COMP4161: Advanced Topics in Software Verification

λ

Gerwin Klein, June Andronick, Ramana Kumar, Miki Tanaka
S2/2017

data61.csiro.au
Last time...

- λ calculus syntax
- free variables, substitution
- β reduction
- α and η conversion
- β reduction is confluent
- λ calculus is expressive (turing complete)
- λ calculus is inconsistent (as a logic)
Content

→ Intro & motivation, getting started

→ Foundations & Principles
 • Lambda Calculus, natural deduction [1,2]
 • Higher Order Logic [3]
 • Term rewriting [4]

→ Proof & Specification Techniques
 • Inductively defined sets, rule induction [5]
 • Datatypes, recursion, induction [6, 7]
 • Hoare logic, proofs about programs, C verification [8,9]
 • (mid-semester break)
 • Writing Automated Proof Methods [10]
 • Isar, codegen, typeclasses, locales [11c,12]

\[a1 \text{ due}; \ b2 \text{ due}; \ c3 \text{ due}\]
\(\lambda \) calculus is inconsistent

Can find term \(R \) such that \(R \ R \ \eta \beta \ not(R \ R) \)

There are more terms that do not make sense:
\[1 \ 2, \ true \ false, \ etc. \]

Solution: rule out ill-formed terms by using types.
(Church 1940)
Introducing types

Idea: assign a type to each “sensible” λ term.

Examples:

\Rightarrow for term t has type α write $t :: \alpha$

\Rightarrow if x has type α then $\lambda x. x$ is a function from α to α

Write: $(\lambda x. x) :: \alpha \Rightarrow \alpha$

\Rightarrow for $s t$ to be sensible:

- s must be a function
- t must be right type for parameter

If $s :: \alpha \Rightarrow \beta$ and $t :: \alpha$ then $(s \ t) :: \beta$
That’s about it
Now formally again
Syntax for $\lambda \rightarrow$

Terms:
$t ::= v \mid c \mid (t \, t) \mid (\lambda x. \, t)$
$v, x \in V, \quad c \in C, \quad V, C \text{ sets of names}$

Types:
$\tau ::= b \mid \nu \mid \tau \Rightarrow \tau$
$b \in \{\text{bool, int, ...}\} \text{ base types}$
$\nu \in \{\alpha, \beta, \ldots\} \text{ type variables}$

$\alpha \Rightarrow \beta \Rightarrow \gamma = \alpha \Rightarrow (\beta \Rightarrow \gamma)$

Context Γ:
Γ: function from variable and constant names to types.

Term t has type τ in context Γ:
$\Gamma \vdash t :: \tau$
Examples

\[\Gamma \vdash (\lambda x. x) :: \alpha \Rightarrow \alpha \]

\[[y \leftarrow \text{int}] \vdash y :: \text{int} \]

\[[z \leftarrow \text{bool}] \vdash (\lambda y. y) \; z :: \text{bool} \]

\[[] \vdash \lambda f \; x. \; f \; x :: (\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta \]

A term \(t \) is **well typed** or **type correct** if there are \(\Gamma \) and \(\tau \) such that \(\Gamma \vdash t :: \tau \)
Type Checking Rules

Variables: \[\Gamma \vdash x :: \Gamma(x) \]

Application: \[\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2 \]
\[\Gamma \vdash (t_1 \ t_2) :: \tau \]

Abstraction: \[\Gamma[x \leftarrow \tau_x] \vdash t :: \tau \]
\[\Gamma \vdash (\lambda x \ . \ t) :: \tau_x \Rightarrow \tau \]
Example Type Derivation:

\[
\begin{align*}
[x \leftarrow \alpha, y \leftarrow \beta] & \vdash x :: \alpha \\
[x \leftarrow \alpha] & \vdash \lambda y. x :: \beta \Rightarrow \alpha \\
[\varepsilon] & \vdash \lambda x \, y. x :: \alpha \Rightarrow \beta \Rightarrow \alpha
\end{align*}
\]
More complex Example

\[
\Gamma \vdash f :: \alpha \Rightarrow (\alpha \Rightarrow \beta) \\
\Gamma \vdash x :: \alpha \\
\Gamma \vdash f \ x :: \alpha \Rightarrow \beta \\
\Gamma \vdash x :: \alpha \\
\Gamma \vdash f \ x \ x :: \beta \\
[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. f \ x \ x :: \alpha \Rightarrow \beta \\
[] \vdash \lambda f \ x. f \ x \ x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta
\]

\[
\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]
\]
More general Types

A term can have more than one type.

Example:
\[
\begin{align*}
\emptyset \vdash \lambda x. \; x :: \text{bool} & \Rightarrow \text{bool} \\
\emptyset \vdash \lambda x. \; x :: \alpha & \Rightarrow \alpha
\end{align*}
\]

Some types are more general than others:

\[\tau \trianglelefteq \sigma\] if there is a substitution \(S\) such that \(\tau = S(\sigma)\)

Examples:

\[
\begin{align*}
\text{int} & \Rightarrow \text{bool} \\
\alpha & \Rightarrow \beta \\
\beta & \Rightarrow \alpha \\
\alpha & \not\leq \alpha
\end{align*}
\]
Most general Types

Fact: each type correct term has a most general type

Formally:
\[\Gamma \vdash t :: \tau \implies \exists \sigma. \Gamma \vdash t :: \sigma \land (\forall \sigma'. \Gamma \vdash t :: \sigma' \implies \sigma' \preceq \sigma) \]

It can be found by executing the typing rules backwards.

→ **type checking:** checking if \(\Gamma \vdash t :: \tau \) for given \(\Gamma \) and \(\tau \)

→ **type inference:** computing \(\Gamma \) and \(\tau \) such that \(\Gamma \vdash t :: \tau \)

Type checking and type inference on \(\lambda \to \) are decidable.
What about β reduction?

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: $\Gamma \vdash s :: \tau \land s \rightarrow_\beta t \Rightarrow \Gamma \vdash t :: \tau$

This property is called **subject reduction**
What about termination?

\[\beta \text{ reduction in } \lambda \rightarrow \text{ always terminates.} \]

(Alan Turing, 1942)

\[=_{\beta} \text{ is decidable} \]
To decide if \(s =_{\beta} t \), reduce \(s \) and \(t \) to normal form (always exists, because \(\rightarrow_{\beta} \) terminates), and compare result.

\[=_{\alpha\beta\eta} \text{ is decidable} \]
This is why Isabelle can automatically reduce each term to \(\beta\eta \) normal form.
What does this mean for Expressiveness?

Not all computable functions can be expressed in $\lambda \to！$

How can typed functional languages then be turing complete?

Fact:
Each computable function can be encoded as closed, type correct $\lambda \to$ term using $Y :: (\tau \Rightarrow \tau) \Rightarrow \tau$ with $Y \ t \rightarrow_\beta t \ (Y \ t)$ as only constant.

→ Y is called fix point operator
→ used for recursion
→ lose decidability (what does $Y \ (\lambda x. \ x)$ reduce to?)
→ (Isabelle/HOL doesn’t have Y; it supports more restricted forms of recursion)
Types and Terms in Isabelle

Types: \(\tau ::= b \mid '\nu \mid '\nu :: C \mid \tau \Rightarrow \tau \mid (\tau, \ldots, \tau) K \)
- \(b \in \{\text{bool, int, \ldots}\} \) base types
- \(\nu \in \{\alpha, \beta, \ldots\} \) type variables
- \(K \in \{\text{set, list, \ldots}\} \) type constructors
- \(C \in \{\text{order, linord, \ldots}\} \) type classes

Terms: \(t ::= v \mid c \mid ?v \mid (t \ t) \mid (\lambda x. \ t) \)
- \(v, x \in V, \ c \in C, \ V, C \) sets of names

- **type constructors**: construct a new type out of a parameter type.
 Example: \(\text{int list} \)

- **type classes**: restrict type variables to a class defined by axioms.
 Example: \(\alpha :: \text{order} \)

- **schematic variables**: variables that can be instantiated.
Type Classes

→ similar to Haskell’s type classes, but with semantic properties

```haskell
class order =
  assumes order_refl: "x ≤ x"
  assumes order_trans: "[x ≤ y; y ≤ z] ⇒ x ≤ z"
...
```

→ theorems can be proved in the abstract

```haskell
lemma order_less_trans:
  "∀ x ::’a :: order. [x < y; y < z] ⇒ x < z"
```

→ can be used for subtyping

```haskell
class linorder = order +
  assumes linorder_linear: "x ≤ y ∨ y ≤ x"
```

→ can be instantiated

```haskell
instance nat :: "{order, linorder}" by ...
```
Schematic Variables

\[\begin{array}{c|c}
X & Y \\
\hline
X \land Y
\end{array} \]

→ X and Y must be instantiated to apply the rule

But: lemma “\(x + 0 = 0 + x \)”

→ x is free
→ convention: lemma must be true for all x
→ during the proof, x must not be instantiated

Solution:
Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.
Free converted into schematic after proof is finished.
Higher Order Unification

Unification:
Find substitution \(\sigma \) on variables for terms \(s, t \) such that \(\sigma(s) = \sigma(t) \)

In Isabelle:
Find substitution \(\sigma \) on schematic variables such that \(\sigma(s) =_{\alpha \beta \eta} \sigma(t) \)

Examples:
\[
\begin{align*}
?X \land ?Y &=_{\alpha \beta \eta} x \land x & [?X \leftarrow x, ?Y \leftarrow x] \\
?P \ x &=_{\alpha \beta \eta} x \land x & [?P \leftarrow \lambda x. x \land x] \\
P (?f \ x) &=_{\alpha \beta \eta} ?Y \ x & [?f \leftarrow \lambda x. x, ?Y \leftarrow P]
\end{align*}
\]

Higher Order: schematic variables can be functions.
Higher Order Unification

- Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- Unification modulo $\alpha\beta\eta$ is undecidable
- Higher Order Unification has possibly infinitely many solutions

But:

- Most cases are well-behaved
- Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

- is a term in β normal form where
- each occurrence of a schematic variable is of the form $?f \ t_1 \ldots t_n$
- and the $t_1 \ldots t_n$ are η-convertible into n distinct bound variables
We have learned so far...

- Simply typed lambda calculus: $\lambda \rightarrow$
- Typing rules for $\lambda \rightarrow$, type variables, type contexts
- β-reduction in $\lambda \rightarrow$ satisfies subject reduction
- β-reduction in $\lambda \rightarrow$ always terminates
- Types and terms in Isabelle