef_cong]
(if_cong already added by default)

Another example (higher-order):

 $[\mid xs = ys; \ \bigwedge\! x. \ x \in \mathsf{set} \ ys \Longrightarrow \mathsf{f} \ x = \mathsf{g} \ x \mid] \Longrightarrow \mathsf{map} \ \mathsf{f} \ xs = \mathsf{map} \ \mathsf{g} \ \mathsf{ys}$

Read: for recursive calls in f, f is called with elements of xs

Further Reading

Alexander Krauss,

Automating Recursive Definitions and Termination Proofs in Higher-Order Logic.

PhD thesis, TU Munich, 2009.

http://www4.in.tum.de/~krauss/diss/krauss_phd.pdf

We have seen today ...

- → General recursion with fun/function
- → Induction over recursive functions
- → How fun works
- → Termination, partial functions, congruence rules