Last time...

- natural deduction rules for \land, \lor, \rightarrow, \neg, iff...
- proof by assumption, by intro rule, elim rule
- safe and unsafe rules

- indent your proofs! (one space per subgoal)
- prefer implicit backtracking (chaining) or rule_tac, instead of back
- prefer and defer
- oops and sorry
Content

→ Intro & motivation, getting started

→ Foundations & Principles
 • Lambda Calculus, natural deduction [1,2]
 • Higher Order Logic [3^a]
 • Term rewriting [4]

→ Proof & Specification Techniques
 • Inductively defined sets, rule induction [5]
 • Datatypes, recursion, induction [6, 7]
 • Hoare logic, proofs about programs, invariants [8^b, 9]
 • (mid-semester break)
 • C verification [10]
 • CakeML, Isar [11^c]
 • Concurrency [12]

^a1 due; ^b2 due; ^c3 due
Quantifiers
Scope

- Scope of parameters: whole subgoal
- Scope of \forall, \exists, \ldots: ends with ; or \Rightarrow

Example:

$$\forall x y. [\forall y. P y \rightarrow Q z y; \ Q x y] \Rightarrow \exists x. Q x y$$

means

$$\forall x y. [(\forall y_1. P y_1 \rightarrow Q z y_1); \ Q x y] \Rightarrow (\exists x_1. Q x_1 y)$$
Natural deduction for quantifiers

\[\forall x. \ P \ x \ \Rightarrow \ R \]

- \textbf{allI} and \textbf{exE} introduce new parameters (\(\land x\)).
- \textbf{allE} and \textbf{exI} introduce new unknowns (\(?x\)).
Instantiating Rules

\textbf{apply} \ (\texttt{rule_tac} \ x = "term" \ in \ \textit{rule})

Like \texttt{rule}, but \(?x\) in \textit{rule} is instantiated by \texttt{term} before application.

Similar: \texttt{erule_tac}

\textbf{!} \(x\) is in \textit{rule}, not in \textit{goal} \textbf{!}
Two Successful Proofs

1. \(\forall x. \exists y. x = y \)

apply (rule allI)

1. \(\forall x. \exists y. x = y \)

best practice

apply (rule_tac x = "x" in exI)

1. \(\forall x. x = x \)

apply (rule refl)

simpler & clearer

exploration

apply (rule exl)

1. \(\forall x. x = ?y x \)

apply (rule refl)

?y \mapsto \lambda u.u

shorter & trickier
Two Unsuccessful Proofs

1. \(\exists y. \forall x. x = y \)

apply (rule_tac \(x = \ldots \) in exl)
apply (rule exl)

1. \(\forall x. x = ?y \)

apply (rule allI)

1. \(\forall x. x = ?y \)

apply (rule refl)

?y \(\mapsto x \) yields \(\forall x'. x' = x \)

Principle:

\(?f \ x_1 \ldots x_n \) can only be replaced by term \(t \)

if \(\text{params}(t) \subseteq x_1, \ldots, x_n \)
Safe and Unsafe Rules

Safe allI, exE
Unsafe allE, exI

Create parameters first, unknowns later
Demo: Quantifier Proofs
Parameter names are chosen by Isabelle

1. $\forall x. \exists y. x = y$

apply (rule allI)

1. $\wedge x. \exists y. x = y$

apply (rule_tac x = "x" in exI)

Brittle!
Renaming parameters

1. \(\forall x. \exists y. x = y \)
apply (rule allI)

1. \(\land x. \exists y. x = y \)
apply (rename_tac \(N \))

1. \(\land N. \exists y. N = y \)
apply (rule_tac \(x = "N" \) in exI)

In general:
\(\text{(rename_tac} \ x_1 \ldots x_n) \text{ renames the rightmost (inner) } n \text{ parameters to } x_1 \ldots x_n \)
Forward Proof: frule and drule

apply (frule < rule >)

Rule: \[[A_1; \ldots; A_m] \implies A \]

Subgoal: 1. \[[B_1; \ldots; B_n] \implies C \]

Substitution: \(\sigma(B_i) \equiv \sigma(A_1) \)

New subgoals: 1. \(\sigma([B_1; \ldots; B_n] \implies A_2) \)

\vdots

m-1. \(\sigma([B_1; \ldots; B_n] \implies A_m) \)

m. \(\sigma([B_1; \ldots; B_n; A] \implies C) \)

Like frule but also deletes \(B_i \): apply (drule < rule >)
Examples for Forward Rules

\[
\begin{align*}
\frac{P \land Q}{P} & \quad \text{conjunct1} \\
\frac{P \land Q}{Q} & \quad \text{conjunct2} \\
\frac{P \rightarrow Q}{P} & \quad \text{mp} \\
\forall x. P x \quad & \quad \text{spec}
\end{align*}
\]
Forward Proof: OF

\[r \ [\text{OF } r_1 \ldots r_n] \]

Prove assumption 1 of theorem \(r \) with theorem \(r_1 \), and assumption 2 with theorem \(r_2 \), and \ldots

Rule \(r \) \[[A_1; \ldots; A_m] \implies A \]

Rule \(r_1 \) \[[B_1; \ldots; B_n] \implies B \]

Substitution \(\sigma(B) \equiv \sigma(A_1) \)

\(r \ [\text{OF } r_1] \) \(\sigma([B_1; \ldots; B_n; A_2; \ldots; A_m] \implies A) \)
Forward proofs: THEN

\[r_1 \text{ [THEN } r_2 \text{]} \text{ means } r_2 \text{ [OF } r_1 \text{]} \]
Demo: Forward Proofs
Hilbert’s Epsilon Operator

(David Hilbert, 1862-1943)

\(\varepsilon x. \, Px \) is a value that satisfies \(P \) (if such a value exists)

\(\varepsilon \) also known as description operator.

In Isabelle the \(\varepsilon \)-operator is written \(\text{SOME} \, x. \, P \, x \)

\[
\frac{P \, ?x}{P \, (\text{SOME} \, x. \, P \, x)} \quad \text{somel}
\]
More Epsilon

ε implies Axiom of Choice:

$$\forall x. \exists y. \ Q \ x \ y \implies \exists f. \ \forall x. \ Q \ x \ (f \ x)$$

Existential and universal quantification can be defined with ε.

Isabelle also knows the definite description operator THE (aka ι):

$$\text{(THE } x. \ x = a) = a \quad \text{the_eq_trivial}$$
Some Automation

More Proof Methods:

- **apply (intro <intro-rules>)** repeatedly applies intro rules
- **apply (elim <elim-rules>)** repeatedly applies elim rules
- **apply clarify** applies all safe rules that do not split the goal
- **apply safe** applies all safe rules
- **apply blast** an automatic tableaux prover (works well on predicate logic)
- **apply fast** another automatic search tactic
Epsilon and Automation Demo
We have learned so far...

- Proof rules for predicate calculus
- Safe and unsafe rules
- Forward Proof
- The Epsilon Operator
- Some automation