COMP4161: Advanced Topics in Software Verification

Gerwin Klein, Johannes Åman Pohjola, Christine Rizkallah, Miki Tanaka
T3/2020
Content

→ Foundations & Principles
 • Intro, Lambda calculus, natural deduction [1,2]
 • Higher Order Logic, Isar (part 1) [2,3a]
 • Term rewriting [3,4]

→ Proof & Specification Techniques
 • Inductively defined sets, rule induction, datatype induction,
 primitive recursion [4,5]
 • General recursive functions, termination proofs [7b]
 • Proof automation, Hoare logic, proofs about programs,
 invariants [8]
 • C verification [9,10]
 • Practice, questions, examp prep [10c]

a1 due; a2 due; a3 due
Last Time

- Equations and Term Rewriting
- Confluence and Termination of reduction systems
- Term Rewriting in Isabelle
Applying a Rewrite Rule

→ $l \rightarrow r$ applicable to term $t[s]$ if there is substitution σ such that $\sigma l = s$

→ Result: $t[\sigma r]$

→ Equationally: $t[s] = t[\sigma r]$

Example:

Rule: $0 + n \rightarrow n$

Term: $a + (0 + (b + c))$

Substitution: $\sigma = \{n \mapsto b + c\}$

Result: $a + (b + c)$
Rewrite rules can be conditional:

\[[P_1 \ldots P_n] \implies l = r\]

is **applicable** to term $t[s]$ with σ if

- $\sigma \ l = s$ and
- $\sigma \ P_1, \ldots, \sigma \ P_n$ are provable by rewriting.
Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

```
lemma "f x = g x ∧ g x = f x → f x = 2" 
```

- `simp` use and simplify assumptions
- `(simp (no_asm))` ignore assumptions
- `(simp (no_asm_use))` simplify, but do not use assumptions
- `(simp (no_asm_simp))` use, but do not simplify assumptions
Preprocessing

Preprocessing (recursive) for maximal simplification power:

\[\neg A \leftrightarrow A = False \]
\[A \rightarrow B \leftrightarrow A \Rightarrow B \]
\[A \land B \leftrightarrow A, B \]
\[\forall x. A x \leftrightarrow A ?x \]
\[A \leftrightarrow A = True \]

Example:

\[(p \rightarrow q \land \neg r) \land s \]

\[p \Rightarrow q = True \quad p \Rightarrow r = False \quad s = True \]
Demo
Case splitting with simp

\[P \text{ (if } A \text{ then } s \text{ else } t) = (A \rightarrow P \ s) \land (\neg A \rightarrow P \ t) \]

Automatic

\[P \text{ (case } e \text{ of } 0 \Rightarrow a | \text{Suc } n \Rightarrow b) = (e = 0 \rightarrow P \ a) \land (\forall n. \ e = \text{Suc } n \rightarrow P \ b) \]

Manually: apply (simp split: nat.split)

Similar for any data type t: \texttt{t.split}
Congruence Rules

congruence rules are about using context

Example: in $P \rightarrow Q$ we could use P to simplify terms in Q

For \rightarrow hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example:

\[
\left[P = P'; P' \rightarrow Q = Q' \right] \implies (P \rightarrow Q) = (P' \rightarrow Q')
\]

Read: to simplify $P \rightarrow Q$

→ first simplify P to P'
→ then simplify Q to Q' using P' as assumption
→ the result is $P' \rightarrow Q'$
More Congruence

Sometimes useful, but not used automatically (slowdown):

conj_cong: \[[P = P'; P' \implies Q = Q'] \implies (P \land Q) = (P' \land Q') \]

Context for if-then-else:

if_cong: \[[b = c; c \implies x = u; \neg c \implies y = v] \implies (\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } u \text{ else } v) \]

Prevent rewriting inside then-else (default):

if_weak_cong:

\[b = c \implies (\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } x \text{ else } y) \]

→ declare own congruence rules with [cong] attribute
→ delete with [cong del]
→ use locally with e.g. apply (simp cong: <rule>)
Problem: $x + y \rightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes lexicographically smaller.

Example: $b + a \leadsto a + b$ but not $a + b \leadsto b + a$.

For types nat, int etc:

- lemmas `add_ac` sort any sum (+)
- lemmas `mult_ac` sort any product (*)

Example: apply (simp add: add_ac) yields $(b + c) + a \leadsto \cdots \leadsto a + (b + c)$
AC Rules

Example for associative-commutative rules:

Associative: \[(x \odot y) \odot z = x \odot (y \odot z)\]
Commutative: \[x \odot y = y \odot x\]

These 2 rules alone get stuck too early (not confluent).

Example: \[(z \odot x) \odot (y \odot v)\]
We want: \[(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))\]
We get: \[(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))\]

We need: **AC rule** \[x \odot (y \odot z) = y \odot (x \odot z)\]

If these 3 rules are present for an AC operator
Isabelle will order terms correctly
Demo
Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let \(l_1 \rightarrow r_1 \) and \(l_2 \rightarrow r_2 \) be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of \(l_1 \) unifies with \(l_2 \).

Example:
Rules:
(1) \(f \ x \rightarrow a \)
(2) \(g \ y \rightarrow b \)
(3) \(f \ (g \ z) \rightarrow b \)

Critical pairs:

\((1)+(3) \quad \{x \mapsto g \ z\} \quad a \xleftarrow{(1)} \quad f \ (g \ z) \xrightarrow{(3)} \ b \)

\((3)+(2) \quad \{z \mapsto y\} \quad b \xleftarrow{(3)} \quad f \ (g \ y) \xrightarrow{(2)} \ f \ b \)
Completion

(1) $f \ x \rightarrow a$
(2) $g \ y \rightarrow b$
(3) $f \ (g \ z) \rightarrow b$

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3)
\{x \mapsto g \ z\}
\ a \xleftarrow{(1)} \ f \ (g \ z) \xrightarrow{(3)} \ b

shows that $a = b$ (because $a \xleftarrow{*} b$), so we add $a \rightarrow b$ as a rule

This is the main idea of the Knuth-Bendix completion algorithm.
Demo: Waldmeister
Orthogonal Rewriting Systems

Definitions:
A rule \(l \rightarrow r \) is **left-linear** if no variable occurs twice in \(l \).
A rewrite system is **left-linear** if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages
We have learned today ...

- Conditional term rewriting
- Congruence rules
- AC rules
- More on confluence