Content

→ Intro & motivation, getting started

→ Foundations & Principles
 • Lambda Calculus, natural deduction \[1,2\]
 • Higher Order Logic \[3^a\]
 • Term rewriting \[4\]

→ Proof & Specification Techniques
 • Inductively defined sets, rule induction \[5\]
 • Datatypes, recursion, induction \[6,7\]
 • Hoare logic, proofs about programs, C verification \[8^b,9\]
 • (mid-semester break)
 • Writing Automated Proof Methods \[10\]
 • Isar, codegen, typeclasses, locales \[11^c,12\]

\(^{a}a_{1} \text{ due}; \ ^{b}a_{2} \text{ due}; \ ^{c}a_{3} \text{ due}\)
General Recursion

The Choice

- Limited expressiveness, automatic termination
 - primrec

- High expressiveness, termination proof may fail
 - fun

- High expressiveness, tweakable, termination proof manual
 - function
fun sep :: "'a ⇒ 'a list ⇒ 'a list"
where
 "sep a (x # y # zs) = x # a # sep a (y # zs)" |
 "sep a xs = xs"

fun ack :: "nat ⇒ nat ⇒ nat"
where
 "ack 0 n = Suc n" |
 "ack (Suc m) 0 = ack m 1" |
 "ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"
The definition:

- pattern matching in all parameters
- arbitrary, linear constructor patterns
- reads equations sequentially like in Haskell (top to bottom)
- proves termination automatically in many cases (tries lexicographic order)

Generates own induction principle

May fail to prove termination:

- use function (sequential) instead
- allows you to prove termination manually
fun — induction principle

- Each `fun` definition induces an induction principle
- For each equation:

 show P holds for lhs, provided P holds for each recursive call on rhs

- Example `sep.induct`:

 \[
 \begin{align*}
 \forall & a. \; P \ a \ []; \\
 \quad & \forall a \ w. \; P \ a \ [w] \\
 \quad & \forall a \ x \ y \ zs. \; P \ a \ (y#zs) \implies P \ a \ (x#y#zs); \\
 \implies & P \ a \ xs \\
 \end{align*}
 \]
Termination

Isabelle tries to prove termination automatically

- For most functions this works with a lexicographic termination relation.
- Sometimes not ⇒ error message with unsolved subgoal
- You can prove automation separately.

function (sequential) quicksort where
quicksort [] = [] |
quicksort (x#xs) = quicksort [y ← xs.y ≤ x]@[x]@[y ← xs.x < y]
by pat_completeness auto

termination
by (relation “measure length”) (auto simp: less_Suc_eq_le)

function is the fully tweakable, manual version of fun
Demo
How does fun/function work?

Recall **primrec**:

- defined one recursion operator per *datatype* D
- inductive definition of its graph $\langle x, f \ x \rangle \in D_rel$
- prove totality: $\forall x. \exists y. (x, y) \in D_rel$
- prove uniqueness: $(x, y) \in D_rel \Rightarrow (x, z) \in D_rel \Rightarrow y = z$
- recursion operator for datatype D_rec, defined via *THE*.
- primrec: apply datatype recursion operator
How does fun/function work?

Similar strategy for **fun**:

- a new inductive definition for each **fun** \(f \)
- extract *recursion scheme* for equations in \(f \)
- define graph \(f _rel \) inductively, encoding recursion scheme
- prove totality (= termination)
- prove uniqueness (automatic)
- derive original equations from \(f _rel \)
- export induction scheme from \(f _rel \)
How does fun/function work?

Can separate and defer termination proof:

- skip proof of totality
- instead derive equations of the form: \(x \in f_dom \Rightarrow f \ x = \ldots \)
- similarly, conditional induction principle
- \(f_dom = acc \ f_rel \)
- \(acc = \) accessible part of \(f_rel \)
- the part that can be reached in finitely many steps
- termination = \(\forall x. \ x \in f_dom \)
- still have conditional equations for partial functions
Proving Termination

Command **termination fun_name** sets up termination goal
\[\forall x. \ x \in fun_name_dom \]

Three main proof methods:
- lexicographic_order (default tried by fun)
- size_change (different automated technique)
- relation R (manual proof via well-founded relation)
Well Founded Orders

Definition

\(<_r \) is well founded if well founded induction holds

\[\text{wf} \ r \equiv \forall P. \ (\forall x. \ (\forall y <_r x. P y) \rightarrow P x) \rightarrow (\forall x. P x) \]

Well founded induction rule:

\[
\begin{align*}
\text{wf} \ r & \quad \land \ x. \ (\forall y <_r x. P y) \quad \rightarrow \quad P x \\
\hline
P \ a
\end{align*}
\]

Alternative definition (equivalent):

there are no infinite descending chains, or (equivalent):

every nonempty set has a minimal element wrt \(<_r \)

\[
\begin{align*}
\text{min} \ r \ Q \ x & \equiv \forall y \in Q. \ y \not<_r x \\
\text{wf} \ r & \equiv (\forall Q \neq \{\}. \ \exists m \in Q. \ \text{min} \ r \ Q \ m)
\end{align*}
\]
Well Founded Orders: Examples

\rightarrow $<$ on \mathbb{N} is well founded
 well founded induction $=$ complete induction
\rightarrow $>$ and \leq on \mathbb{N} are not well founded
\rightarrow $x <_r y = x \text{ dvd } y \land x \neq 1$ on \mathbb{N} is well founded
 the minimal elements are the prime numbers
\rightarrow $(a, b) <_r (x, y) = a <_1 x \lor a = x \land b <_2 y$ is well founded
 if $<_1$ and $<_2$ are
\rightarrow $A <_r B = A \subset B \land \text{ finite } B$ is well founded
\rightarrow \subseteq and \subset in general are not well founded

More about well founded relations: Term Rewriting and All That
Extracting the Recursion Scheme

So far for termination. What about the recursion scheme? Not fixed anymore as in primrec.

Examples:

- **fun fib where**
 fib 0 = 1 |
 fib (Suc 0) = 1 |
 fib (Suc (Suc n)) = fib n + fib (Suc n)

 Recursion: Suc (Suc n) \(\leadsto\) n, Suc (Suc n) \(\leadsto\) Suc n

- **fun f where**
 f x = (if x = 0 then 0 else f (x - 1) * 2)

 Recursion: \(x \neq 0 \implies x \leadsto x - 1\)
Higher Oder:

\[\text{datatype} \quad \text{'}a\text{ tree} = \text{Leaf 'a} | \text{Branch 'a tree list}\]

\[\text{fun treemap :: ('a} \Rightarrow \text{'}a\text{) \Rightarrow 'a tree \Rightarrow 'a tree where}\]

\[\text{treemap fn (Leaf n) = Leaf (fn n)} | \]

\[\text{treemap fn (Branch l) = Branch (map (treemap fn) l)}\]

\[\text{Recursion:} \quad x \in \text{set l} \implies (\text{fn, Branch l}) \sim (\text{fn, x})\]

How to extract the context information for the call?
Extracting the Recursion Scheme

Extracting context for equations

⇒

Congruence Rules!

Recall rule if_cong:

\[
\begin{align*}
| \quad b & = c; \ c \rightarrow x = u; \ \neg c \rightarrow y = v \quad | \quad \rightarrow \\
\text{(if } b \text{ then } x \text{ else } y) & = (\text{if } c \text{ then } u \text{ else } v)
\end{align*}
\]

Read: for transforming \(x \), use \(b \) as context information, for \(y \) use \(\neg b \).

In fun_def: for recursion in \(x \), use \(b \) as context, for \(y \) use \(\neg b \).
Congruence Rules for fun_defs

The same works for function definitions.

declare my_rule[fundef_cong]

(if_cong already added by default)

Another example (higher-order):

\[[\mid xs = ys; \forall x. x \in \text{set } ys \implies f x = g x] \implies \text{map } f \; xs = \text{map } g \; ys \]

Read: for recursive calls in \(f \), \(f \) is called with elements of \(xs \)
Demo
Further Reading

Alexander Krauss,
Automating Recursive Definitions and Termination Proofs in Higher-Order Logic.

http://www4.in.tum.de/~krauss/diss/krauss_phd.pdf
We have seen today ...

- General recursion with `fun/function`
- Induction over recursive functions
- How `fun` works
- Termination, partial functions, congruence rules