\\ \title{

I DATA
 \title{ \section*{I DATA 61}

 61}}

1

Gerwin Klein, June Andronick, Ramana Kumar, Miki Tanaka S2/2017

Content

\rightarrow Intro \& motivation, getting started
\rightarrow Foundations \& Principles

- Lambda Calculus, natural deduction
- Higher Order Logic [3a]
- Term rewriting [4]
\rightarrow Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- Hoare logic, proofs about programs, C verification
- (mid-semester break)
- Writing Automated Proof Methods
- Isar, codegen, typeclasses, locales

[^0]

Isar
A Language for Structured Proofs

Motivation

$$
\text { Is this true: }(A \longrightarrow B)=(B \vee \neg A) \text { ? }
$$

Motivation

N10

Is this true: $(A \longrightarrow B)=(B \vee \neg A)$?
YES!
apply (rule iffI)
apply (cases A)
apply (rule disjI1)
apply (erule impE)
apply assumption
apply assumption
apply (rule disjI2)
apply assumption
apply (rule impI)
apply (erule disjE)
apply assumption
apply (erule notE)
apply assumption
done

Motivation

Is this true: $(A \longrightarrow B)=(B \vee \neg A)$?
YES!

```
apply (rule iffI)
    apply (cases A)
    apply (rule disjI1)
    apply (erule impE)
        apply assumption
    apply assumption
    apply (rule disjI2)
    apply assumption
                                    Or
apply (rule impI)
apply (erule disjE)
    apply assumption
apply (erule notE)
apply assumption
done
```


Motivation

```
Is this true: }(A\longrightarrowB)=(B\vee\negA)\mathrm{ ?
YES!
apply (rule iffI)
    apply (cases A)
    apply (rule disjI1)
    apply (erule impE)
            apply assumption
    apply assumption
    apply (rule disjI2) or by blast
apply (rule impI)
apply (erule disjE)
    apply assumption
apply (erule notE)
apply assumption
done
```


OK it's true. But WHY?

Motivation

$$
\text { WHY is this true: }(A \longrightarrow B)=(B \vee \neg A) ?
$$

Demo

Isar

apply scripts

$\rightarrow \quad$ unreadable

Isar

apply scripts

$\rightarrow \quad$ unreadable
\rightarrow hard to maintain

Isar

apply scripts

\rightarrow unreadable
\rightarrow hard to maintain
do not scale

Isar

apply scripts

\rightarrow unreadable
hard to maintain
do not scale

No structure.

Isar

apply scripts
\rightarrow unreadable \rightarrow Elegance?
\rightarrow hard to maintain do not scale

Isar

apply scripts
\rightarrow unreadable \rightarrow Elegance?
\rightarrow hard to maintain \rightarrow Explaining deeper insights? do not scale

What about..

No structure.

Isar

apply scripts
What about..
\rightarrow unreadable \rightarrow Elegance?
\rightarrow hard to maintain \rightarrow Explaining deeper insights? do not scale \rightarrow Large developments?

Isar

apply scripts
What about..
\rightarrow unreadable \rightarrow Elegance?
\rightarrow hard to maintain \rightarrow Explaining deeper insights? do not scale \rightarrow Large developments?

A typical Isar proof

proof
assume formula a_{0}
have formula ${ }_{1}$ by simp
have formula ${ }_{n}$ by blast
show formula ${ }_{n+1}$ by ...
qed

A typical Isar proof

proof
assume formula a_{0}
have formula ${ }_{1}$ by simp
have formula ${ }_{n}$ by blast
show formula ${ }_{n+1}$ by ...
qed

proves formula ${ }_{0} \Longrightarrow$ formula $_{n+1}$

A typical Isar proof

> proof assume formula a_{0} have formula ${ }_{1}$ by simp \vdots have formula ${ }_{n}$ by blast show formula a_{n+1} by \ldots qed

$$
\text { proves formula }{ }_{0} \Longrightarrow \text { formula }_{n+1}
$$

(analogous to assumes/shows in lemma statements)

Isar core syntax

$$
\begin{aligned}
\text { proof } & =\text { proof [method] statement* qed } \\
& \mid \text { by method }
\end{aligned}
$$

Isar core syntax

$$
\begin{aligned}
\text { proof } & =\text { proof }[\text { method }] \text { statement* } \text { qed } \\
& \mid \text { by method } \\
\text { method } & =(\text { simp } \ldots) \mid(\text { blast } \ldots) \mid(\text { rule } \ldots) \mid \ldots
\end{aligned}
$$

Isar core syntax

```
proof = proof [method] statement* qed
    by method
method =(simp ...)|(blast ...)|(rule ...)| ...
statement = fix variables
    assume proposition
    [from name +] (have | show) proposition proof
    next
    (separates subgoals)
```


Isar core syntax

```
proof = proof [method] statement* qed
    by method
method = (simp ...) | (blast ...) | (rule ...) | ...
statement = fix variables
    assume proposition
    [from name+] (have | show) proposition proof
    next
    (separates subgoals)
proposition = [name:] formula
```


proof and qed

proof [method] statement* qed
lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "$

proof and qed

proof [method] statement* qed
lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ "
proof (rule conjl)

proof and qed

proof [method] statement* qed

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "$
proof (rule conjl)
assume A: " A "
from A show " A " by assumption

proof and qed

proof [method] statement* qed

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "$
proof (rule conjl)
assume A: " A "
from A show " A " by assumption next

proof and qed

proof [method] statement* qed

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ "
proof (rule conjl)
assume A: " A "
from A show " A " by assumption next
assume B : " B "
from B show " B " by assumption

proof and qed

proof [method] statement* qed

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "$
proof (rule conjl)
assume A: " A "
from A show " A " by assumption next
assume B : " B "
from B show " B " by assumption qed

proof and qed

proof [method] statement* qed

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "$
proof (rule conjl)
assume A: " A "
from A show " A " by assumption
next
assume B : " B "
from B show " B " by assumption
qed
\rightarrow proof $(<$ method $>)$ applies method to the stated goal

proof and qed

proof [method] statement* qed

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ "
proof (rule conjl)
assume A: " A "
from A show " A " by assumption
next
assume B : " B "
from B show " B " by assumption
qed
\rightarrow proof (<method $>$) applies method to the stated goal
\rightarrow proof applies a single rule that fits

proof and qed

proof [method] statement* qed

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "$
proof (rule conjl)
assume A: " A "
from A show " A " by assumption
next
assume B : " B "
from B show " B " by assumption
qed
\rightarrow proof (<method $>$) applies method to the stated goal
\rightarrow proof applies a single rule that fits
\rightarrow proof - does nothing to the goal

How do I know what to Assume and Show?

Look at the proof state!
lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ "
proof (rule conjl)

How do I know what to Assume and Show?

Look at the proof state!
lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ "
proof (rule conjl)
\rightarrow proof (rule conjl) changes proof state to

1. $\llbracket A ; B \rrbracket \Longrightarrow A$
2. $\llbracket A ; B \rrbracket \Longrightarrow B$

How do I know what to Assume and Show?

Look at the proof state!

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ "
proof (rule conjl)
\rightarrow proof (rule conjl) changes proof state to

1. $\llbracket A ; B \rrbracket \Longrightarrow A$
2. $\llbracket A ; B \rrbracket \Longrightarrow B$
\rightarrow so we need 2 shows: show " A " and show " B "

How do I know what to Assume and Show?

Look at the proof state!

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ "
proof (rule conjl)
\rightarrow proof (rule conjl) changes proof state to

1. $\llbracket A ; B \rrbracket \Longrightarrow A$
2. $\llbracket A ; B \rrbracket \Longrightarrow B$
\rightarrow so we need 2 shows: show " A " and show " B "
\rightarrow We are allowed to assume A, because A is in the assumptions of the proof state.

The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.

The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.
\rightarrow [state]:
proof block has opened or subgoal has been proved, new from statement, goal statement or assumptions can follow.

The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.
\rightarrow [state]:
proof block has opened or subgoal has been proved, new from statement, goal statement or assumptions can follow.
\rightarrow [chain]:
from statement has been made, goal statement needs to follow.

The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.
\rightarrow [state]:
proof block has opened or subgoal has been proved, new from statement, goal statement or assumptions can follow.
\rightarrow [chain]:
from statement has been made, goal statement needs to follow.
lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "$

The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.
\rightarrow [state]:
proof block has opened or subgoal has been proved, new from statement, goal statement or assumptions can follow.
\rightarrow [chain]:
from statement has been made, goal statement needs to follow.
lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ " [prove]

The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.
\rightarrow [state]:
proof block has opened or subgoal has been proved, new from statement, goal statement or assumptions can follow.
\rightarrow [chain]:
from statement has been made, goal statement needs to follow.
lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ " [prove]
proof (rule conjl) [state]

The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.
\rightarrow [state]:
proof block has opened or subgoal has been proved, new from statement, goal statement or assumptions can follow.
\rightarrow [chain]:
from statement has been made, goal statement needs to follow.
lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ " [prove]
proof (rule conjl) [state]
assume A: " A " [state]

The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.
\rightarrow [state]:
proof block has opened or subgoal has been proved, new from statement, goal statement or assumptions can follow.
\rightarrow [chain]:
from statement has been made, goal statement needs to follow.
lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ " [prove]
proof (rule conjl) [state]
assume A: " A " [state]
from A [chain]

The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.
\rightarrow [state]:
proof block has opened or subgoal has been proved, new from statement, goal statement or assumptions can follow.
\rightarrow [chain]:
from statement has been made, goal statement needs to follow.
lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ " [prove]
proof (rule conjl) [state]
assume A: " A " [state]
from A [chain] show " A " [prove] by assumption [state] next [state] ...

Have

Can be used to make intermediate steps.

Example:

Have

Can be used to make intermediate steps.

Example:

$$
\text { lemma " }(x:: \text { nat })+1=1+x "
$$

Have

Can be used to make intermediate steps.

Example:

```
lemma " \((x::\) nat \()+1=1+x "\)
proof -
    have \(A\) : " \(x+1=\) Suc \(x\) " by simp
    have B : " \(1+x=\) Suc \(x\) " by simp
    show " \(x+1=1+x\) " by (simp only: A B)
qed
```


Demo

$$
1
$$

1
IATA

III 1.
cairo
I

相

!

(

I

Backward and Forward

Backward reasoning: ... have " $A \wedge B$ " proof

Backward and Forward

Backward reasoning: ... have " $A \wedge B$ " proof
\rightarrow proof picks an intro rule automatically

Backward and Forward

Backward reasoning: . . have " $A \wedge B$ " proof
\rightarrow proof picks an intro rule automatically
\rightarrow conclusion of rule must unify with $A \wedge B$

Backward and Forward

Backward reasoning: ... have " $A \wedge B$ " proof
\rightarrow proof picks an intro rule automatically
\rightarrow conclusion of rule must unify with $A \wedge B$
Forward reasoning:
assume $A B$: " $A \wedge B$ " from $A B$ have "..." proof

Backward and Forward

Backward reasoning: ... have " $A \wedge B$ " proof
\rightarrow proof picks an intro rule automatically
\rightarrow conclusion of rule must unify with $A \wedge B$
Forward reasoning:
assume $A B$: " $A \wedge B$ "
from $A B$ have "..." proof
\rightarrow now proof picks an elim rule automatically

Backward and Forward

Backward reasoning: ... have " $A \wedge B$ " proof
\rightarrow proof picks an intro rule automatically
\rightarrow conclusion of rule must unify with $A \wedge B$
Forward reasoning:
assume $A B$: " $A \wedge B$ "
from $A B$ have "..." proof
\rightarrow now proof picks an elim rule automatically
\rightarrow triggered by from

Backward and Forward

Backward reasoning: ... have " $A \wedge B$ " proof
\rightarrow proof picks an intro rule automatically
\rightarrow conclusion of rule must unify with $A \wedge B$
Forward reasoning:
assume $A B$: " $A \wedge B$ "
from $A B$ have "..." proof
\rightarrow now proof picks an elim rule automatically
\rightarrow triggered by from
\rightarrow first assumption of rule must unify with $A B$

Backward and Forward

Backward reasoning: . . have " $A \wedge B$ " proof
\rightarrow proof picks an intro rule automatically
\rightarrow conclusion of rule must unify with $A \wedge B$
Forward reasoning:
assume $A B$: " $A \wedge B$ "
from $A B$ have "..." proof
\rightarrow now proof picks an elim rule automatically
\rightarrow triggered by from
\rightarrow first assumption of rule must unify with AB
General case: from $A_{1} \ldots A_{n}$ have R proof
\rightarrow first n assumptions of rule must unify with $A_{1} \ldots A_{n}$
\rightarrow conclusion of rule must unify with R

Fix and Obtain

$$
\text { fix } v_{1} \ldots v_{n}
$$

Fix and Obtain

$$
\text { fix } v_{1} \ldots v_{n}
$$

Introduces new arbitrary but fixed variables (\sim parameters, \wedge)

Fix and Obtain

fix $v_{1} \ldots v_{n}$

Introduces new arbitrary but fixed variables (\sim parameters, \wedge)
obtain $v_{1} \ldots v_{n}$ where <prop> <proof>

Fix and Obtain

$$
\text { fix } v_{1} \ldots v_{n}
$$

Introduces new arbitrary but fixed variables (\sim parameters, \wedge)

obtain $v_{1} \ldots v_{n}$ where <prop> <proof>

Introduces new variables together with property

Demo

$$
1
$$

1
IATA

III 1.
cairo
I

相

!

(

I

Fancy Abbreviations

$$
\text { this }=\text { the previous fact proved or assumed }
$$

Fancy Abbreviations

$$
\begin{aligned}
\text { this } & =\text { the previous fact proved or assumed } \\
\text { then } & =\text { from this }
\end{aligned}
$$

Fancy Abbreviations

$$
\begin{aligned}
\text { this } & =\text { the previous fact proved or assumed } \\
\text { then } & =\text { from this } \\
\text { thus } & =\text { then show }
\end{aligned}
$$

Fancy Abbreviations

$$
\begin{aligned}
\text { this } & =\text { the previous fact proved or assumed } \\
\text { then } & =\text { from this } \\
\text { thus } & =\text { then show } \\
\text { hence } & =\text { then have }
\end{aligned}
$$

Fancy Abbreviations

this $=$ the previous fact proved or assumed
then $=$ from this
thus $=$ then show
hence $=$ then have
with $A_{1} \ldots A_{n}=$ from $A_{1} \ldots A_{n}$ this

Fancy Abbreviations

this	$=$ the previous fact proved or assumed
then	$=$ from this
thus	$=$ then show
hence	$=$ then have
with $A_{1} \ldots A_{n}$	$=$ from $A_{1} \ldots A_{n}$ this
?thesis	$=$ the last enclosing goal statement

Moreover and Ultimately

have $X_{1}: P_{1} \ldots$
have $X_{2}: P_{2} \ldots$
:
have $X_{n}: P_{n}$
from $X_{1} \ldots X_{n}$ show \ldots

Moreover and Ultimately

have $X_{1}: P_{1} \ldots$
have $X_{2}: P_{2} \ldots$
:
have $X_{n}: P_{n}$
from $X_{1} \ldots X_{n}$ show \ldots
wastes lots of brain power on names $X_{1} \ldots X_{n}$

Moreover and Ultimately

have $X_{1}: P_{1} \ldots$
have $X_{2}: P_{2} \ldots$
\vdots
have $X_{n}: P_{n}$
from $X_{1} \ldots X_{n}$ show
wastes lots of brain power on names $X_{1} \ldots X_{n}$
have P_{1}
moreover have P_{2}
引 moreover have $P_{n} \ldots$ ultimately show ...

General Case Distinctions

show formula
proof -

General Case Distinctions

show formula
proof -
have $P_{1} \vee P_{2} \vee P_{3}$ <proof>

General Case Distinctions

show formula
proof -
have $P_{1} \vee P_{2} \vee P_{3}$ <proof>
moreover $\left\{\right.$ assume $P_{1} \ldots$ have ?thesis <proof> \}

General Case Distinctions

show formula
proof -
have $P_{1} \vee P_{2} \vee P_{3}$ <proof>
moreover $\left\{\right.$ assume $P_{1} \ldots$ have ?thesis <proof> \} moreover $\left\{\right.$ assume $P_{2} \ldots$ have ?thesis <proof> \}

General Case Distinctions

```
show formula
proof -
    have }\mp@subsup{P}{1}{}\vee\mp@subsup{P}{2}{}\vee\mp@subsup{P}{3}{}<\mathrm{ proof>
    moreover { assume P}\mp@subsup{P}{1}{}\ldots\mathrm{ .. have ?thesis <proof> }
    moreover { assume P}\mp@subsup{P}{2}{}\ldots\mathrm{ .. have ?thesis <proof> }
    moreover { assume P}\mp@subsup{P}{3}{}\ldots\mathrm{ .. have ?thesis <proof> }
```


General Case Distinctions

show formula
proof -
have $P_{1} \vee P_{2} \vee P_{3}<$ proof $>$
moreover $\left\{\right.$ assume $P_{1} \ldots$ have ?thesis <proof> \} moreover $\left\{\right.$ assume $P_{2} \ldots$ have ?thesis <proof> \} moreover $\left\{\right.$ assume $P_{3} \ldots$ have ?thesis <proof> \} ultimately show ?thesis by blast qed

General Case Distinctions

show formula
proof -
have $P_{1} \vee P_{2} \vee P_{3}<$ proof $>$
moreover $\left\{\right.$ assume $P_{1} \ldots$ have ?thesis <proof>\} moreover $\left\{\right.$ assume $P_{2} \ldots$ have ?thesis <proof> \} moreover \{ assume $P_{3} \ldots$ have ?thesis <proof> \} ultimately show ?thesis by blast qed
$\{\ldots\}$ is a proof block similar to proof ... qed

General Case Distinctions

show formula
proof -
have $P_{1} \vee P_{2} \vee P_{3}<$ proof $>$
moreover $\left\{\right.$ assume $P_{1} \ldots$ have ?thesis <proof> \} moreover $\left\{\right.$ assume $P_{2} \ldots$ have ?thesis <proof> \} moreover $\left\{\right.$ assume $P_{3} \ldots$ have ?thesis <proof> \} ultimately show ?thesis by blast qed
$\{\ldots\}$ is a proof block similar to proof ... qed
$\left\{\right.$ assume $P_{1} \ldots$ have $P<$ proof $>$ \}
stands for $P_{1} \Longrightarrow P$

Mixing proof styles

from . . .

have
apply - make incoming facts assumptions
apply (...)
apply (...)
done

Datatype case distinction

```
proof (cases term)
    case Constructor}
next
next
    case (Constructor }\mp@subsup{k}{}{\prime}\vec{x}\mathrm{ )
    ... \vec{x ...}
qed
```


Datatype case distinction

```
proof (cases term)
    case Constructor}\mp@subsup{}{1}{
next
next
    case (Constructor }\mp@subsup{}{k}{}\vec{x}\mathrm{ )
    ... \vec{x ...}
qed
```

case (Constructor ${ }_{i} \vec{x}$) \equiv
fix \vec{x} assume Constructor ${ }_{i}$: "term $=$ Constructor $_{i} \vec{x}{ }^{\prime}$

Structural induction for nat

show $P n$
proof (induct n)
case $0 \quad \equiv$ let ? case $=P 0$
show ?case
next

$$
\begin{array}{lll}
\text { case }(\text { Suc } n) \quad & \text { fix } n \text { assume Suc: } P n \\
\ldots & \text { let } ? \text { case }=P(\text { Suc } n)
\end{array}
$$

... n ...
show ?case
qed

Structural induction: \Longrightarrow and Λ

```
show " \(\bigwedge x . A n \Longrightarrow P n\) "
proof (induct \(n\) )
    case 0
\[
\text { let } ? \text { case }=" P 0 "
\]
    show ?case
next
    case (Suc \(n\) )
    ... n ...
    show ?case
qed
\[
\equiv \text { fix } x \text { assume } 0: \text { "A } 0 \text { " }
\]
```


The Goal

Prove:
 $x \cdot x^{-1}=1$

using: assoc: $\quad(x \cdot y) \cdot z=x \cdot(y \cdot z)$
left_inv: $\quad x^{-1} \cdot x=1$
left_one: $1 \cdot x=x$

The Goal

Prove:

$$
\begin{aligned}
& \begin{aligned}
x \cdot x^{-1} & =1 \cdot\left(x \cdot x^{-1}\right) \\
\ldots & =1 \cdot x \cdot x^{-1}
\end{aligned} \\
& \begin{aligned}
x \cdot x^{-1} & =1 \cdot\left(x \cdot x^{-1}\right) \\
\ldots & =1 \cdot x \cdot x^{-1}
\end{aligned} \\
& \begin{array}{l}
\ldots=\left(x^{-1}\right)^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} \\
\ldots=\left(x^{-1}\right)-1 \cdot\left(x^{-1} \cdot x\right) \cdot x^{-1} \\
\ldots=\left(x^{-1}\right)^{-1} \cdot 1 \cdot x^{-1} \\
\ldots=\left(x^{-1}\right)^{-1} \cdot\left(1 \cdot x^{-1}\right)
\end{array} \\
& \begin{array}{l}
\ldots=\left(x^{-1}\right)^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} \\
\ldots=\left(x^{-1}\right)-1 \cdot\left(x^{-1} \cdot x\right) \cdot x^{-1} \\
\ldots=\left(x^{-1}\right)^{-1} \cdot 1 \cdot x^{-1} \\
\ldots=\left(x^{-1}\right)^{-1} \cdot\left(1 \cdot x^{-1}\right)
\end{array} \\
& \begin{array}{l}
\ldots=\left(x ^ { - 1 } \left\{-1 \cdot\left(1 \cdot x^{-1}\right)\right.\right. \\
\ldots=\left(x^{-1}\right)-1 \cdot x^{-1}
\end{array} \\
& \ldots=1 \\
& \text { assoc: } \quad(x \cdot y) \cdot z=x \cdot(y \cdot z) \\
& \text { left_inv: } \quad x^{-1} \cdot x=1 \\
& \text { left_one: } 1 \cdot x=x
\end{aligned}
$$

The Goal

Prove:

$$
\begin{aligned}
x \cdot x^{-1} & =1 \cdot\left(x \cdot x^{-1}\right) \\
\ldots & =1 \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)-1 \cdot\left(x^{-1} \cdot x\right) \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot 1 \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)-\left(1 \cdot x^{-1}\right) \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} x^{-1} \\
\ldots & =1
\end{aligned}
$$

assoc: $\quad(x \cdot y) \cdot z=x \cdot(y \cdot z)$
left_inv: $\quad x^{-1} \cdot x=1$
left_one: $1 \cdot x=x$

Can we do this in Isabelle?

The Goal

Prove:

$$
\begin{aligned}
x \cdot x^{-1} & =1 \cdot\left(x \cdot x^{-1}\right) \\
\ldots & =1 \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)-1 \cdot\left(x^{-1} \cdot x\right) \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot 1 \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)-\left(1 \cdot x^{-1}\right) \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} x^{-1} \\
\ldots & =1
\end{aligned}
$$

Can we do this in Isabelle?
\rightarrow Simplifier: too eager

The Goal

$$
\text { assoc: } \quad(x \cdot y) \cdot z=x \cdot(y \cdot z)
$$

$$
\begin{aligned}
& \text { Prove: } \\
& \begin{aligned}
x \cdot x^{-1} & =1 \cdot\left(x \cdot x^{-1}\right) \\
\ldots & =1 \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)-\left(x^{-1} \cdot x\right) \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot 1 \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)-1 \cdot\left(1 \cdot x^{-1}\right) \\
\ldots & =\left(x^{-1}\right)-1 \cdot x^{-1} \\
\ldots & =1
\end{aligned}
\end{aligned}
$$

Can we do this in Isabelle?
\rightarrow Simplifier: too eager
\rightarrow Manual: difficult in apply style

$$
\text { left_inv: } \quad x^{-1} \cdot x=1
$$

$$
\text { left_one: } \quad 1 \cdot x=x
$$

The Goal

Prove:

$$
\begin{aligned}
x \cdot x^{-1} & =1 \cdot\left(x \cdot x^{-1}\right) \\
\ldots & =1 \cdot x \cdot x^{-1}
\end{aligned}
$$

$$
\ldots=1 \cdot x \cdot x^{-1} \quad \text { left_inv: } \quad x^{-1} \cdot x=1
$$

$$
\ldots=\left(x^{-1}\right)^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} \quad \text { left_one: } \quad 1 \cdot x=x
$$

Can we do this in Isabelle?
\rightarrow Simplifier: too eager
\rightarrow Manual: difficult in apply style
\rightarrow Isar: with the methods we know, too verbose

Chains of equations

The Problem

$$
\begin{gathered}
a=b \\
\cdots=c \\
\cdots=d \\
\text { shows } a=d \text { by transitivity of }=
\end{gathered}
$$

Chains of equations

The Problem

$$
\begin{aligned}
& a=b \\
& \cdots=c \\
& \cdots=d
\end{aligned}
$$

$$
\text { shows } a=d \text { by transitivity of }=
$$

Each step usually nontrivial (requires own subproof)

Chains of equations

The Problem

$$
\begin{gathered}
a=b \\
\cdots=c \\
\cdots
\end{gathered}=d
$$

Each step usually nontrivial (requires own subproof) Solution in Isar:
\rightarrow Keywords also and finally to delimit steps

Chains of equations

The Problem

$$
\begin{gathered}
a=b \\
\cdots=c \\
\cdots=d \\
\text { shows } a=d \text { by transitivity of }=
\end{gathered}
$$

Each step usually nontrivial (requires own subproof) Solution in Isar:
\rightarrow Keywords also and finally to delimit steps
\rightarrow...: predefined schematic term variable, refers to right hand side of last expression

Chains of equations

The Problem

$$
\begin{gathered}
a=b \\
\cdots=c \\
\cdots
\end{gathered}=d
$$

Each step usually nontrivial (requires own subproof) Solution in Isar:
\rightarrow Keywords also and finally to delimit steps
\rightarrow...: predefined schematic term variable, refers to right hand side of last expression
\rightarrow Automatic use of transitivity rules to connect steps

also/finally

have " $t_{0}=t_{1}$ " [proof] also

also/finally

have " $t_{0}=t_{1}$ " [proof] also
calculation register
$" t_{0}=t_{1} "$

also/finally

have " $t_{0}=t_{1}$ " [proof]
also
have "... = t_{2} " [proof]
calculation register
$" t_{0}=t_{1}$ "

also/finally

have " $t_{0}=t_{1}$ " [proof]
also
have "... = t_{2} " [proof]
also
calculation register
$" t_{0}=t_{1}{ }^{\prime}$
$" t_{0}=t_{2}{ }^{\prime}$

also/finally

have " $t_{0}=t_{1}$ " [proof]
also
have "... = t_{2} " [proof]
also
: also
calculation register
$" t_{0}=t_{1}{ }^{\prime}$
$" t_{0}=t_{2} "$
$" t_{0}=t_{n-1} "$

also/finally

calculation register
$" t_{0}=t_{1} "$
$" t_{0}=t_{2} "$
$" t_{0}=t_{n-1} "$

also/finally

have " $t_{0}=t_{1}$ " [proof]
also
have "... = t_{2} " [proof]
also
:
also
have " $\cdots=t_{n}$ " [proof] finally
calculation register
$" t_{0}=t_{1}{ }^{\prime}$
$" t_{0}=t_{2} "$
$" t_{0}=t_{n-1} "$
$t_{0}=t_{n}$

also/finally

have " $t_{0}=t_{1}$ " [proof]
also
have "... = t_{2} " [proof]
also
:
also
have " $\cdots=t_{n}$ " [proof]
finally
show P

- 'finally' pipes fact " $t_{0}=t_{n}$ " into the proof
calculation register
$" t_{0}=t_{1} "$
$" t_{0}=t_{2} "$
$" t_{0}=t_{n-1} "$
$t_{0}=t_{n}$

More about also

\rightarrow Works for all combinations of $=, \leq$ and $<$.

More about also

\rightarrow Works for all combinations of $=, \leq$ and $<$.
\rightarrow Uses all rules declared as [trans].

More about also

\rightarrow Works for all combinations of $=, \leq$ and $<$.
\rightarrow Uses all rules declared as [trans].
\rightarrow To view all combinations: print_trans_rules

Designing [trans] Rules

```
have = " l}\mp@subsup{l}{1}{}\odot\mp@subsup{r}{1}{\prime}"[proof
also
have "...\odot re" [proof]
also
```


Designing [trans] Rules

```
have = " l}\mp@subsup{l}{1}{}\odot\mp@subsup{r}{1}{}"[\mathrm{ [proof]
also
have "...\odot re" [proof]
also
```

Anatomy of a [trans] rule:
\rightarrow Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow I_{1} \odot r_{2}$

Designing [trans] Rules

```
have = " l}\mp@subsup{l}{1}{}\odot\mp@subsup{r}{1}{}"[\mathrm{ [proof]
also
have "...\odot re" [proof]
also
```

Anatomy of a [trans] rule:
\rightarrow Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow l_{1} \odot r_{2}$
\rightarrow More general form: $\llbracket P I_{1} r_{1} ; Q r_{1} r_{2} ; A \rrbracket \Longrightarrow C I_{1} r_{2}$

Examples:

Designing [trans] Rules

```
have = " l}\mp@subsup{l}{1}{}\odot\mp@subsup{r}{1}{}"[\mathrm{ [proof]
also
have "...\odot re" [proof]
also
```

Anatomy of a [trans] rule:
\rightarrow Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow l_{1} \odot r_{2}$
\rightarrow More general form: $\llbracket P I_{1} r_{1} ; Q r_{1} r_{2} ; A \rrbracket \Longrightarrow C I_{1} r_{2}$

Examples:

\rightarrow pure transitivity: $\llbracket a=b ; b=c \rrbracket \Longrightarrow a=c$

Designing [trans] Rules

```
have = " l}\mp@subsup{l}{1}{}\odot\mp@subsup{r}{1}{\prime}"[proof
also
have "...\odot re" [proof]
also
```


Anatomy of a [trans] rule:

\rightarrow Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow l_{1} \odot r_{2}$
\rightarrow More general form: $\llbracket P I_{1} r_{1} ; Q r_{1} r_{2} ; A \rrbracket \Longrightarrow C I_{1} r_{2}$

Examples:

\rightarrow pure transitivity: $\llbracket a=b ; b=c \rrbracket \Longrightarrow a=c$
\rightarrow mixed: $\llbracket a \leq b ; b<c \rrbracket \Longrightarrow a<c$

Designing [trans] Rules

```
have = " l}\mp@subsup{l}{1}{}\odot\mp@subsup{r}{1}{\prime}"[proof
also
have "...\odot re" [proof]
also
```


Anatomy of a [trans] rule:

\rightarrow Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow l_{1} \odot r_{2}$
\rightarrow More general form: $\llbracket P I_{1} r_{1} ; Q r_{1} r_{2} ; A \rrbracket \Longrightarrow C I_{1} r_{2}$

Examples:

\rightarrow pure transitivity: $\llbracket a=b ; b=c \rrbracket \Longrightarrow a=c$
\rightarrow mixed: $\llbracket a \leq b ; b<c \rrbracket \Longrightarrow a<c$
\rightarrow substitution: $\llbracket P a ; a=b \rrbracket \Longrightarrow P b$

Designing [trans] Rules

```
have = " l}\mp@subsup{l}{1}{}\odot\mp@subsup{r}{1}{\prime}"[proof
also
have "...\odot re" [proof]
also
```


Anatomy of a [trans] rule:

\rightarrow Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow l_{1} \odot r_{2}$
\rightarrow More general form: $\llbracket P I_{1} r_{1} ; Q r_{1} r_{2} ; A \rrbracket \Longrightarrow C I_{1} r_{2}$

Examples:

\rightarrow pure transitivity: $\llbracket a=b ; b=c \rrbracket \Longrightarrow a=c$
\rightarrow mixed: $\llbracket a \leq b ; b<c \rrbracket \Longrightarrow a<c$
\rightarrow substitution: $\llbracket P a ; a=b \rrbracket \Longrightarrow P b$
\rightarrow antisymmetry: $\llbracket a<b ; b<a \rrbracket \Longrightarrow$ False

Designing [trans] Rules

```
have = " l}\mp@subsup{l}{1}{}\odot\mp@subsup{r}{1}{\prime}"[proof
also
have "...\odot re" [proof]
also
```


Anatomy of a [trans] rule:

\rightarrow Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow l_{1} \odot r_{2}$
\rightarrow More general form: $\llbracket P I_{1} r_{1} ; Q r_{1} r_{2} ; A \rrbracket \Longrightarrow C I_{1} r_{2}$

Examples:

\rightarrow pure transitivity: $\llbracket a=b ; b=c \rrbracket \Longrightarrow a=c$
\rightarrow mixed: $\llbracket a \leq b ; b<c \rrbracket \Longrightarrow a<c$
\rightarrow substitution: $\llbracket P a ; a=b \rrbracket \Longrightarrow P b$
\rightarrow antisymmetry: $\llbracket a<b ; b<a \rrbracket \Longrightarrow$ False
\rightarrow monotonicity: $\llbracket a=f b ; b<c ; \bigwedge x y . x<y \Longrightarrow f x<f y \rrbracket \Longrightarrow a<f c$

Demo

$$
1
$$

1
IATA

III 1.
cairo
I

相

!

(

I

[^0]: ${ }^{a}$ a1 due; ${ }^{b}$ a2 due; ${ }^{c}$ a3 due

