Exam Prep

Gerwin Klein, Johannes Åman Pohjola, Christine Rizkallah, Miki Tanaka
T3/2020
Last Time

- The automated proof method \texttt{wp}
- The C Parser and translating C into \texttt{Simpl}
- AutoCorres and translating \texttt{Simpl} into monadic form
- The option and exception monads
Exam

- 24h take-home exam (same as previous years)

- Open book: can use any passive resource (books, slides, google, etc)
- **Not** allowed to ask for help from anyone
- starts 8am AEST, Wed 2 Dec 2020, ends 7:59am AEST, Thu 3 Dec 2020

- Should be doable in about 4-6 hours.
 The 24h are for flexibility not for you to stay awake actual 24h.

- Recommend to start early, finish the easy questions first.
- Take breaks. Don’t forget to eat :-)
- If there are clarification questions email the lecturers.
Content

→ Foundations & Principles
 - Intro, Lambda calculus, natural deduction \([1,2]\)
 - Higher Order Logic, Isar (part 1) \([2,3^a]\)
 - Term rewriting \([3,4]\)

→ Proof & Specification Techniques
 - Inductively defined sets, rule induction, datatype induction, primitive recursion \([4,5]\)
 - General recursive functions, termination proofs \([7^b]\)
 - Proof automation, Hoare logic, proofs about programs, invariants \([8]\)
 - C verification \([9,10]\)
 - Practice, questions, examp prep \([10^c]\)

\(^a\)a1 due; \(^b\)a2 due; \(^c\)a3 due
We have learned so far...

- \(\lambda \) calculus syntax
- free variables, substitution
- \(\beta \) reduction
- \(\alpha \) and \(\eta \) conversion
- \(\beta \) reduction is confluent
- \(\lambda \) calculus is very expressive (turing complete)
- \(\lambda \) calculus results in an inconsistent logic
COMP4161: Advanced Topics in Software Verification

Gerwin Klein, Johannes Åman Pohjola, Christine Rizkallah, Miki Tanaka
T3/2020
We have learned so far...

→ Simply typed lambda calculus: $\lambda \rightarrow$
→ Typing rules for $\lambda \rightarrow$, type variables, type contexts
→ β-reduction in $\lambda \rightarrow$ satisfies subject reduction
→ β-reduction in $\lambda \rightarrow$ always terminates
→ Types and terms in Isabelle
COMP4161: Advanced Topics in Software Verification

\[\lambda \quad \text{and HOL} \]

Gerwin Klein, Johannes Åman Pohjola, Christine Rizkallah, Miki Tanaka
T3/2020
What we have learned so far...

- Natural deduction rules for \land, \lor, \rightarrow, \neg, iff...
- Proof by assumption, by intro rule, elim rule
- Safe and unsafe rules
- Indent your proofs! (one space per subgoal)
- Prefer implicit backtracking (chaining) or `rule_tac`, instead of `back`
- Prefer and defer
- `oops` and `sorry`
COMP4161: Advanced Topics in Software Verification

HOL

Gerwin Klein, Johannes Åman Pohjola, Christine Rizkallah, Miki Tanaka
T3/2020
We have learned so far...

- Isar style proofs
- proof, qed
- assumes, shows
- fix, obtain
- moreover, ultimately
- forward, backward
- mixing proof styles
COMP4161: Advanced Topics in Software Verification

HOL

Gerwin Klein, Johannes Åman Pohjola, Christine Rizkallah, Miki Tanaka
T3/2020
We have learned today ...

- Defining HOL
- Higher Order Abstract Syntax
- Deriving proof rules
- More automation
- Equations and Term Rewriting
COMP4161: Advanced Topics in Software Verification

Gerwin Klein, Johannes Åman Pohjola, Christine Rizkallah, Miki Tanaka
T3/2020
We have seen today...

- Equations and Term Rewriting
- Confluence and Termination of reduction systems
- Term Rewriting in Isabelle
We have learned today ...

- Conditional term rewriting
- Congruence rules
- AC rules
- More on confluence
COMP4161: Advanced Topics in Software Verification

Gerwin Klein, Johannes Åman Pohjola, Christine Rizkallah, Miki Tanaka
T3/2020
We have learned today ...

→ Sets
→ Type Definitions
→ Inductive Definitions
We have learned today ...

- Formal background of inductive definitions
- Definition by intersection
- Computation by iteration
- Formalisation in Isabelle
COMP4161: Advanced Topics in Software Verification

Gerwin Klein, Johannes Åman Pohjola, Christine Rizkallah, Miki Tanaka
T3/2020
We have seen today ...

- Datatypes
- Primitive recursion
- Case distinction
- Structural Induction
We have seen today ...

- General recursion with `fun/function`
- Induction over recursive functions
- How `fun` works
- Termination, partial functions, congruence rules
COMP4161: Advanced Topics in Software Verification

Gerwin Klein, Johannes Åman Pohjola, Christine Rizkallah, Miki Tanaka
T3/2020
We have seen today ...

- sledgehammer
- nitpick
- quickcheck
COMP4161: Advanced Topics in Software Verification

\{P\} \ldots \{Q\}

Gerwin Klein, Johannes Åman Pohjola, Christine Rizkallah, Miki Tanaka
T3/2020
We have seen today ...

- Syntax of a simple imperative language
- Operational semantics
- Program proof on operational semantics
- Hoare logic rules
- Soundness of Hoare logic
{P} . . . {Q}

Gerwin Klein, Johannes Åman Pohjola, Christine Rizkallah, Miki Tanaka
T3/2020
We have seen today ...

- Weakest precondition
- Verification conditions
- Example program proofs
- Arrays, pointers
COMP4161: Advanced Topics in Software Verification

Gerwin Klein, Johannes Åman Pohjola, Christine Rizkallah, Miki Tanaka
T3/2020
We have seen today

- Deep and shallow embeddings
- Isabelle records
- Nondeterministic State Monad with Failure
- Monadic Weakest Precondition Rules
Today we have seen

- The automated proof method wp
- The C Parser and translating C into Simpl
- AutoCorres and translating Simpl into monadic form
- The option and exception monads