Content

→ Intro & motivation, getting started

→ Foundations & Principles
 - Lambda Calculus, natural deduction [1,2]
 - Higher Order Logic [3a]
 - Term rewriting [4]

→ Proof & Specification Techniques
 - Inductively defined sets, rule induction [5]
 - Datatypes, recursion, induction [6, 7]
 - Hoare logic, proofs about programs, C verification [8b,9]
 - (mid-semester break)
 - Writing Automated Proof Methods [10]
 - Isar, codegen, typeclasses, locales [11c,12]

a1 due; a2 due; a3 due
Last Time

➡ Equations and Term Rewriting
➡ Confluence and Termination of reduction systems
➡ Term Rewriting in Isabelle
Applying a Rewrite Rule

\[l \rightarrow r \text{ applicable to term } t[s] \]
if there is substitution \(\sigma \) such that \(\sigma l = s \)

\[\text{Result: } t[\sigma r] \]
\[\text{Equationally: } t[s] = t[\sigma r] \]

Example:

Rule: \(0 + n \rightarrow n \)

Term: \(a + (0 + (b + c)) \)

Substitution: \(\sigma = \{ n \mapsto b + c \} \)

Result: \(a + (b + c) \)
Conditional Term Rewriting

Rewrite rules can be conditional:

\[[P_1 \ldots P_n] \implies l = r \]

is **applicable** to term \(t[s] \) with \(\sigma \) if

1. \(\sigma \ l = s \) and
2. \(\sigma \ P_1, \ldots, \sigma \ P_n \) are provable by rewriting.
Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

\[
\text{lemma } \Rightarrow \quad f \ x = g \ x \land g \ x = f \ x \Rightarrow f \ x = 2
\]

\begin{align*}
\text{simpl} & \quad \text{use and simplify assumptions} \\
(s\text{imp (no_asm)}) & \quad \text{ignore assumptions} \\
(s\text{imp (no_asm_use)}) & \quad \text{simplify, but do not use assumptions} \\
(s\text{imp (no_asm_simp)}) & \quad \text{use, but do not simplify assumptions}
\end{align*}
Preprocessing (recursive) for maximal simplification power:

\[
\begin{align*}
\neg A & \iff A = \text{False} \\
A \rightarrow B & \iff A \implies B \\
A \land B & \iff A, B \\
\forall x. A \ x & \iff A \ ?x \\
A & \iff A = \text{True}
\end{align*}
\]

Example:

\[(p \implies q \land \neg r) \land s\]

\[
\implies
\]

\[p \implies q = \text{True} \quad p \implies r = \text{False} \quad s = \text{True}\]
Demo
Case splitting with simp

\[P \text{ (if } A \text{ then } s \text{ else } t) = (A \rightarrow P \ s) \land (\neg A \rightarrow P \ t) \]

Automatic

\[P \text{ (case } e \text{ of } 0 \Rightarrow a \mid \text{Suc } n \Rightarrow b) = (e = 0 \rightarrow P \ a) \land (\forall n. \ e = \text{Suc } n \rightarrow P \ b) \]

Manually: apply (simp split: nat.split)

Similar for any data type t: **t.split**
Congruence Rules

congruence rules are about using context

Example: in $P \rightarrow Q$ we could use P to simplify terms in Q

For \Rightarrow hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example:

\[
\begin{align*}
[P = P'; P' \Rightarrow Q = Q'] & \Rightarrow (P \rightarrow Q) = (P' \rightarrow Q')
\end{align*}
\]

Read: to simplify $P \rightarrow Q$

→ first simplify P to P'
→ then simplify Q to Q' using P' as assumption
→ the result is $P' \rightarrow Q'$
More Congruence

Sometimes useful, but not used automatically (slowdown):

\textbf{conj_cong}: \([P = P'; P' \implies Q = Q'] \implies (P \land Q) = (P' \land Q')\)

Context for if-then-else:

\textbf{if_cong}: \([b = c; c \implies x = u; \neg c \implies y = v] \implies \]

\((\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } u \text{ else } v)\)

Prevent rewriting inside then-else (default):

\textbf{if_weak_cong}:

\(b = c \implies (\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } x \text{ else } y)\)

→ declare own congruence rules with \([\text{cong}]\) attribute

→ delete with \([\text{cong del}]\)

→ use locally with e.g. apply (simp cong: <rule>)
Ordered rewriting

Problem: $x + y \rightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes lexicographically smaller.

Example: $b + a \sim a + b$ but not $a + b \sim b + a$.

For types nat, int etc:

- lemmas `add_ac` sort any sum (+)
- lemmas `mult_ac` sort any product (*)

Example: apply `(simp add: add_ac)` yields

$(b + c) + a \sim \cdots \sim a + (b + c)$
AC Rules

Example for associative-commutative rules:
Associative: \((x \odot y) \odot z = x \odot (y \odot z)\)
Commutative: \(x \odot y = y \odot x\)

These 2 rules alone get stuck too early (not confluent).

Example: \((z \odot x) \odot (y \odot v)\)
We want: \((z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))\)
We get: \((z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))\)

We need: AC rule \(x \odot (y \odot z) = y \odot (x \odot z)\)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly
Demo
Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let $l_1 \rightarrow r_1$ and $l_2 \rightarrow r_2$ be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of l_1 unifies with l_2.

Example:
Rules:
1. $f \ x \rightarrow a$
2. $g \ y \rightarrow b$
3. $f \ (g \ z) \rightarrow b$

Critical pairs:
1. $(1)+(3) \quad \{x \mapsto g \ z\} \quad a \leftarrow^{(1)} f \ (g \ z) \quad \rightarrow^{(3)} b$
2. $(3)+(2) \quad \{z \mapsto y\} \quad b \leftarrow^{(3)} f \ (g \ y) \quad \rightarrow^{(2)} f \ b$
Completion

(1) \(f \ x \rightarrow a \) (2) \(g \ y \rightarrow b \) (3) \(f \ (g \ z) \rightarrow b \)

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) \(\{ x \mapsto g \ z \} \) \(a \xleftarrow{(1)} f \ (g \ z) \xrightarrow{(3)} b \)

shows that \(a = b \) (because \(a \xleftrightarrow{*} b \)), so we add \(a \rightarrow b \) as a rule

This is the main idea of the Knuth-Bendix completion algorithm.
Demo: Waldmeister
Orthogonal Rewriting Systems

Definitions:
A rule $l \rightarrow r$ is **left-linear** if no variable occurs twice in l.
A rewrite system is **left-linear** if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages
We have learned today ...

- Conditional term rewriting
- Congruence rules
- AC rules
- More on confluence