COMP4161: Advanced Topics in Software Verification

lsar

DATA

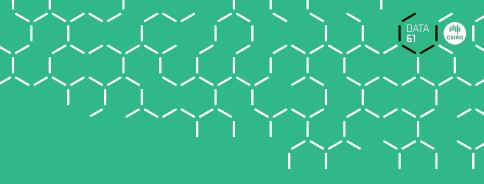
Gerwin Klein, June Andronick, Ramana Kumar, Miki Tanaka S2/2017

data61.csiro.au

Content

	[1]
→ Intro & motivation, getting started	[_]
 → Foundations & Principles Lambda Calculus, natural deduction Higher Order Logic Term rewriting 	[1,2] [3 ^ª] [4]
 → Proof & Specification Techniques Inductively defined sets, rule induction Datatypes, recursion, induction Hoare logic, proofs about programs, C verification (mid-semester break) Writing Automated Proof Methods Isar, codegen, typeclasses, locales 	[5] [6, 7] [8 ^b ,9] [10] [11 ^c ,12]

^aa1 due; ^ba2 due; ^ca3 due



A Language for Structured Proofs

Motivation

Is this true: $(A \longrightarrow B) = (B \lor \neg A)$?

4 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Motivation

Is this true: $(A \longrightarrow B) = (B \lor \neg A)$? YES!

```
apply (rule iffI)

apply (cases A)

apply (rule disjI1)

apply (erule impE)

apply assumption

apply (rule disjI2)

apply assumption

apply (rule impI)

apply (erule disjE)

apply assumption

apply (erule notE)

apply assumption

done
```

or by blast

OK it's true. But WHY?

Motivation

WHY is this true: $(A \longrightarrow B) = (B \lor \neg A)$?

Demo

6 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Isar

apply scripts

- unreadable
- →
- do not scale ÷

What about...

- → Elegance?
- - → Large developments?

No structure.

Isar!

A typical Isar proof

proof
 assume formula₀
 have formula₁ by simp
 :
 have formula_n by blast
 show formula_{n+1} by ...
ged

proves $formula_0 \implies formula_{n+1}$

(analogous to **assumes**/**shows** in lemma statements)

Isar core syntax

 $\begin{array}{l} \mathsf{proof} = \mathbf{proof} \; [\mathsf{method}] \; \mathsf{statement}^* \; \mathbf{qed} \\ | \; \; \mathbf{by} \; \mathsf{method} \end{array}$

 $\mathsf{method} = (\mathsf{simp} \dots) \mid (\mathsf{blast} \dots) \mid (\mathsf{rule} \dots) \mid \dots$

proposition = [name:] formula

proof and qed

proof [method] statement* qed

```
lemma "\llbracket A; B \rrbracket \implies A \land B"

proof (rule conjl)

assume A: "A"

from A show "A" by assumption

next

assume B: "B"

from B show "B" by assumption

ged
```

→ proof (<method>) applies method to the stated goal
 → proof proof - does nothing to the goal

How do I know what to Assume and Show?

Look at the proof state!

lemma " $\llbracket A; B \rrbracket \Longrightarrow A \land B$ " proof (rule conjl)

- → proof (rule conjl) changes proof state to
 1. [[A; B]] ⇒ A
 2. [[A; B]] ⇒ B
- → so we need 2 shows: **show** "A" and **show** "B"
- → We are allowed to assume A, because A is in the assumptions of the proof state.

The Three Modes of Isar

→ [prove]:

goal has been stated, proof needs to follow.

→ [state]:

proof block has opened or subgoal has been proved, new *from* statement, goal statement or assumptions can follow.

→ [chain]:

from statement has been made, goal statement needs to follow.

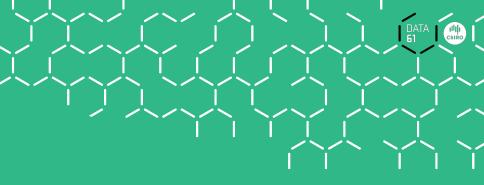
```
\begin{array}{l} \textbf{lemma "} \llbracket A; B \rrbracket \Longrightarrow A \land B" \ \textbf{[prove]} \\ \textbf{proof (rule conjl) [state]} \\ \textbf{assume } A: "A" \ \textbf{[state]} \\ \textbf{from } A \ \textbf{[chain] show "} A" \ \textbf{[prove] by assumption [state]} \\ \textbf{next [state] } \dots \end{array}
```

Have

Can be used to make intermediate steps.

Example:

lemma "(x :: nat) + 1 = 1 + x" proof have A: "x + 1 = Suc x" by simp have B: "1 + x = Suc x" by simp show "x + 1 = 1 + x" by (simp only: A B) qed



Backward and Forward

Backward reasoning: ... have " $A \wedge B$ " proof

- → proof picks an intro rule automatically
- → conclusion of rule must unify with $A \land B$

Forward reasoning: ...

assume AB: " $A \land B$ " from AB have "..." proof

- → now **proof** picks an **elim** rule automatically
- → triggered by **from**
- \clubsuit first assumption of rule must unify with AB

General case: from $A_1 \ldots A_n$ have R proof

- → first *n* assumptions of rule must unify with $A_1 \ldots A_n$
- → conclusion of rule must unify with R

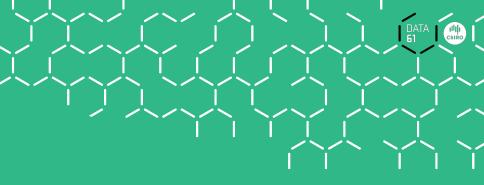
Fix and Obtain

fix $v_1 \ldots v_n$

Introduces new arbitrary but fixed variables (\sim parameters, \bigwedge)

obtain $v_1 \dots v_n$ where < prop > < proof >

Introduces new variables together with property



Fancy Abbreviations

- this = the previous fact proved or assumed
- then = from this thus = then show hence = then have with $A_1 \dots A_n$ = from $A_1 \dots A_n$ this ?thesis = the last enclosing goal statement

Moreover and Ultimately

have $X_1: P_1 ...$ have $X_2: P_2 ...$

have X_n : $P_n \dots$ from $X_1 \dots X_n$ show \dots have $P_1 \dots$ moreover have $P_2 \dots$

moreover have P_n ... ultimately show ...

:

wastes lots of brain power on names $X_1 \dots X_n$

General Case Distinctions

qed

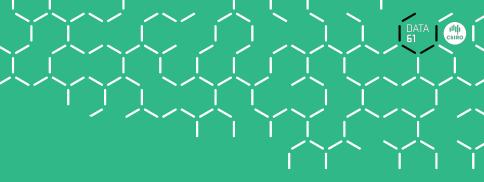
```
\{ \ \ldots \} is a proof block similar to proof ... qed
```

```
\{ \text{ assume } P_1 \dots \text{ have } \mathsf{P} \ < \mathsf{proof} > \} \\ \text{ stands for } P_1 \Longrightarrow P
```

Mixing proof styles


```
from ...
have ...
apply - make incoming facts assumptions
apply (...)

apply (...)
done
```



Datatypes in Isar

Datatype case distinction


```
proof (cases term)

case Constructor<sub>1</sub>

:

next

:

next

case (Constructor<sub>k</sub> \vec{x})

...\vec{x} ...

qed
```

case (Constructor; \vec{x}) \equiv **fix** \vec{x} **assume** Constructor; : "*term* = Constructor; \vec{x} "

Structural induction for nat

show P n**proof** (induct *n*) \equiv let ?case = P 0 case 0 . . . show ?case next case (Suc n) \equiv fix n assume Suc: P n . . . · · · *n* · · · show ?case qed

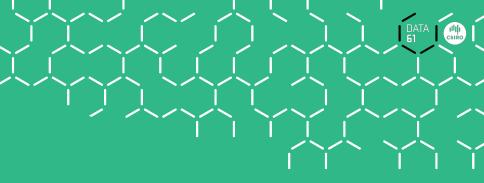
let ?case = P (Suc n)

Structural induction: \implies and \bigwedge

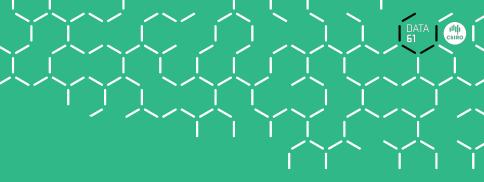
```
show "\bigwedge x. A n \Longrightarrow P n"
proof (induct n)
  case 0
   . . .
  show ?case
next
  case (Suc n)
   . . .
   · · · n · · ·
   . . .
  show ?case
ged
```

```
= fix \times assume 0: "A 0" 
let ?case = "P 0"
```

= fix n and x $assume Suc: " <math>\land x. A n \Longrightarrow P n$ " " A (Suc n)" let ? case = " P (Suc n)"



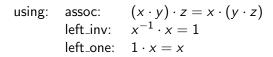
Demo: Datatypes in Isar



Calculational Reasoning

The Goal

Prove:
$$x \cdot x^{-1} = 1$$



The Goal

Prove:

$$\begin{array}{l} x \cdot x^{-1} = 1 \cdot (x \cdot x^{-1}) \\ \dots = 1 \cdot x \cdot x^{-1} \\ \dots = (x^{-1})^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} \\ \dots = (x^{-1})^{-1} \cdot (x^{-1} \cdot x) \cdot x^{-1} \\ \dots = (x^{-1})^{-1} \cdot 1 \cdot x^{-1} \\ \dots = (x^{-1})^{-1} \cdot (1 \cdot x^{-1}) \\ \dots = (x^{-1})^{-1} \cdot x^{-1} \\ \dots = 1 \end{array}$$

assoc:
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

left_inv: $x^{-1} \cdot x = 1$
left_one: $1 \cdot x = x$

Can we do this in Isabelle?

- → Simplifier: too eager
- → Manual: difficult in apply style
- → Isar: with the methods we know, too verbose

Chains of equations

The Problem

$$a = b$$

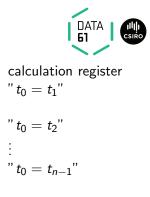
 $\dots = c$
 $\dots = d$
shows $a = d$ by transitivity of =

Each step usually nontrivial (requires own subproof) **Solution in Isar:**

- → Keywords also and finally to delimit steps
- → ...: predefined schematic term variable, refers to right hand side of last expression
- ➔ Automatic use of transitivity rules to connect steps

also/finally

have " $t_0 = t_1$ " [proof] also have " $\ldots = t_2$ " [proof] also ÷ also have " $\cdots = t_n$ " [proof] finally show P — 'finally' pipes fact " $t_0 = t_n$ " into the proof



 $t_0 = t_n$

More about also

- → Works for all combinations of =, \leq and <.
- → Uses all rules declared as [trans].
- ➔ To view all combinations: print_trans_rules

Designing [trans] Rules

have = " $l_1 \odot r_1$ " [proof] also have "... $\odot r_2$ " [proof] also

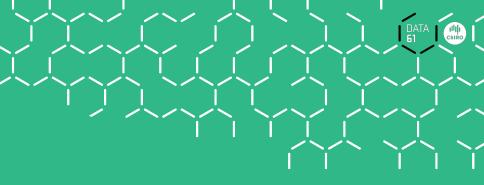
Anatomy of a [trans] rule:

- → Usual form: plain transitivity $\llbracket l_1 \odot r_1; r_1 \odot r_2 \rrbracket \Longrightarrow l_1 \odot r_2$
- → More general form: $\llbracket P \ l_1 \ r_1; Q \ r_1 \ r_2; A \rrbracket \Longrightarrow C \ l_1 \ r_2$

Examples:

- → pure transitivity: $\llbracket a = b; b = c \rrbracket \implies a = c$
- → mixed: $\llbracket a \le b; b < c \rrbracket \implies a < c$
- → substitution: $\llbracket P \ a; a = b \rrbracket \implies P \ b$
- → antisymmetry: $\llbracket a < b; b < a \rrbracket \implies$ False
- → monotonicity:

$$\llbracket a = f \ b; \ b < c; \ \land x \ y. \ x < y \Longrightarrow f \ x < f \ y \rrbracket \Longrightarrow a < f \ c$$



Demo