COMP4161: Advanced Topics in Software Verification

DATA

based on slides by J. Blanchette, L. Bulwahn and T. Nipkow Gerwin Klein, June Andronick, Ramana Kumar, Miki Tanaka S2/2017

data61.csiro.au

Content

ment	DATA 61
→ Intro & motivation, getting started	[1]
 → Foundations & Principles Lambda Calculus, natural deduction 	[1 2]
 Higher Order Logic Term rewriting 	[1,2] [3 ^a] [4]
➔ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	[6, 7]
 Hoare logic, proofs about programs, C verification (mid-semester break) 	[8 ^b ,9]
Writing Automated Proof Methods	[10]
 Isar, codegen, typeclasses, locales 	[11 ^c ,12]

^aa1 due; ^ba2 due; ^ca3 due

Automatic Proof and Disproof

→ Sledgehammer: automatic proofs

Overview

Automatic Proof and Disproof

- ➔ Sledgehammer: automatic proofs
- → Quickcheck: counter example by testing

Overview

Automatic Proof and Disproof

- ➔ Sledgehammer: automatic proofs
- ➔ Quickcheck: counter example by testing
- ➔ Nipick: counter example by SAT

Overview

Automatic Proof and Disproof

- ➔ Sledgehammer: automatic proofs
- ➔ Quickcheck: counter example by testing
- ➔ Nipick: counter example by SAT

Based on slides by Jasmin Blanchette, Lukas Bulwahn, and Tobias Nipkow (TUM).

Dramatic improvements in fully automated proofs in the last 2 decades.

Dramatic improvements in fully automated proofs in the last 2 decades.

→ First-order logic (ATP): Otter, Vampire, E, SPASS

Automation

Dramatic improvements in fully automated proofs in the last 2 decades.

- → First-order logic (ATP): Otter, Vampire, E, SPASS
- → Propositional logic (SAT): MiniSAT, Chaff, RSat

Automation

Dramatic improvements in fully automated proofs in the last 2 decades.

- → First-order logic (ATP): Otter, Vampire, E, SPASS
- → Propositional logic (SAT): MiniSAT, Chaff, RSat
- → SAT modulo theory (SMT): CVC3, Yices, Z3

Automation

Dramatic improvements in fully automated proofs in the last 2 decades.

- → First-order logic (ATP): Otter, Vampire, E, SPASS
- → Propositional logic (SAT): MiniSAT, Chaff, RSat
- → SAT modulo theory (SMT): CVC3, Yices, Z3

The key:

Efficient reasoning engines, and restricted logics.

Automation in Isabelle

1980s rule applications, write ML code

Automation in Isabelle

1980s rule applications, write ML code 1990s simplifier, automatic provers (blast, auto), arithmetic

Automation in Isabelle

1980s rule applications, write ML code

1990s simplifier, automatic provers (blast, auto), arithmetic

2000s embrace external tools, but don't trust them (ATP/SMT/SAT)

Sledgehammer

Sledgehammer:

→ Connects Isabelle with ATPs and SMT solvers: E, SPASS, Vampire, CVC3, Yices, Z3

Sledgehammer

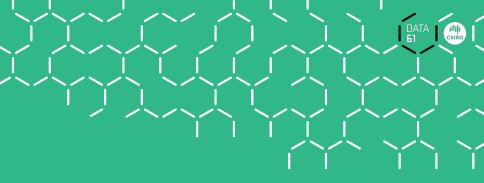
Sledgehammer:

- → Connects Isabelle with ATPs and SMT solvers: E, SPASS, Vampire, CVC3, Yices, Z3
- → Simple invocation:
 - → Users don't need to select or know facts
 - → or ensure the problem is first-order
 - → or know anything about the automated prover

Sledgehammer

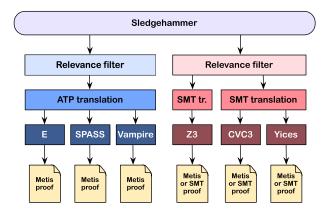
Sledgehammer:

- → Connects Isabelle with ATPs and SMT solvers: E, SPASS, Vampire, CVC3, Yices, Z3
- → Simple invocation:
 - → Users don't need to select or know facts
 - → or ensure the problem is first-order
 - → or know anything about the automated prover
- → Exploits local parallelism and remote servers



Demo: Sledgehammer

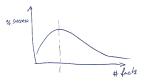
Sledgehammer Architecture



Fact Selection

Provers perform poorly if given 1000s of facts.

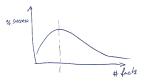
- → Best number of facts depends on the prover
- → Need to take care which facts we give them
- → Idea: order facts by relevance, give top n to prover (n = 250, 1000,...)



Fact Selection

Provers perform poorly if given 1000s of facts.

- → Best number of facts depends on the prover
- → Need to take care which facts we give them
- → Idea: order facts by relevance, give top n to prover (n = 250, 1000,...)
- → Meng & Paulson method: lightweight, symbol-based filter



Fact Selection

Provers perform poorly if given 1000s of facts.

- → Best number of facts depends on the prover
- → Need to take care which facts we give them
- → Idea: order facts by relevance, give top n to prover (n = 250, 1000,...)
- → Meng & Paulson method: lightweight, symbol-based filter
- → Machine learning method: look at previous proofs to get a probability of relevance

From HOL to FOL

Source: *higher-order, polymorphism, type classes* **Target:** *first-order, untyped or simply-typed*

From HOL to FOL

Source: *higher-order, polymorphism, type classes* **Target:** *first-order, untyped or simply-typed*

- → First-order:
 - → SK combinators, λ -lifting
 - ➔ Explicit function application operator

From HOL to FOL

Source: *higher-order, polymorphism, type classes* **Target:** *first-order, untyped or simply-typed*

- → First-order:
 - → SK combinators, λ -lifting
 - → Explicit function application operator
- → Encode types:
 - → Monomorphise (generate multiple instances), or
 - → Encode polymorphism on term level

We don't want to trust the external provers.

We don't want to trust the external provers. *Need to check/reconstruct proof.*

We don't want to trust the external provers. *Need to check/reconstruct proof.*

→ Re-find using Metis Usually fast and reliable (sometimes too slow)

We don't want to trust the external provers. *Need to check/reconstruct proof.*

- → Re-find using Metis Usually fast and reliable (sometimes too slow)
- → Rerun external prover for trusted replay Used for SMT. Re-runs prover each time!

We don't want to trust the external provers. *Need to check/reconstruct proof.*

- → Re-find using Metis Usually fast and reliable (sometimes too slow)
- → Rerun external prover for trusted replay Used for SMT. Re-runs prover each time!
- → Recheck stored explicit external representation of proof Used for SMT, no need to re-run. Fragile.

We don't want to trust the external provers. *Need to check/reconstruct proof.*

- → Re-find using Metis Usually fast and reliable (sometimes too slow)
- → Rerun external prover for trusted replay Used for SMT. Re-runs prover each time!
- → Recheck stored explicit external representation of proof Used for SMT, no need to re-run. Fragile.
- → Recast into structured Isar proof Fast, experimental.

- → 1240 goals out of 7 existing theories.
- → How many can sledgehammer solve?

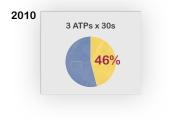
- → 1240 goals out of 7 existing theories.
- → How many can sledgehammer solve?
- → 2010: E, SPASS, Vampire (for 5-120s). 46% ESV × 5s ≈ V × 120s

- → 1240 goals out of 7 existing theories.
- → How many can sledgehammer solve?
- → 2010: E, SPASS, Vampire (for 5-120s). 46% ESV × 5s ≈ V × 120s
- → 2011: Add E-SInE, CVC2, Yices, Z3 (30s). Z3 > V

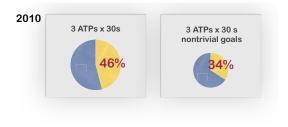
- → 1240 goals out of 7 existing theories.
- → How many can sledgehammer solve?
- → 2010: E, SPASS, Vampire (for 5-120s). 46% ESV × 5s ≈ V × 120s
- → 2011: Add E-SInE, CVC2, Yices, Z3 (30s). Z3 > V
- → 2012: Better integration with SPASS. 64% SPASS best (small margin)

- → 1240 goals out of 7 existing theories.
- → How many can sledgehammer solve?
- → 2010: E, SPASS, Vampire (for 5-120s). 46% ESV × 5s ≈ V × 120s
- → 2011: Add E-SInE, CVC2, Yices, Z3 (30s). Z3 > V
- → 2012: Better integration with SPASS. 64% SPASS best (small margin)
- → 2013: Machine learning for fact selection. 69% Improves a few percent across provers.

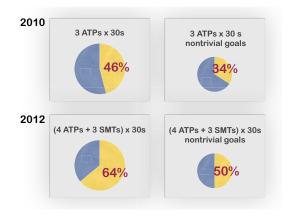
Evaluation



Evaluation



Evaluation



Sledgehammer rules!

Example application:

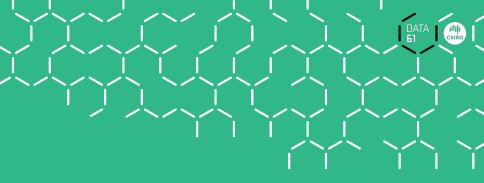
- → Large Isabelle/HOL repository of algebras for modelling imperative programs (Kleene Algebra, Hoare logic, ..., ≈ 1000 lemmas)
- → Intricate refinement and termination theorems
- → Sledgehammer and Z3 automate algebraic proofs at textbook level.

Sledgehammer rules!

Example application:

- → Large Isabelle/HOL repository of algebras for modelling imperative programs (Kleene Algebra, Hoare logic, ..., ≈ 1000 lemmas)
- → Intricate refinement and termination theorems
- → Sledgehammer and Z3 automate algebraic proofs at textbook level.

"The integration of ATP, SMT, and Nitpick is for our purposes very very helpful." – G. Struth



Disproof

Testing can show only the presence of errors, but not their absence. (*Dijkstra*)

Testing cannot prove theorems

Testing can show only the presence of errors, but not their absence. (*Dijkstra*)

Testing cannot prove theorems, but it can refute conjectures!

Testing can show only the presence of errors, but not their absence. (*Dijkstra*)

Testing cannot prove theorems, but it can refute conjectures!

Sad facts of life:

- → Most lemma statements are wrong the first time.
- → Theorem proving is expensive as a debugging technique.

Testing can show only the presence of errors, but not their absence. (*Dijkstra*)

Testing cannot prove theorems, but it can refute conjectures!

Sad facts of life:

- → Most lemma statements are wrong the first time.
- → Theorem proving is expensive as a debugging technique.

Find counter examples automatically!

Quickcheck

Lightweight validation by testing.

Quickcheck

Lightweight validation by testing.

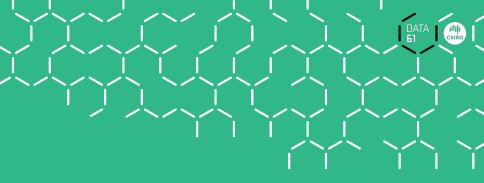
- → Motivated by Haskell's QuickCheck
- → Uses Isabelle's code generator
- → Fast
- → Runs in background, proves you wrong as you type.

Quickcheck

Covers a number of testing approaches:

- → Random and exhausting testing.
- → Smart test data generators.
- → Narrowing-based (symbolic) testing.

Creates test data generators automatically.



Demo: Quickcheck

Test generators for datatypes

Fast iteration in continuation-passing-style

datatype α list = Nil | Cons α (α list)

Test function:

 $test_{\alpha \ list} P = P \text{ Nil and also } test_{\alpha} (\lambda x. test_{\alpha \ list} (\lambda xs. P (Cons x xs)))$

distinct $xs \implies$ distinct (remove1 x xs)

Problem:

Exhaustive testing creates many useless test cases.

distinct $xs \implies$ distinct (remove1 x xs)

Problem: Exhaustive testing creates many useless test cases.

Solution:

Use definitions in precondition for smarter generator. Only generate cases where distinct xs is true.

distinct $xs \implies$ distinct (remove1 x xs)

Problem:

Exhaustive testing creates many useless test cases.

Solution:

Use definitions in precondition for smarter generator. Only generate cases where distinct xs is true.

test-distinct_{α} list P = P Nil andalso test_{α} (λx . test-distinct_{α} list (if $x \notin xs$ then (λxs . P (Cons x xs)) else True))

distinct $xs \implies$ distinct (remove1 x xs)

Problem:

Exhaustive testing creates many useless test cases.

Solution:

Use definitions in precondition for smarter generator. Only generate cases where distinct xs is true.

test-distinct_{α} list P = P Nil andalso test_{α} (λx . test-distinct_{α} list (if $x \notin xs$ then (λxs . P (Cons x xs)) else True))

Use data flow analysis to figure out which variables must be computed and which generated.

Narrowing

Symbolic execution with demand-driven refinement

- → Test cases can contain variables
- → If execution cannot proceed: instantiate with further symbolic terms

Narrowing

Symbolic execution with demand-driven refinement

- → Test cases can contain variables
- → If execution cannot proceed: instantiate with further symbolic terms

Pays off if large search spaces can be discarded:

distinct (Cons 1 (Cons 1 x))

False for any x, no further instantiations for x necessary.

Narrowing

Symbolic execution with demand-driven refinement

- → Test cases can contain variables
- → If execution cannot proceed: instantiate with further symbolic terms

Pays off if large search spaces can be discarded:

distinct (Cons 1 (Cons 1 x))

False for any x, no further instantiations for x necessary.

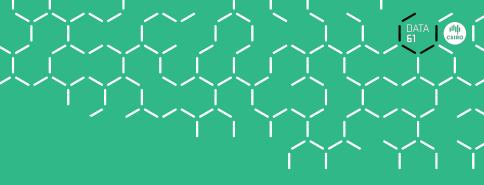
Implementation:

Lazy execution with outer refinement loop. Many re-computations, but fast.

Quickcheck Limitations

Only executable specifications!

- → No equality on functions with infinite domain
- ➔ No axiomatic specifications



Nitpick

Nitpick

Finite model finder

- → Based on SAT via Kodkod (backend of Alloy prover)
- → Soundly approximates infinite types

Nitpick Successes

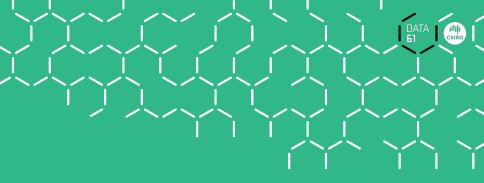
- ➔ Algebraic methods
- \rightarrow C++ memory model
- → Found soundness bugs in TPS and LEO-II

Nitpick Successes

- ➔ Algebraic methods
- \rightarrow C++ memory model
- → Found soundness bugs in TPS and LEO-II

Fan mail:

"Last night I got stuck on a goal I was sure was a theorem. After 5–10 minutes I gave Nitpick a try, and within a few secs it had found a splendid counterexample—despite the mess of locales and type classes in the context!"



Demo: Nitpick

We have seen today ...

➔ Proof: Sledgehammer

We have seen today ...

- ➔ Proof: Sledgehammer
- → Counter examples: Quickcheck

We have seen today ...

- ➔ Proof: Sledgehammer
- → Counter examples: Quickcheck
- ➔ Counter examples: Nitpick