COMP 4161
Data61 Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Christine Rizkallah, Miki Tanaka
Binary Search
(java.util.Arrays)

```java
public static int binarySearch(int[] a, int key) {
    int low = 0;
    int high = a.length - 1;

    while (low <= high) {
        int mid = (low + high) / 2;
        int midVal = a[mid];

        if (midVal < key)
            low = mid + 1
        else if (midVal > key)
            high = mid - 1;
        else
            return mid; // key found
    }
    return -(low + 1); // key not found.
}
```

http://googleresearch.blogspot.com/2006/06-extra-extra-read-all-about-it-nearly.html
Organisatorials

When

Tue 9:00 – 10:30
Fri 10:30 – 12:00

Where

Ainsworth 201 (K-J17-201)

http://www.cse.unsw.edu.au/~cs4161/
About us

The trustworthy systems verification team

- Functional correctness and security of the seL4 microkernel
 Security \leftrightarrow Isabelle/HOL model \leftrightarrow Haskell model \leftrightarrow C code \leftrightarrow Binary
- 10 000 LOC / 500 000 lines of proof; about 25 person years of effort
- Cogent code/proof co-generation; CakeML verified compiler; etc.

Open Source
http://sel4.systems
https://cakeml.org

We are always embarking on exciting new projects.

We offer

- summer student scholarship projects
- honours and PhD theses
- research assistant and verification engineer positions
What you will learn

- how to use a theorem prover
- background, how it works
- how to prove and specify
- how to reason about programs

Health Warning

Theorem Proving is addictive
Prerequisites

This is an advanced course. It assumes knowledge in

- Functional programming
- First-order formal logic

The following program should make sense to you:

\[
\begin{align*}
\text{map } f \; \text{[]} & = \; \text{[]} \\
\text{map } f \; (x:xs) & = f \; x \; : \; \text{map } f \; xs
\end{align*}
\]

You should be able to read and understand this formula:

\[\exists x. \; (P(x) \rightarrow \forall x. \; P(x))\]
Content — Using Theorem Provers

→ Intro & motivation, getting started [today]

→ Foundations & Principles
 • Lambda Calculus, natural deduction [1, 2]
 • Higher Order Logic [3a]
 • Term rewriting [4]

→ Proof & Specification Techniques
 • Inductively defined sets, rule induction [5]
 • Datatypes, recursion, induction [6, 7]
 • Hoare logic, proofs about programs, C verification [8b, 9]
 • (mid-semester break)
 • Writing Automated Proof Methods [10]
 • Isar, codegen, typeclasses, locales [11c, 12]

\(^a\text{a1 due} ; ^b\text{a2 due} ; ^c\text{a3 due}\)
What you should do to have a chance at succeeding

→ attend lectures
→ try Isabelle early
→ redo all the demos alone
→ try the exercises/homework we give, when we do give some

→ DO NOT CHEAT

 ● Assignments and exams are take-home. This does NOT mean you can work in groups. Each submission is personal.
 ● For more info, see Plagiarism Policy

[^1]: https://student.unsw.edu.au/plagiarism
Credits

some material (in using-theorem-provers part) shamelessly stolen from

Tobias Nipkow, Larry Paulson, Markus Wenzel

David Basin, Burkhardt Wolff

Don’t blame them, errors are ours
What is a proof?

to prove

- from Latin probare (test, approve, prove)
- to learn or find out by experience (archaic)
- to establish the existence, truth, or validity of (by evidence or logic)
 - *prove a theorem, the charges were never proved in court*

pops up everywhere

- politics (weapons of mass destruction)
- courts (beyond reasonable doubt)
- religion (god exists)
- science (cold fusion works)
What is a mathematical proof?

In mathematics, a proof is a demonstration that, given certain axioms, some statement of interest is necessarily true. (Wikipedia)

Example: $\sqrt{2}$ is not rational.

Proof: assume there is $r \in \mathbb{Q}$ such that $r^2 = 2$.
Hence there are mutually prime p and q with $r = \frac{p}{q}$.
Thus $2q^2 = p^2$, i.e. p^2 is divisible by 2.
2 is prime, hence it also divides p, i.e. $p = 2s$.
Substituting this into $2q^2 = p^2$ and dividing by 2 gives $q^2 = 2s^2$.
Hence, q is also divisible by 2. Contradiction. Qed.
Nice, but..

→ still not rigorous enough for some
 • what are the rules?
 • what are the axioms?
 • how big can the steps be?
 • what is obvious or trivial?
→ informal language, easy to get wrong
→ easy to miss something, easy to cheat

Theorem. A cat has nine tails.

Proof. No cat has eight tails. Since one cat has one more tail than no cat, it must have nine tails.
What is a formal proof?

A derivation in a formal calculus

Example: $A \land B \rightarrow B \land A$ derivable in the following system

Rules:

- $X \in S$ (assumption)
- $S \sqcup \{X\} \vdash Y$ (impl)
- $S \vdash X \land Y$ (conjI)
- $S \sqcup \{X, Y\} \vdash Z$ (conjE)

Proof:

1. $\{A, B\} \vdash B$ (by assumption)
2. $\{A, B\} \vdash A$ (by assumption)
3. $\{A, B\} \vdash B \land A$ (by conjI with 1 and 2)
4. $\{A \land B\} \vdash B \land A$ (by conjE with 3)
5. $\{\} \vdash A \land B \rightarrow B \land A$ (by impl with 4)
What is a theorem prover?

Implementation of a formal logic on a computer.

- fully automated (propositional logic)
- automated, but not necessarily terminating (first order logic)
- with automation, but mainly interactive (higher order logic)

- based on rules and axioms
- can deliver proofs

There are other (algorithmic) verification tools:

- model checking, static analysis, ...
- usually do not deliver proofs
- See COMP3153: Algorithmic Verification
Why theorem proving?

→ Analysing systems/programs thoroughly
→ Finding design and specification errors early
→ High assurance (mathematical, machine checked proof)
→ it’s not always easy
→ it’s fun
Main theorem proving system for this course

Isabelle

→ used here for applications, learning how to prove
What is Isabelle?

A generic interactive proof assistant

- **generic:**
 not specialised to one particular logic
 (two large developments: HOL and ZF, will mainly use HOL)

- **interactive:**
 more than just yes/no, you can interactively guide the system

- **proof assistant:**
 helps to explore, find, and maintain proofs
Why Isabelle?

- free
- widely used systems
- active development
- high expressiveness and automation
- reasonably easy to use
- (and because we know it best ;-))
If I prove it on the computer, it is correct, right?
If I prove it on the computer, it is correct, right?

No, because:

① hardware could be faulty
② operating system could be faulty
③ implementation runtime system could be faulty
④ compiler could be faulty
⑤ implementation could be faulty
⑥ logic could be inconsistent
⑦ theorem could mean something else
If I prove it on the computer, it is correct, right?

No, but:

probability for

- OS and H/W issues reduced by using different systems
- runtime/compiler bugs reduced by using different compilers
- faulty implementation reduced by having the right prover architecture
- inconsistent logic reduced by implementing and analysing it
- wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensely higher than manual proof
If I prove it on the computer, it is correct, right?

Soundness architectures
- Careful implementation
- LCF approach, small proof kernel
- Explicit proofs + proof checker

Systems
- PVS
- HOL4
- Isabelle
- Coq
- Twelf
- Isabelle
- HOL4
Meta Logic

Meta language:
The language used to talk about another language.

Examples:
English in a Spanish class, English in an English class

Meta logic:
The logic used to formalize another logic

Example:
Mathematics used to formalize derivations in formal logic
Syntax:
Formulæ: \[F ::= V \mid F \rightarrow F \mid F \land F \mid False \]
\[V ::= \{A \rightarrow Z\} \]

Derivable: \[S \vdash X \quad X \text{ a formula, } S \text{ a set of formulæ} \]

\[\text{logic} / \text{meta logic} \]

\[\frac{X \in S}{S \vdash X} \quad \frac{S \cup \{X\} \vdash Y}{S \vdash X \rightarrow Y} \]

\[\frac{S \vdash X \quad S \vdash Y}{S \vdash X \land Y} \quad \frac{S \cup \{X, Y\} \vdash Z}{S \cup \{X \land Y\} \vdash Z} \]
Isabelle’s Meta Logic

\[\land \quad \implies \quad \lambda \]

\[\land \quad \implies \quad \lambda \]

\[\land \quad \implies \quad \lambda \]
Syntax: $\forall x. F$
(F another meta level formula)

in ASCII: $!!x. F$

→ universal quantifier on the meta level
→ used to denote parameters
→ example and more later
Syntax: \[A \Rightarrow B \] (\(A, B \) other meta level formulae)

in ASCII: \[A \implies B \]

Binds to the right:

\[
A \Rightarrow B \Rightarrow C = A \Rightarrow (B \Rightarrow C)
\]

Abbreviation:

\[
[A; B] \Rightarrow C = A \Rightarrow B \Rightarrow C
\]

→ read: \(A \) and \(B \) implies \(C \)
→ used to write down rules, theorems, and proof states
Example: a theorem

mathematics: if $x < 0$ and $y < 0$, then $x + y < 0$

formal logic: $\vdash x < 0 \land y < 0 \rightarrow x + y < 0$

variation: $x < 0; y < 0 \vdash x + y < 0$

Isabelle: lemma "$x < 0 \land y < 0 \rightarrow x + y < 0$"

variation: lemma "$\llbracket x < 0; y < 0 \rrbracket \implies x + y < 0$"

variation: lemma

assumes "$x < 0$" and "$y < 0$" shows "$x + y < 0$"
Example: a rule

logic:

\[
\begin{array}{c}
X & Y \\
\hline \\
X \land Y \\
\end{array}
\]

variation:

\[
\begin{array}{c}
S \vdash X & S \vdash Y \\
\hline \\
S \vdash X \land Y \\
\end{array}
\]

Isabelle:

\[[X; Y] \Longrightarrow X \land Y\]
Example: a rule with nested implication

\[
\begin{array}{c}
X \\
\vdots \\
X ∨ Y \\
\vdots \\
\hline
Z & Z \\
\hline
\end{array}
\]

logic:

\[
S \cup \{X\} \vdash Z \\
S \cup \{Y\} \vdash Z \\
\hline
S \cup \{X ∨ Y\} \vdash Z
\]

variation:

\[
\begin{array}{c}
[X ∨ Y; X \implies Z; Y \implies Z]\implies Z
\end{array}
\]
Syntax: $\lambda x. F$
(F another meta level formula)
in ASCII: %x. F

→ lambda abstraction
→ used for functions in object logics
→ used to encode bound variables in object logics
→ more about this in the next lecture
Enough Theory!

Getting started with Isabelle
System Architecture

Prover IDE (jEdit) – user interface

HOL, ZF – object-logics

Isabelle – generic, interactive theorem prover

Standard ML – logic implemented as ADT

User can access all layers!
System Requirements

→ Linux, Windows, or MacOS X (10.8 +)
→ Standard ML (PolyML implementation)
→ Java (for jEdit)

Premade packages for Linux, Mac, and Windows + info on:
http://mirror.cse.unsw.edu.au/pub/isabelle/
Documentation

Available from http://isabelle.in.tum.de

→ Learning Isabelle
 ● Concrete Semantics Book
 ● Tutorial on Isabelle/HOL (LNCS 2283)
 ● Tutorial on Isar
 ● Tutorial on Locales

→ Reference Manuals
 ● Isabelle/Isar Reference Manual
 ● Isabelle Reference Manual
 ● Isabelle System Manual

→ Reference Manuals for Object-Logics
text {*
 Note that free variables (eg x), bound variables (eg \lambda n) and
 constants (eg Suc) are displayed differently. *}

term "x"
term "Suc x"

term "Suc x = Succ y"

term "\lambda x. constant "Nat.Suc" :: nat \to nat"

text {* To display more types inside terms: *}

declare [[show_types]]

term "Suc x = Succ y"

text {* To switch off again: *}

declare [[show_types=false]]

term "Suc x = Succ y"

text {* 0 and + are overloaded: *}

prop "n + n = A"

"Suc x"
:: "nat"
Theory File

Isabelle Output
LaTeX Comment

logic terms go in quotes: “x + 2”

Commands
Command click jumps to definition

Command + hover for popup info
Note that free variables (eg x), bound variables (eg y), and constants (eg Succ) are displayed differently.

define "Suc x" :: "nat"

Demo
Exercises

- Download and install Isabelle from
 http://mirror.cse.unsw.edu.au/pub/isabelle/
- Step through the demo files from the lecture web page
- Write your own theory file, look at some theorems in the library, try 'find_theorems'
- How many theorems can help you if you need to prove something containing the term "Suc(Suc x)"?
- What is the name of the theorem for associativity of addition of natural numbers in the library?