
COMP4161 S2/2018
Advanced Topics in Software Verification

Assignment 2

This assignment starts on Monday, 2018-09-03 and is due on Thu, 2018-09-20, 23:59h. We will accept
Isabelle .thy files only. In addition to this pdf document, please refer to the provided Isabelle templates
for the definitions and lemma statements.

The assignment is take-home. This does NOT mean you are allowed to work in groups. Each submis-
sion is personal. For more information, see the plagiarism policy: https://student.unsw.edu.au/plagiarism

Submit using give on a CSE machine: give cs4161 a2 a2.thy

For all questions, you may prove your own helper lemmas, and you may use lemmas proved earlier
in other questions. If you can’t finish an earlier proof, use sorry to assume that the result holds so
that you can use it if you wish in a later proof. You won’t be penalised in the later proof for using
an earlier true result you are yet to prove, and you’ll be awarded part marks for the earlier question
in accordance with the progress you made on it.

1 Higher-Order Logic (18 marks)

Prove the following statements, using only the proof methods: rule, erule, assumption, frule,
drule, rule tac, erule tac, frule tac, drule tac, rename tac, and case tac; and using only the
proof rules: impI, impE, conjI, conjE, disjI1, disjI2, disjE, notI, notE, iffI, iffE, iffD1, iffD2,
ccontr, classical, FalseE, TrueI, allI, allE, exI, and exE. You do not need to use all of these
methods and rules. You may use rules proved in earlier parts of the question when proving later parts.

(a) (¬ (∀ x. P x)) = (∃ x. ¬ P x) (3 marks)

(b) (∀ x. P −→ Q x) = (P −→ (∀ x. Q x)) (2 marks)

(c) ∀ x. ¬ f x −→ f (g x) =⇒ ∀ x. f x ∨ f (g x) (3 marks)

(d) [[∀ x. ¬ f x −→ f (g x); ∃ x. f x]] =⇒ ∃ x. f x ∧ f (g (g x)) (4 marks)

(e) (∀ x. Q x = P x) ∧ ((∃ x. P x) −→ H) ∧ (∃ x. Q x) −→ H (3 marks)

(f) (∀ Q. (∀ x. P x −→ Q) −→ Q) −→ (∃ x. P x) (3 marks)

2 Strings and Regular Expressions (38 marks)

(a) (4 marks) Use primrec to define functions chop a xs and glue a xss that take a separator a and
chop a list xs into a list of lists xss and glue them together again, respectively. As an example
let a be the newline character, xs a text string of multiple lines, and xss the list of lines in xs.

(b) (4 marks) Use primrec to define a function num_of x xs (without using chop) that counts the
occurrences of an element x in a list xs. Prove the following lemmas (sum_list is the sum of the
elements of a list):

• length (glue a xss) = sum_list (map length xss) + length xss - 1

• length (chop x xs) = num_of x xs + 1
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(c) (4 marks) Prove the following correctness lemmas for chop and glue:

• ls ∈ set (chop a xs) =⇒ a /∈ set ls

• glue a (chop a xs) = xs

(d) (6 marks) Let regular expressions be defined as in the lecture, in the provided file RegExp.thy.
Define a function any_of rs that takes a list of regular expressions rs and returns the regular
expression that matches any of the expressions in rs. Prove:

• lang (any_of rs) =
⋃

(lang ‘ set rs)

Further, define a function repeat A n that takes a set of strings A and an number n, and returns
the set of strings that is the n-time concatenation of the strings in A. Prove:

• star A = (
⋃

n repeat A n)

(e) (10 marks) Using definition or primrec define the following.

• A function matches_sub r xs that returns True iff r matches any substring of xs. You can
assume a function matches r xs that returns True iff the regular expression r matches xs.

• string xs that returns the regular expression that matches string xs.

• is_prefix xs ys that returns True iff list xs is a prefix of ys.

• is_substring xs ys that returns True iff list xs is a sublist of ys.

. Then prove:

• matches_sub r xs = (∃ xs’ ys zs. xs = ys @ xs’ @ zs ∧ matches r xs’)

• matches (string xs) ys = (ys = xs)

• is_substring xs ys = (∃ bs cs. ys = bs @ xs @ cs)

• matches_sub (string xs) l = is_substring xs l

(f) (8 marks) Use primrec to define a function rlen r that determines if regular expression r has
matches of constant length n, and if so returns Some n, otherwise None. This function cannot be
fully precise with primrec, but make it precise enough such that it can return the length of the
string xs if the regular expression was constructed using string xs. For example:

rlen (string ’’abc’’) = Some 3

rlen (Alt (string ’’a’’) (string ’’ab’’)) = None

rlen (Alt (string ’’a’’) (string ’’b’’)) = Some 1

Prove:

• rlen (string xs) = Some (length xs)

• rlen r = Some n =⇒ ∀ xs∈lang r. length xs = n

3 Normal Forms (44 marks)

This question is looking at the normal forms of a particular rewriting rule on strings. The rewriting
rule is [x,y,x] −→ [x], i.e. anywhere in a string, it rewrites the pattern [x, y, x] (for any x and y)
into x. This system is confluent and terminating, so normal forms exist, and we can compute them
by repeated application of the rule.

(a) (5 marks) Define a function find_pat xs that searches the list xs from the left for the first
occurrence of a pattern of the form [x, y, x] and returns the list with this occurrence replaced
by x. If the pattern does not occur in xs, return xs. Prove the following sanity-test lemmas:

2



• hd (find_pat xs) = hd xs

• last (find_pat xs) = last xs

• (find_pat xs 6= xs) = (∃ as bs x y. xs = as @ x # y # x # bs)

(b) (13 marks) Prove the following properties of find_pat. They encode as much of the confluence
of the rewrite system as we will need in the rest of the assignment.

• find_pat (x # find_pat xs) = find_pat (find_pat (x # xs))

• find_pat (find_pat xs @ [x]) = find_pat (find_pat (xs @ [x]))

• find_pat xs = xs =⇒ find_pat (rev xs) = rev xs

• find_pat xs = xs =⇒ find_pat (rev xs @ [x]) = rev (find_pat (x # xs))

(c) (8 marks) The assignment template gives the definition of a function that computes the normal
form of this rewrite system as:

nf xs = (if find_pat xs = xs then xs else nf (find_pat xs))

From the failed termination proof in the template, extract a lemma about find_pat that lets
Isabelle prove termination automatically. Supply the lemma by declaring it as [simp]. Then
prove the following basic properties about nf:

• nf (find_pat xs) = nf xs

• find_pat (nf xs) = nf xs

• nf (nf xs) = nf xs

• hd (nf xs) = hd xs

• last (nf xs) = last xs

(d) (18 marks) Finally, since the pattern in the rewrite rule is symmetric, the normal form of the
reverse of the list should be the reverse of the normal form of the list. Prove this formally by
showing the following lemmas.

• nf (x # nf xs) = nf (x # xs)

• nf (x # xs) = find_pat (x # nf xs)

• nf (xs @ [x]) = find_pat (nf xs @ [x])

• nf (rev xs) = rev (nf xs)

Hints:

• nf.simps is prone to non-termination as a simp rule. Use apply (subst nf.simps), potentially
with instantiation to specialise the rule, for unfolding nf manually.

• For induction on lists involving rev, the reverse induction rule rev_induct is occasionally useful.

• Remember that fun produces custom induct and cases rules, which can help to reduce the
number of manual case distinctions.

• The template states a number of helper lemmas that you can choose to use in your solution, in
which case you have to prove them to get full marks. It is Ok to not prove them if you do not
use them.

• You are allowed to use sledgehammer for questions 2 and 3 in this assignment.
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