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Abstract

In this work we focus on power-aware solutions for the
issue queue in an out-of-order superscalar processor. We
propose two different schemes. Our first approach parti-
tions the issue queue into FIFOs such that only the instruc-
tions at the head of each FIFO may request to issue. We
then dynamically monitor the FIFO usage and disable FI-
FOs that are not being efficiently used. In our second ap-
proach we also use a FIFO scheme, but dynamically vary
the number and size of each FIFO simultaneously while at
the same time keeping the total number of issue queue en-
tries constant. We analyze both approaches and compare
them in terms of the performance and power reduction. We
find that although the first scheme of completely disabling
issue queue entries is more straight-forward to implement,
it may not be the best option, particularly for floating point
applications. Our best experimental result shows an aver-
age power saving of 27.3% in the issue queue with a per-
formance degradation of only 2.7%.

1. Introduction

Although power is of great concern, the main driving
force in high-end microprocessor design is still perfor-
mance. To achieve high performance for the broadest set
of applications, many complex architectural features are in-
cluded in these general-purpose, high-performance micro-
processors. While the goal of overall high performance is
generally met, it comes at a cost of high power dissipation.
Moreover, different applications may vary widely in their
degree of instruction-level parallelism (ILP), their branch
behavior, and/or their memory access behavior. As a result,
the datapath resources required to implement these complex
features may not be optimally utilized by all applications;
however, some power will be dissipated by these resources
regardless of utilization.

To better address power concerns, a good design strat-
egy should be flexible enough to dynamically reconfigure
available resources according to the program’s needs. In
this work, we choose to focus specifically on the “reconfig-
urability” of the issue queue, since it is a large source of the
total power dissipation in out-of-order superscalar proces-
sors. As an example, according to [15], the issue logic is

responsible for 46% of the total power in the Alpha 21264.
In our proposed design, we partition the issue queue

into several sets (or FIFOs). Only the instructions at the
head of each FIFO are visible to the request and selec-
tion/arbitration logic; therefore, each FIFO issues in-order
though overall instruction issue is out-of-order. The FIFO
structure is different from a reservation station in that in-
structions in a FIFO can be issued to any functional unit.
However, the strict ordering of instructions in a particular
FIFO can reduce complexity and power dissipation of the
request and selection logic.

Our main contribution is in showing the power saving
potential of a dynamically reconfigurable, mixed in-order
and out-of-order issue queue. Using feedback from vari-
ous hardware performance monitors, we dynamically mod-
ify the size of the issue queue and/or the total number of
FIFOs in the issue queue in order to adjust the mix of in-
order and out-of-order issuing of instructions, thereby sav-
ing power whenever possible.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 presents the implemen-
tations of the issue queue and all monitoring techniques.
Section 4 talks about the power estimations. Section 5 de-
scribes our processor model and simulation tools. Results
are provided in section 6. Section 7 offers conclusions.

2. Related Work and Motivation

The idea of adjusting available datapath resources to bet-
ter match program requirements is not new. In [8], Maro
et al. implemented a hardware mechanism to dynamically
monitor processor performance and reconfigure the ma-
chine. Using feedback from the performance monitors, part
of the integer and/or float point pipelines were disabled dur-
ing runtime to save power. A similar approach was used
in [1] where issue width was varied to allow disabling of a
cluster of functional units. Other works proposed dynam-
ically reducing the number of active entries in the instruc-
tion window according to processor needs in order to save
power [3, 5, 11]. In addition, the work of [12] studied tem-
porally and spatially local algorithms (intra-frame) and their
integration with a global algorithm (inter-frame) for real-
time multimedia applications. Their goal was to save power
by simultaneously varying instruction window size and the



number of active functional units. The shortfall of these
approaches is that while dynamically adjusting issue queue
size may reduce power in the wake-up and selection logic,
doing so narrows the scope of instructions available for ex-
posing ILP. This can be potentially harmful to performance
when ILP can only be exposed using a large instruction win-
dow. Another limitation of these approaches is that they do
not distinguish among valid entries in the issue queue and
as such make all of them visible to the wake-up and selec-
tion logic. This can be very power inefficient if instructions
remain in the issue queue for many cycles before they are
ready to “wake-up” and issue.

In [7], Ghiasi et. al proposed a technique to use IPC vari-
ation to reduce power consumption in microprocessors. In
this work, the micro-architecture can be adjusted to meet
the desired performance which is indicated by the operating
system (OS). They changed the superscalar machine from
out-of-order to in-order according to the program’s needs.
This idea is similar to ours, dynamically mixing in-order
and out-of-order issuing; however, our approach is driven
by feedback from the hardware, rather than by OS and can
therefore adjust the machine at a finer grain.

Other static techniques have been proposed to reduce
overall design complexity and power. In [9], the authors
introduced a technique called Data-Flow Prescheduling to
reduce the complexity of the issue stage by ordering in-
structions before they enter the issue buffer. Seng et. al
analyzed the characteristic of critical and non-critical in-
structions and designed a static mixed in-order and out-
of-order issue queue to reduce power consumption in pro-
cessors [13]. The work of Palacharla et. al analyzed sev-
eral specific areas of register renaming, instruction window
wake-up and selection logic, and operand bypassing [10].
They found that the window wake-up and selection logic
as well as operand bypass are probably the most important
for future power-saving work. They then presented an al-
ternative design with a faster clock and simplified wake-up
and selection logic which puts chains of dependent instruc-
tions into FIFO buffers and issues instructions from multi-
ple buffers in parallel.

The drawback of Palacharla’s approach, just as with
other techniques that use fixed-sized data structures, is that
different applications may not all benefit from only one type
of issue queue configuration. For instance, if a program has
a rather large amount of ILP during portions of its execu-
tion, then restricting instruction issue into a fixed order us-
ing relatively few FIFOs may greatly restrict performance.
Likewise, if instruction execution is limited by long chains
of dependent instructions, then using as few as two FIFOs
may be enough to meet issue requirements and not hamper
performance. This point is emphasized further in Figure 1.
The issue queue is fixed at 64 entries, but the number of en-
tries in each FIFO is varied from 1 to 64 (e.g. 32, 2-entry
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Figure 1. IPC comparison using fixed-sized FIFOs.

FIFOs correspond to 32 FIFOs each with 2 entries). In the
figure, we show individual results for a set of benchmarks
which show interesting trends; however, the overall aver-
age reflects results for all benchmarks simulated. We see
that some benchmarks such as apsi, swim, and wave5 are
very sensitive to FIFO ordering, whereas others, like com-
press, gcc, li, and fpppp, are not. In fact, for li ordering
instructions in a FIFO even improves performance since it
effectively avoids executing some wrong path instructions.
Using a 1-entry FIFO as a base case, 2-entry and 4-entry
FIFO configurations have a performance drop of 3% and
13% on average. As the size of the FIFO increases to 8,
the performance loss becomes 30%. When the whole issue
queue becomes a single FIFO, we lose 84% of the perfor-
mance.1 In our approach, we not only aim to retain some
of the power benefits of using FIFOs in the issue queue de-
sign, as was suggested in [10], but also aim to minimize its
affect on performance by allowing the number of FIFOs to
be varied according to a program’s issue needs.

3. Implementation

The goal of our approach is to dynamically adjust the
active size of the issue queue to more closely match a pro-
gram’s issue needs in order to save power. We implement
two schemes:

Scheme #1: We completely disable some underutilized
FIFOs in the issue queue according to feedback from perfor-
mance monitors. In this case, we limit exposure to potential
ILP by shrinking the overall size of the issue queue and re-
stricting issue to only instructions at the head of the FIFO.

Scheme #2: We retain the same number of issue queue
entries at all times but vary the number and size of the FI-
FOs simultaneously. In this case, we have more flexibil-
ity in exposing potential ILP than in the first scheme, while

1Our results are somewhat different from those reported in [10], since
our assumptions and baseline simulation model are different; we do not as-
sume 1 cycle latency for all functional units or a perfect instruction cache.
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still making it appear to the request and selection/arbitration
logic that the queue is actually smaller.

If performance monitors indicate that ILP is increasing
and/or performance is suffering, a larger fraction of the is-
sue queue is turned back on or made visible to the request
and selection logic. Our issue queue design requires two
main components: (1) a reconfigurable issue queue parti-
tioned into a set of smaller queues that each issue in-order,
and (2) hardware performance monitors used to determine
the optimal configuration for the issue queue over a fixed
interval of cycles. We discuss the design of these two com-
ponents in more detail below.

3.1. Issue Queue Design

The architecture of the whole pipeline is shown in Fig-
ure 2. Note that the pipeline allows for up to 6 instructions
to be issued, executed and committed each cycle. In order
to implement our techniques, the issue queue is divided into
several FIFOs. All new instructions can only be inserted
at the tail of a FIFO and the instructions to be issued can
only come from the head of the FIFO. All entries in the is-
sue queue except the heads are invisible to the request and
selection logic.
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Figure 2. Pipeline organization.

Figure 3 shows the FIFO organization for our first
scheme. In this example, the issue queue is statically di-
vided into 4 FIFOs, each with two entries. Note that only
half the entries in the issue queue are visible to the request
and selection logic. When we detect that the issue queue is
underutilizing some FIFOs, we can disable one or more of
these FIFOs without degrading performance. We must en-
sure that a FIFO has been drained of all valid entries before
it is disabled. Figure 3 shows how disabling some FIFOs
reduces the number of instructions potentially bidding for
an issue slot, thus saving power in the wake-up and selec-
tion logic. In addition, we also save power by not having to
update the ready status of the disabled instruction entries.

Similarly, Figure 4 shows in our second technique how
the FIFOs are reorganized in different low-power modes as-
suming an 8-entry issue queue. In full-power mode (FPM),
there are 8 individual FIFOs, each containing a single entry.
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Figure 3. IQ scheme using variable number of FIFOs.

Each entry is at the head of the FIFO, therefore all entries in
the issue queue are visible to the request and selection logic.
When the number of FIFOs is cut down to 4 (LPM1 mode),
each FIFO now holds 2 entries for a total of 8 instructions,
but now only the 4 instructions at the heads of the FIFOs can
bid for an issue slot, regardless of how many instructions are
actually ready. The total number of FIFOs is adjusted using
feedback from the performance monitors; however, the to-
tal number of issue queue entries must remain fixed at all
times, thereby requiring the number of entries in each FIFO
to be adjusted simultaneously. We assume that there is no
cycle overhead in changing from one FIFO configuration to
another since each instruction already has a set of arbiter
enable signals indicating its arbiter assignment, and these
signals can be disabled according to the instructions posi-
tion within the FIFO. In this scheme we have more flexi-
bility in how we configure the issue queue compared to the
first, but power savings comes only from reduced activity in
the request and selection logic.
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Figure 4. IQ scheme using variable sized FIFOs.

Given that only a fraction of the entries will be visible to
the request and selection logic, it is important that instruc-
tions be placed in the FIFOs such that most (if not all) of
the ready instructions appear at the head of a FIFO. Other-
wise, performance is more likely to suffer. We tried sev-
eral instruction assignment strategies when the instructions
are initially put into FIFOs in the dispatch stage. Perfor-
mance for three different strategies (random, round-robin,
and dependency-based) are tested and analyzed.

The dependency-based scheme is similar to the one pre-
sented in [10]. As an instruction is decoded and dispatched
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to the issue queue, we attempt to place it in the same FIFO
as one or both of its source dependencies. If the instruc-
tion is already ready, it is steered to a new empty FIFO. If
the instruction has only one pending operand and the pro-
ducer is the tail of the corresponding FIFO, it is steered to
the same FIFO as the producer if possible; otherwise, it is
steered to a new empty FIFO. If two operands of the in-
struction have not been computed, the instruction is steered
to the same FIFO as one of its producers. We implement a
Last Operand Predictor (LOP) [14] to predict which of two
operands will probably become available later. The LOP
is implemented by a 2048-entry table of two-bit saturating
counters, indexed by program counters2. We first try to put
the instruction into the same FIFO as its later arrived pro-
ducer if the producer is the tail of the FIFO and the FIFO
still has room. If we fail, we try to put the instruction in
the same FIFO as the other producer. If we fail again, the
instruction is steered to a new empty FIFO. In all cases, if
an empty FIFO is required for dispatching an instruction
and one is not available, the dispatch unit is stalled until a
FIFO becomes empty. This can only cause a potential per-
formance hit if the instruction is ready at the time of issue
or if an instruction behind it in dispatch order is ready.

While the dependency-based scheme provides the best
performance of the three strategies from our experiments, it
is the most expensive to implement in hardware. Alterna-
tively, the random strategy is simple to implement, but is not
acceptable in terms of performance. Although the round-
robin scheme is a reasonable alternative to the dependency-
based scheme, with an average performance drop of 3.5%,
we think it is still worthwhile to implement the depen-
dency scheme. Therefore, all future discussion assumes this
scheme.

3.2. Hardware Performance Monitors

We use hardware performance monitors to keep track
of various statistics while a program is executing. These
statistics are gathered during a fixed-sized sample period
(i.e., a cycle window). We assume short term past behavior
is a good indicator of behavior in the near future. At the
end of each sample period, we determine whether to enter
lower-power mode, leave it in the same mode, or return to a
higher-power mode or full-power mode. In this way, recon-
figuration takes place at most once within a single window.
We empirically chose our cycle window size to be 1024 cy-
cles such that it is large enough to obtain meaningful statis-
tics over a reasonable snapshot of time, but not too large

2Our goal was to implement an instruction steering algorithm that pro-
vided the best performance. Without the LOP, performance is degraded by
1% on average compared to the dependency scheme with the LOP. Since
this is a relatively simple structure, we assume its contribution to overall
power dissipation is negligible.

to remain in an inappropriate configuration. Since the pro-
cessor may perform differently depending on whether all
its resources are enabled or not, we use different combina-
tions of monitoring techniques to determine when to enable
or disable low-power mode. Our goal was to limit perfor-
mance degradation to be no more than 4% of the base case.
Following are the hardware monitoring mechanisms we im-
plemented to modify the number of FIFOs. Several have
already been used in previous works [1, 3, 5, 8, 11, 12],
though none use the same combination of monitors.

Monitoring IPC: If the issue IPC is low during the cur-
rent sample window, this may indicate low ILP in the pro-
gram. Therefore, not all instructions in the issue queue may
need to be visible to the request and selection logic. Simi-
larly, the issue IPC can also be used to decide when to get
out of low-power mode.

Detecting variations in IPC: If issue and commit rates
vary significantly, this can indicate a high branch mispredic-
tion rate. By decreasing the number of FIFOs, we restrict
the issue rate and indirectly limit the amount of branch mis-
predicted instructions issued.

Performance degradation: If the drop in IPC from one
sample period to the next exceeds some threshold value, the
processor should be restored to the higher-power mode.

Monitoring ready instructions: If a newly decoded in-
struction is immediately ready for issue, but cannot be dis-
patched to an empty FIFO (thus causing a stall), this can de-
grade performance. A high occurrence of these stall events
may indicate the need to increase the number of FIFOs; a
very low occurrence rate may indicate an opportunity to de-
crease the number.

Issue queue usage: Low issue queue occupancy rates
may indicate an opportunity to reduce the number of FIFOs
since the queue is being underutilized.

Non-Critical Instructions: If no instruction is placed be-
hind a ready instruction by the time it is removed from the
issue queue (i.e., no instructions depend on), the instruction
is non-critical. Delaying such ready instructions won’t hurt
overall performance; if many non-critical instructions are
identified, this may indicate an opportunity to reduce the
number of FIFOs.

4. Power Estimations

To estimate the total power savings of our processor
when in low-power mode, we extrapolated from available
Alpha 21264 power estimates [15]. Although the issue
queue design of the Alpha 21264 differs from our model
in some ways (e.g. use of a single cluster design with a
unified issue queue compared to a 2-cluster design with 3
separate queues), both use an out-of-order issuing scheme.
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Figure 5. Request logic for one row of the scoreboard
with modifications shown in gray. Taken from [4].

We assume that the issue logic includes register files, reg-
ister mapping, and the issue queue. The issue queue itself
includes the register scoreboard, request logic, and arbiters.
We assume that half of the issue logic power results from the
issue queue based on relative power numbers for the Alpha
21264 processor. Using estimates from the Alpha 21264
[15, 1], we will estimate that 60% of the power in the is-
sue queue is consumed by the arbitration logic and 15% is
consumed by the request logic. Register scoreboard and all
other logic in the issue queue occupy the remaining power.

In the issue queue, we save power disabling some
amount of the queue logic. When in low-power mode we
pick a maximum of

�
out of � instructions where

�
is

the issue width of the machine, and � represents the total
number of heads in the issue queue. For instance, for the
second approach, �������	�	
 where � is the total number
of issue queue entries, and � represents the number of times
the total number of FIFOs has been cut in half. When FI-
FOs are disabled or the number of FIFOs is cut in half, we
reduce the number of instructions visible to the arbitration
logic as well. Thus, we reduce the activity on the arbiter
enable signals, and the request logic and signals.

An instruction that is not at the head of a FIFO is not
allowed to issue during that cycle so its request lines can
be disabled. Assuming a circuit implementation similar to
the Alpha 21264, we can accomplish this by only allowing
the request lines for an instruction to be precharged if it is
at the head of a FIFO. That is, we conditionally clock the
precharge line with a FIFO head signal as shown in Fig-
ure 5. The final request signal REQ L can only be asserted
during cycles when this instruction is at the head of a FIFO.
We assume the head is updated by the end of the previous
cycle, so this precharge line should not be on the critical
path. Configuring the issue queue using multiple FIFOs can
save significant power on the request lines since a conven-
tional out-of-order issue queue would precharge these lines
every cycle, but only the request lines for the ready instruc-
tions would remain high (on average, this may be a small
fraction of the total entries in the issue queue so this elimi-
nates a lot of “wasted” precharging and discharging).

As shown in Figure 5, the request logic also includes
input for execution assignment information (i.e. logic for

generating state cond and EX cond signals) that needs to
be updated regardless of whether an entry is at the head of
a FIFO or not. Only in the case that this entry is completed
disabled (as is possible with the first scheme) will power as-
sociated with this extra logic be saved. We estimate that for
our first scheme we can save 80% of the request logic power
for a disabled entry. The remaining 20% of the power is as-
sociated with the power consumption on long wires along
the whole request logic. For our second scheme, we save
40% of the power for that entry if it is not at the head of the
FIFO.

Power dissipation in the arbitration logic is reduced due
to the reduced activity on the request lines and by selec-
tively inhibiting grant lines from precharging. We only need
to precharge the grant lines for instructions that are at the
head of the FIFO, in a similar manner as was done for the
request logic shown in Figure 5. If the total number of FIFO
heads in the issue queue is cut in half, this should reduce
the switching (and therefore the power) on the grant lines
and associated logic by approximately half as well since at
most only

�
instructions will be allowed to issue regardless

of how many instructions are ready in a given cycle. That
is, the grant lines from approximately the same number of
instructions would have been precharged and subsequently
discharged anyway. By this reasoning, we assume that the
power dissipation of the arbitration logic is directly propor-
tional to the number of active FIFOs. In addition, if there
are ever less than

�
FIFOs enabled, this effectively reduces

the issue width of the machine, so we can save more power
by disabling all the grant lines associated with the unused
issue slots.

The register scoreboard logic tracks data dependencies
among the instructions in the issue queue. Therefore, even
if an instruction in the issue queue is not made visible to the
arbitration logic, the register scoreboard still needs to up-
date the dependency information and readiness of instruc-
tion operands. By this reasoning, we assume that with the
second scheme, power dissipation in the register scoreboard
remains the same regardless of the FIFO configuration. On
the other hand, if we completely disable all entries in a par-
ticular FIFO, it is unnecessary for the register scoreboard to
update any information with respect to these entries. In this
case we save power in the register scoreboard logic accord-
ing to the fraction of entries disabled.

5. Experimental Methodology

The simulator we used in this study is derived from the
SIMPLESCALAR tool suite [2]. However, we added sev-
eral modifications to SIMPLESCALAR to better model our
reconfigurable processor. Specifically, in the original SIM-
PLESCALAR, the register update unit (RUU) is a combined
instruction window, array of reservation stations, and re-
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order buffer. In our work, the RUU is split into the reorder
buffer (ROB) and the issue queue (IQ). This modification
to the SIMPLESCALAR design allows us to more accurately
model current and next generation processors that have sep-
arate issue and commit queues. In addition, it allows us to
model an issue queue with multiple FIFOs where instruc-
tions are no longer placed in program order, thus requiring
a separate reorder buffer structure when instructions retire.
In the dispatch stage, new instructions are put into the re-
order buffer in program order, but are steered into the issue
queue’s FIFOs according to their input dependencies.

Table 1 shows the complete configuration of the proces-
sor model. Note that the base case assumes an issue width
of 6 and a unified 64-entry out-of-order issue queue. All
comparisons in Section 6 are made to this case.

Table 1. Processor resources
Parameter Configuration

Inst. Window 256-entry LSQ, 512-entry ROB
64-entry IQ

Machine Width 6-wide fetch, issue, commit
Fetch Queue 8
FUs & Latency 8 Int add (1), 2 Int mult/div (3/20)

4 FP add (2), 2 FP mult/div/sqrt (4/12/24)
4 Load/Store (1)

L1 Icache 32KB 2-way; 32B line; 1 cycle
L1 Dcache 32KB 2-way; 32B line; 1 cycle
L2 Cache 256KB 4-way; 64B line; 6 cycle
Memory 128 bit-wide; 20 cycles on hit,

50 cycles on page miss
Branch Pred. 4k 2lev + 4k bimodal + 4k meta

6 cycle mispred. penalty
BTB 1K entry 4-way set assoc.
RAS 32 entry queue
ITLB 64 entry fully assoc.
DTLB 64 entry fully assoc.

Our simulations are executed on a subset of the SPEC95
integer and floating point benchmarks [6]. They were com-
piled using a re-targeted version of the GNU gcc compiler
with full optimization. All benchmarks are fast-forwarded
for 50 million instructions to avoid startup effects. The
benchmarks are then executed for 100 million committed
instructions, or until they complete, whichever comes first.
All inputs come from the reference set.

6. Experimental Results

As mentioned in the previous section, we chose a 64-
entry issue queue for our baseline experiments. A 32-entry
issue queue is probably large enough for many benchmarks,
especially for integer benchmarks; however, we also no-
ticed that many floating point benchmarks benefited from
the larger queue. For these reasons, we chose to use a 64-
entry issue queue. For our first scheme, we start with 16 FI-
FOs, each containing 4 entries, and then adjust the number
of FIFOs according to feedback from the hardware moni-
tors. For our second scheme, we start with 64 FIFOs, each
containing a single entry, and then modify both number and
size of FIFOs dynamically.

6.1. Results for Scheme #1

We experimented with many combinations of different
performance monitors to determine when to enable and dis-
able FIFOs. We show the best combination we found below.
We list the specific monitors in order of relative importance.
Using more monitors helps preserve performance (from our
experiments by 1–2%); however, it may still be reasonable
to use only 1 or 2 different monitors and still obtain accept-
able performance and power results.

Disable one FIFO when one following condition holds:
1. less than

�� of ready instructions are stalled;
2. less than

�� of the FIFOs are actually used on average;
3. more than 15% of dispatched instructions are non-critical;
4. current IQ occupancy rate is less than

�� of the average occu-
pancy rate.

Enable one FIFO when one following condition holds:
1. current issue rate (

�����
	��
�
���
) drops by more than 10% com-

pared to the last window executed in full-power mode (i.e.,
16 FIFOs);

2. current
������	��
�
���

drops by more than 15% compared to the
previous window;

3. more than
�� of ready instructions are stalled.

Using the power estimations and the distribution of
power in the issue queue we made in Section 4, we can es-
timate the total power saving for different logic in the issue
queue and the total power saving in the entire issue queue.
Table 2 shows the total power savings in the issue queue,

Table 2. Results for Scheme #1.
64-entry IQ

Avg. # 16, 4-entry FIFOs 64, 1-entry FIFOs
Benchmarks of FIFOs Power Power

Saving � IPC Saving � IPC

compress 7.5 51.4% 3.6% 75.9% 3.6%
gcc 11.1 29.8% 3.5% 65.2% 3.9%
go 11.7 25.8% 3.7% 63.2% 4.5%

ijpeg 13.4 15.8% 2.4% 58.3% 5.1%
li 12.2 22.9% 5.8% 61.8% 2.7%

perl 12.8 19.6% 3.3% 60.1% 8.3%

average 11.5 27.6% 3.7% 64.1% 4.7%

the average number of FIFOs used, and the performance
degradation for integer benchmarks. We show power saving
and performance degradation compared to both the starting
state, in which the issue queue is composed of 16 4-entry
FIFOs, and the single-entry FIFO state, which is the same
as the non-FIFO scheme. We only apply the first scheme
to the integer benchmarks since the floating point bench-
marks usually need the entire issue queue to extract ILP.
In addition, according to Figure 1, the starting state is com-
pletely unreasonable for most floating point benchmarks be-
cause the starting state itself introduces a large loss in per-
formance. So our first technique is not suitable for floating
point benchmarks, since we have a fairly rigid starting state.
For some benchmarks, it is reasonable; however, for others,
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it is not. We do a reasonable job of dynamically disabling
FIFOs from this starting state, i.e., we retain performance
compared to the starting state of always using 16 4-entry
FIFOs, but overall performance cost may still be too high
compared to the non-FIFO scheme.3 However, even with
this limitation, compress is still a good example to show
how effectively our scheme can work; we save more than
75% of the power with a performance drop of only 3.6%.
On average, the best results produced by our first scheme
can save 27.6% of the issue queue power with a perfor-
mance degradation of 3.7% compared to the starting state.
If compared to the non-FIFO scheme, our first scheme can
save 64.1% of the issue queue power, but it comes at a per-
formance drop of 4.7% on average and 8.3% for perl, which
we found to be not acceptable.

6.2. Results for Scheme #2

Similar to the first scheme, we also tried a number of
combinations of policies for enabling and disabling the low-
power modes. Following is the combination that produced
overall best results in terms of both performance and power.
Again, we order them according to relative importance.

Cut the number of FIFOs in half (and double the num-
ber of entries in each FIFO) when one following condi-
tion holds:

1.
� ������	 � �
����� ��������������	
	�����
�� �

;
2. less than 3% of ready instructions are stalled;
3.

������	 � �
��������� �
; (threshold lowered by 0.2 for each succes-

sive reduction in number of FIFOs.);
4. current IQ occupancy rate is less than 20% of the average

occupancy rate;
5.
������� ������	 � �
������������	 � �
������� �!�

#"

(threshold increased
by 0.15 for each successive reduction in number of FIFOs.).

Double the number of FIFOs (and halve the number
of entries in each FIFO) when one following condition
holds:

1. current
������	��
�
���

drops by more than 8% compared to the
previous window;

2. current
������	��
�
���

drops by more than 6% compared to the
last window executed in full-power mode.

3. more than 15% of ready instructions are stalled.

Figure 6 shows the percentage of time the processor is
in each mode. For several floating point benchmarks such
as applu, apsi, mgrid, and swim, our FIFO technique can’t
reduce the total number of FIFOs since these benchmarks
need more flexibility in reordering instructions to maintain
performance. However, for most integer benchmarks, we
can cut the FIFOs at least in half for a significant portion

3As noted earlier, li improves in performance when using 16, 4-entry
FIFOs compared to 64, single-entry FIFOs, so this explains the perfor-
mance improvement in the last column of Table 2.

of the running time. Some benchmarks can even stay in an
8-FIFO state for a significant period of time. For compress,
the system spends virtually no time in the single-entry FIFO
state. In addition, for the floating point benchmark fpppp,
we are still able to reduce the number of FIFOs to 2 for
about 34% of the execution time. Overall, we can spend an
average of 61% of the time in some reduced power mode.
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Figure 6. FIFO usage for Scheme #2. Note we always
retain the number of IQ entries to 64.

Using the results from Figure 6 and the power estima-
tions we made in Section 4, we can estimate the total power
saving for the request and arbitration logic. Table 3 shows
the total power reduction in the issue queue for each bench-
mark compared to the single-entry FIFO state, using the
same power distribution assumptions as was made for the
first scheme. In columns 2–3 we report percentage of power
saved in the request and arbitration logic, respectively. In
column 4 we report total power saved for the entire issue
queue and in column 5 we show overall performance degra-
dation.

Table 3. Results for Scheme #2.
64-entry IQ

Benchmarks Power Saving

Request Arbitration Total � IPC

compress 38.6% 75.9% 51.4% 0.7%
gcc 29.5% 59.9% 40.4% 2.4%
go 30.5% 62.4% 42.0% 3.5%

ijpeg 21.3% 46.0% 30.8% 2.2%
li 28.8% 60.1% 40.4% 2.6%

perl 27.9% 62.4% 41.6% 2.5%
applu 6.0% 14.6% 9.7% 1.3%
apsi 5.6% 13.6% 9.0% 2.2%

fpppp 45.6% 73.2% 50.8% 3.0%
hydro2d 19.7% 44.9% 29.9% 4.2%
mgrid 5.4% 13.1% 8.7% 1.4%
su2cor 29.4% 64.0% 42.8% 4.7%
swim 5.0% 12.3% 8.1% 4.0%

tomcatv 6.1% 14.9% 9.9% 1.9%
turb3d 8.7% 20.1% 13.4% 3.2%
wave5 5.6% 13.2% 8.8% 2.9%

average 19.6% 40.7% 27.3% 2.7%

As can be seen in the table, for several benchmarks, we
manage to save more than 60% of the power from the arbi-
tration logic and more than 30% of the request logic power.
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This translates to saving as much as 51% of the issue queue
power, with most of the savings coming from the reduced
activity in the arbitration logic. Obviously, it is much easier
to cut the the number of FIFOs for integer benchmarks and
hence save power. We were able to save at least 30% of the
issue queue power on all integer benchmarks.

It is clear that our second scheme works more efficiently
than our first scheme (see Table 2 and Table 3). Although
most floating benchmarks need 64 FIFOs for a large per-
centage of the running time, we can still find several exam-
ples, like fpppp, hydro2d, and su2cor, where our scheme
can still be applied with small performance degradation.
According to Figure 1, fpppp can stand both 2-entry and 4-
entry FIFO states, but performance degrades by 11.8% if we
continue to cut the number of FIFOs further. However, our
techniques can effectively find the appropriate periods to
cut the number of FIFOs while still retaining performance.
Using our second scheme, fpppp can stay at 16-entry and
32-entry FIFO states for about 70% of the execution time
with only a performance degradation of 3.0%. On average,
the best results produced by our second scheme can save
27.3% of the issue queue power, with a performance degra-
dation of only 2.7%.

7 Conclusion

In this paper, we exploit the fact that programs vary in
their ILP. Our approach is to selectively reconfiguring parts
of the issue queue during low ILP periods to save power
without hampering performance. We designed our issue
queue into variable numbers of FIFOs to facilitate this re-
configuration. By decreasing the number of entries in the
issue queue or restricting the number of instructions visi-
ble to the request and selection logic, we save significant
power in the issue queue while maintaining performance.
Our second scheme may be particularly effective for pro-
grams where ILP is limited by long chains of dependent
instructions for portions of their execution. Trying to save
power by simply disabling part of the issue queue may only
further hamper performance. However, by restricting which
instructions are visible to the request and selection logic
while retaining the same sized queue will still allow us to
save power. Our results show an average power saving of
27.3% in the issue queue with a performance degradation of
only 2.7%.
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