
COMP4161 S2/2018
Advanced Topics in Software Verification

Assignment 3

This assignment starts on Friday, 2018-10-05 and is due on Monday, 2018-10-22, 8am. We will accept
Isabelle .thy files only. In addition to this pdf document, please refer to the provided Isabelle templates
for the definitions and lemma statements.

The assignment is take-home. This does NOT mean you are allowed to work in groups. Each submis-
sion is personal. For more information, see the plagiarism policy: https://student.unsw.edu.au/plagiarism

Submit using give on a CSE machine: give cs4161 a3 a3.thy

For all questions, you may prove your own helper lemmas, and you may use lemmas proved earlier
in other questions. If you can’t finish an earlier proof, use sorry to assume that the result holds so
that you can use it if you wish in a later proof. You won’t be penalised in the later proof for using
an earlier true result you are yet to prove, and you’ll be awarded part marks for the earlier question
in accordance with the progress you made on it.

You are allowed to use sledgehammer in this assignment.

1 Regular Expression Matching (35 marks)

In the lecture and previous assignments we proved various properties about regular expressions. In
this assignment, we will prove correctness of a regular expression matcher, i.e. of a function that
takes a regular expression and a string and that decides whether the string is in the language of the
expression or not.

The template gives a simple, elegant, and inefficient implementation of such a matcher from the
following website: https://tinyurl.com/yapdvt8n. See the website for more information on how it
works. The regular expressions it operates on are the same as in the lecture, but with Null (match
nothing) and One (match the empty string) instead of negation.

(a) (8 marks) Prove termination of the matches function. You can

• either adjust the check cs’ 6= cs in the function to something that provides a termination
condition that is easier to prove, but in a way that does not change the behaviour of the
function. This is the easier option.

• or prove termination directly without changing the function. This is the more challenging
option.

You can tell whether an adjustment changed the function’s behaviour by checking whether the
lemma matches_correct still holds.

(b) (27 marks) Prove correctness of the matcher:

matches r cs (op = []) = (cs ∈ lang r)

The syntax (op = []) is the function that takes a list and returns true if and only if the list is
empty. Hint: remember that induction on functions often works better when using the function’s
induction rule. Also remember that to be able to apply such a rule, you might need to generalise
your lemma first.
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2 Binary Search (65 marks)

In the very first lecture of this course, we motivated the field of software verification by showing the
code of binary search from the Java standard library, which contained a bug. 1 We transcribed that
Java code into C (see the file binsearch.c), preserving the bug. The task in this question is to find
the preconditions under which the code works correctly and to prove that it does so.

The template uses the C parser and AutoCorres to convert the C code into a monadic specification
in Isabelle. We will prove properties about this AutoCorres output.

Namely, we aim to prove the following lemma:

lemma binary_search_correct:

{|λs. sorted (array_list (heap_w32 s) a len) ∧
valid_array (is_valid_w32 s) (heap_w32 s) a len ∧
TODO |}

binary_search’ a len key

{| λr s. (r < 0 −→ key /∈ set (array_list (heap_w32 s) a len)) ∧
(0 ≤ r −→ r < len ∧ (array_list (heap_w32 s) a len ! nat r) = key)|}!

unfolding binary_search’_def

apply(subst whileLoopE_add_inv[where
I=λ(high,low) s. valid_array (is_valid_w32 s) (heap_w32 s) a len ∧

sorted (array_list (heap_w32 s) a len) ∧
TODO1 and

M=λ((high,low),_). TODO2])

The task is to define the array_list and valid_array functions, find the suitable extra precondition
TODO, find a suitable loop invariant TODO1 and a suitable decreasing variant TODO2. The variant is needed
because we are here proving total correctness (denoted by the exclamation mark in {|P|} c {|Q|}!).

(a) The code operates on an array of signed integers (int []), i.e. the array is of type s_int ptr

once formalised. We want to reason about the list of addresses (pointers) that the array contains
(to reason about their validity), as well as reason about the values they point to in the memory
heap.

For this we will use a function that enumerates the addresses that a signed int array contains:

array_addrs p 0 = []

array_addrs p (Suc len) = p # array_addrs (p +p 1) len

Prove the following two lemmas:

length (array_addrs a len) = len

(2 marks)

[[0 ≤ x; nat x < len]] =⇒ array_addrs a len ! nat x = a +p x

(5 marks)

(b) We will have to deal with the fact that the C heap stores unsigned words, but the program
mostly uses signed C ints. Signed and unsigned pointers can be converted into each other using
the function ptr_coerce.

Using array_addrs, define a function array_list that takes an unsigned int heap (a function from
u_int ptr to u_int), the array base address (a signed int pointer), and a length (an Isabelle int),
and returns the elements of the array as a list. (5 marks)

(c) Prove the following lemma about array_list:

[[0 ≤ x; x < len]]
=⇒ uint (heap_w32 s (ptr_coerce a +p x)) =

array_list (heap_w32 s) a len ! nat x

(2 marks)
1See https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html for more info on this bug.
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(d) Using array_addrs again, define a function valid_array that takes a heap validity predicate such
as is_valid_w32 in the AutoCorres output binary_search’, and asserts that each array address
is a valid C pointer. The function should also place a condition on the values that the array
stores. Find and add this condition. This extra condition requires array_addrs to also take
the unsigned int heap as parameter. Hint: it is probably easier to explore the invariant and
proof obligations of the program first before you add the additional condition. If it’s easier for
you, you can define two functions, valid_array1 asserting the validity of each array address and
valid_array2 asserting this extra condition, with valid_array being the conjunction of the two
(see template) (6 marks)

(e) Prove the following lemmas about sorted lists:

[[key < xs ! nat mid; mid - 1 < x; sorted xs; 0 ≤ mid; x < int (length xs)]]
=⇒ key < xs ! nat x

(5 marks)

[[xs ! nat mid < key; 0 ≤ x; x ≤ mid; sorted xs; mid < int (length xs)]]
=⇒ xs ! nat x < key

(5 marks)

(f) We can now look again at our main correctness theorem. Firstly you have to strengthen the pre-
condition with additional conditions such that the post-condition of binary_search’ is provable.
Think about which precondition is needed to avoid triggering the overflow bug that is present
in the code. (5 marks)

(g) Adjust the invariant with any additional conditions you need to prove the lemma. (10 marks)

(h) Prove correctness of the binary search implementation. (15 marks)

3


	Regular Expression Matching (35 marks)
	Binary Search (65 marks)

