
Sr
i P

ar
am

es
wa

ra
n,

 C
o-

de
si

gn
 fo

r C
O

M
P4

21
1

HW/ SW Co-Design

Sri Parameswaran
University of New South Wales
Sydney, Australia

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Outline of this part of the
presentation

! Behavioral Synthesis (revisited shortly
only!)

! HW/SW Co-Design
"Heterogeneous multi-processor systems

! Application Specific Instruction set
Processors

! Matlab to HW/SW Solution
! Network on a chip
! Real Time Operating Systems

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

de
si

gn
 fo

r C
O

M
P4

21
1

Behavioral
Synthesis

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Behavioral Synthesis

! Given

! If RTL then 60ns

! If Behavioral then

-** +

25ns+**

** +-

-

** +-

50ns

50ns

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11
Issues

! Specify in unambiguous language
! Schedule and Allocate Operations
! Minimize Hardware
! Minimize Interconnect network
! Minimize Power dissipation

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Specification

! Usually VHDL is used
! Allows IF-THEN-ELSE, WAIT, UNTIL,

FOR loops
! High level specification allowing several

implementations
! Need to specify objective

"Area, speed, power
! May not be the most efficient

implementation
! Fast time to market

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Functional Unit Allocation

! Allocation of Adders, Multipliers etc
! Try to increase sharing (this might affect

the schedule)
! Sharing of functional units also increases

interconnect network, multiplexors etc
! Functional Unit Allocation performed in

isolation (without considering register
allocation or scheduling) will lead to
inefficient designs

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

+

Schedule

w = b + 2

u = c + w

v = w + 1

y = u + v

a = b + c

x = a + 3

+

+

b 2

w
1

c

+
b c

a

+

+

b 2

+
wc

w

+
1

+
u v

y

+
b c

a

+

+u v

y1

x

u

v
3

3

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Scheduling – contd…

w = b + 2

u = c + w

v = w + 1

y = u + v

a = b + c

x = a * 3

+

+

b 2

wc

+
b c

a

*

+
1

+u v

y1

x

3

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Final Implementation

! Usually RTL description which is then
processed through synthesis toolset
create a layout, or bit stream for FPGAs.

! Inefficient than lower level synthesis, such
as gate level or RTL, but improves speed
of design and implementation

! Not widely used, acceptability is still an
issue

! Several tools are/were available ñ such as
Behavioral Compiler

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

de
si

gn
 fo

r C
O

M
P4

21
1

HW/SW Co-
Design

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

HW/SW Codesign
Design Flow

Specification

Partition

Compile to Proc. Convert to HDL

Implement software Implement Hardware

Interface Synthesis

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Cosyma Architecture

Co-processor Sparc

RAM

Cosyma contains both an ASIC and a SPARC

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Register Allocation

! As can be seen from the above diagram
" w and v can be shared
" u and a can be shared

w = b + 2
u = c + w
v = w + 1
y = u + v
a = b + c
x = a + 3

w b
u

c

v

a

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Cosyma Comparison
Clock cycles used

Benchmark SW HW-SW tc % Speedup

Diesel 22,403 16,394 9.9 1.4

Smooth 1,781,712 1,393,525 49.6 1.3

3d 1,377 1,514 13.8 0.9

HW/SW Cosynthesis for Microcontrollers: Rolf Ernst, Jorg Henkel, Thomas Benner.,
IEEE Design and Test, December 1993

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Benchmark Special
features of
benchmark

Lines of
C code

in
HW/SW

Section
Speedup

Overall
Speedup

XILINX
clock
speed
(MHz)

PPR time
(hours)

Integer Square functional 74 17.1 15.8 6.25 0.7
Towers of

Hanoi
recursive 72 15.2 12.7 6.25 3.2

Heap Sort
Hardware 1

functional
196

15.1

2.6

1.5625
3.125

6.3
1.9

Hardware 2 memory 1.3 1.5625 6.6
Matrix

Multiplication
memory &
functional

127
8.3

4.4

1.5625
1.5625

3.7
2.6

Plumhall functional 153
3.5

3.5

4
4

5.6
1.7

Bubble Sort memory 111 2.3 2.1 1.5625 3.4
Sieve of

Eratosthenes
memory 206 1.7 1.7 1.5625 4.5

ASP Speedup Results – with 68K
& Xilinx 4013

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11
Why do these systems not give
superior results?

! To achieve a good partition between HW and SW we need
information on the code

! This information could be obtained by either profiling or
estimating the time taken and the size of HW needed for a
segment of code

! The simplest task is to find the time taken on the software
side of things

! We can profile data with the program to get
" how long each segment takes
" how many times each segment executes

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

The Problems

! Specification
"Still early days

! Profiling
"Different values on differing architectures

! Estimates
"The sizes and the speed changing slightly

can alter the whole make up of the
partition

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Heterogeneous Multi-Processor
System

HeMPS strategy
" Input:

task data flow graph
library of processor and communication link types

" Output:
synthesizes a distributed, heterogeneous multiprocessor

architecture using a point-to-point network
allocates subtasks to each processor
provides a static task schedule

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Introductory Example

! Processor costs and subtask times
P0:
P1:
P2:
Links:

3

2

4

1

1
2

1
2

4
3 4

3

P1P0

Total Cost: 4+2+1 = 7
Total Time: 4

Given

Find a schedule

x, 3, 1, x
1, 1, x, 34

2

1 1
8 1, 1, x, 3

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Implementation Cost CPU Time (sec)

example #subtasks period HeMPS Wolf SHEMUS P&P HeMPS Wolf SHEMUS P&P

pp1 4 2.5 - 14 - 14 - 0.05 - 11

3 14 14 - 13 0.09 0.05 - 24

4 7 7 - 7 0.09 0.05 - 28

7 5 5 - 5 0.09 0.05 - 37

pp2 9 5 15 15 15 15 0.24 0.7 1.3 3732

6 12 12 - 12 0.16 1.1 - 26710

7 8 8 - 8 0.16 1.6 - 32320

8 7 8 7 7 0.18 1.0 1.1 4511

15 5 5 - 5 0.12 1.1 - 385012

cfuge 3 0.1 17 17 - - 0.08 0.1 - -

juice 4 0.1 27 41 - - 0.08 0.1 - -

dye 15 0.1 59 59 - - 0.83 7.2 - -

robot 25 20 14 - - - 1.55 - - -

23 9 - 17 - 1.55 - 7.3 -

Results

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

The biggest competitor - CPU!

YEARS

1000

1

10

100

CPU

VLSI

CPU performance has increased a 1000 fold in the last 15 years due to super
scalar and super pipelined microprocessors.
VLSI - 10 times or less?

PE
R

FO
R

M
A

N
C

E

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

de
si

gn
 fo

r C
O

M
P4

21
1

Application Specific
Instruction Set
Processor

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

ASIPs

! Application Specific Instruction-Set Processor
" Specifically designed for a particular application / a

set of applications (e.g. JPEG (cameras), Motion
Estimation (video), MPEG4 etc)

" Implement custom-designed instructions to
improve performance of an application.

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Advantages of ASIPs

! Shorten Time-to-market
! Reduce Area
! Increase Performance
! Programmability

ASIC ñ ASIP ñ FPGA ñ GP (General Processor)
Most Customised Least Customised

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Xtensa® Processor

! A configurable and extensible processor developed by
Tensilica, Inc.

1. Selecting configurable core using Xtensa Processor
Generator

2. Designing specific instructions using Tensilica
Instruction Extension (TIE)

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Xtensa® Processor Generator

Diagram is captured from [1]

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Tensilica® Instruction Extension
(TIE)

! The TensilicaÆ Instruction Extension (TIE) Language
provides the designer with a concise way of extending the
Xtensa processorís instruction set.

! A TIE description consists of basic description blocks to
delineate the attributes of new instructions. TIE has the
following description blocks:
" opcode ñ assigns opcodes and sub-opcodes to an

instruction.
" iclass ñ defines the assembly language syntax for a

class of instructions.
" semantic ñ defines the computations performed by an

instruction or a group of similar instructions
" etc

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

TIE Example

// This is a sample TIE file describing two new instructions

// ADD8_4 and MIN16_2

// The ADD8_4 instruction performs four 8-bit additions

// The MIN16_2 instruction performs two 16-bit minimum selections

opcode ADD8_4 CUST0 op2=4’b0000
opcode MIN16_2 CUST0 op2=4’b0001
iclass addmin {ADD8_4, MIN16_2}{out arr, in art, in ars}
semantic addmin_sem{ADD8_4, MIN16_2} {

wire [31:0] add, min;
wire [15:0] min0, min1;
assign add = {art [31:24]+ars[31:24],

art [23:16]+ars [23:16],
art [15:8]+ars [15:8],
art [7:0]+ars [7:0]};

assign min1 = art [31:16] < ars [31:16] ? art [31:16] : ars [31:16];
assign min0 = art [15:0] < ars [15:0] ? art [15:0] : ars [15:0];
assign min = {min1,min0}
assign arr = ({32{ADD8_4}} & add) | ({32{MIN16_2}} & min);

}

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

C program with TIE

#include <stdio.h>
#include <stdlib.h>

int main() {
// use ADD8_4 to add numbers
// p = a+e; q = b+f; r = c+g; s = d+h;
int a = 11; int e = 23;
int b = 34; int f = 44;
int c = 12; int g = 22;
int d = 34; int h = 41;

x = (a<<24 | b<<16 | c<<8 | d);
y = (e<<24 | f<<16 | g<<8 | h);
z = ADD8_4(x,y);
p = z >> 24
q = z & 0x0F00;
r = z & 0x00F0;
s = z & 0x000F;

}

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Performance

Diagram is captured from [1]

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Xtensa® Performance Summary

! Processor Architecture:
" 5-stage pipeline, 32-bit RISC

! Instruction Set:
" Xtensa ISA with compact 16-bit and 24-bit encoding

! Clock Speed:
" 350MHz in 0.13µ process
" 200MHz in 0.18µ process

! Performance:
" 5X, 10X, and even 100X+ increases in performance by extending

the Xtensa processor with Tensilica Instruction Extension (TIE)
! Size:

" Approximately 25,000 gates ñ base processor;
! Power:

" 0.1mW/MHz in 0.13µ process @ 1.0V
" 0.4mW/MHz in 0.18µ process @ 1.8V

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11
Method for Instruction Set
Selection

! Integer Programming Approach (Imai et al.[2])
! Branch & Bound Algorithm (Alomary et al.[3])
! Pattern Matching (Liem et al.[4])
! Genetic Algorithm (Shu et al.[5])
! Simulated Annealing Algorithm (Huang and

Despain[6])
! Simulation of an application (Gupta et al.[7])
! Performance Estimation of an application (Gupta

et al.[8])

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Research Issues

For instruction set selection, research issues
include:

! Area of the instruction
! Power consumption of the instruction
! Performance improvement over the software
! Latency of the pipeline
! Reusability between applications
! Resource Sharing between instructions
! Coupling/decoupling of function calls
! Other components associate with the instructions

(such as specific register file for the instruction)

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Tools

! ASIP-Meister
" Academic uses only (free)
" http://www.eda-meister.org/asip-meister/

! ARC (ARCtangentô)
" user-customisable 32-bit RISC core
" Commerical
" http://www.arc.com/products/arctangent.htm

! Infineon Technologies . (Carmelô architecture)
" Next generation wireless, broadband connectivity, DSP
" Commerical
" http://www.carmeldsp.com

! Tensilica, Inc (Xtensaô)
" 5-stage pipeline, 32-bit RISC
" Commerical
" http://www.tensilica.com

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

de
si

gn
 fo

r C
O

M
P4

21
1

Matlab to HW/SW

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Simulink

ï System simulation and
modeling tool for
performance evaluation
and optimization

ï Allows Matlab ,C, C++
algorithms be
implemented into
simulation models

ï Supports Linear,
nonlinear, continuous-time
(Analog), discrete-time
(digital) and mixed-signal
systems

P/f
detect Sin+

- 2

1

Input Frequency

Output
Frequency

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

From Simulink to VHDL

! Conversion utility
bridges the gap between
system level
specification and RTL
design

! Two types of digital
circuits:

1. Control Logic (FSM)
2. Data Path Circuit

Simulink Model
(.mdl file)

Performance
Evaluation

Conversion
Utility

VHDL
(.vhd file)

Logic
simulation

Logic
Synthesis

Layout
Place& Route

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Control Logic Extraction

! Stateflow :A tool
within Simulink used
for finite state
machine design

! Graphical
representation using
state diagrams

! Each FSM
represented by
inputs, outputs,
states and
transitions

Increment

Entry: j ++

Hold

[J==8]

Module 1

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

State flow representation in
VHDL

! Each FSM is a separate entity
! Each state is represented in a case statement

" If/Elsif block checks all transitions top-
down

"Junctions result in cascaded if/else
statements

"Else statement contains during actions
for current state and all parents

! Output is performed after success transition

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Data Path Translation

! Basic blocks in Simulink
are directly mapped to
its appropriate VHDL
model
eg. Add, Sub, MAC

! Complex functions
implemented using a
combination of simple
models.

! Multiplier , adder, switch

+
+
ADD

1
UWB
signal

S18

MULT
S12 REG

Z
1

MUX

3
Constant

FIR filter
Coefficient

1
Z

2

FIR Filter MAC datapath

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Design Example – FIR Filter MAC

D
A
WEN

FIFO

Q
2

addr

wen

reset_acc

CONTROL

1

A

B

RESET

MAC

Z

Stateflow-
VHDL

translator

Vendor SRAM

TAP_COEF

D
A
WEN

Q

Result

Vendor SRAM

3

Simulink -
Datapath

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Commercial Solutions

! Xilinx System Generatorô for Simulink

! Altera DSP Builder - Quartus II and
MATLAB/Simulink interface

! Bit-true and cycle-true Simulink library for common
functions

! Automatic HDL code generation from a Simulink model
! Maps design automatically to vendor specific IP core

library

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Case Study- Texas
Instrument DSP processors

Simulink Model
(.mdl file)

Performance
Evaluation

Texas Instrument
Code Composwer Studio TM

Target specific
Assembly code

C code
(.mex file)

DSP CHIP Implementation

! Design space exploration with
Simulink Model

! Simulink generated C code
! Translate down to TI processor

specific DSP instructions

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11
Berkley IC design flow group
SSHAFT

! Bypasses data path translation by directly
mapping Simulinkís primitives such as adders
and switches into EDIF files

! Simulink parameters are passed into circuit
generators to produce circuits with corresponding
parameters

! Provides physical place/route and layout
capability

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

de
si

gn
 fo

r C
O

M
P4

21
1

Network on Chip
Sr

i P
ar

am
es

wa
ra

n,
 C

o-
D

es
ig

n
@

 C
O

M
P

42
11

Network on Chip

! SoCs are likely to be made up to several
heterogeneous processing units (CPUs,
DSP, FPGA)

! Need communication architecture to cope
with billion gate designs
"Orthogonalisation of concerns (separation

of communication and application) and
platform based design
#Reduction in design time => Faster time to

market
"Likely to contain complex interconnect

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Why Networks?

! More predictable electrical properties
! Promote reuse of components (get

components working from different
domains)

! Increased bandwidth
! Scalable

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Conventional vs. Network

CPU

Memory

PHYMAC
Processor

Baseband
Processor

CPU

Interface MAC
Processor

PHY

Baseband
Processor

Conventional uP architecture A network architecture

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Designing Network on Chips

! NaÔve approach
"Select a topology (mesh, torus, cube etc)

and protocol
"Does it meet constraints? If not, try

something different
"Large design space, often not optimal

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Designing Network on Chips

! One approach
" Pick an application
" HW/SW co-simulation to extract traffic behavior

Characterize traffic behavior (MPEG exhibits long-
range dependence)

Optimize traffic for this behavior in mind (reduce
contention by changing topology)

" Make an initial estimate of design
" Select a set of parameters to vary based on

optimization goal (e.g. increasing buffers may
decrease offered load)

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Designing Network on Chips

! Select a set of parameters to vary based
on optimization goal (e.g. increasing
buffers may decrease offered load)

! Co-simulate design or use performance
estimates to verify that design meets
constraints

! Iterate design until there are no more
alternatives

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Sonics Inc.

"Components connect using OCP socket
(common interface)

"Bus based topology 2-level TDMA, round
robin arbitration scheme.

"Provides QoS using TDMA (slot
reservation)

"Choose a data path width and clock
frequency to meet peak bandwidths.

"Set pipeline to balance latency vs. targeted
clock frequency

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Sonics Design Flow

CoreGenerator

SOCCreator

ïConnect and configure
components, simulate
and synthesize

ïSimulate and analyze
timing

ïConfigure to meet
communication
requirements

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Research Areas

! Fast simulation of networks
" Estimating performance

! Automatic Synthesis of Interconnect
! Sizing of components

" Smaller input buffers.
" Thinner buses.
" Smaller controllers.
" Result: smaller area and power consumption.

! Flow control and Congestion management
! Power management

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

Summary

! Network on Chip possible successor to
bus architectures

! Further work required to create tools for
automatic synthesis and fast simulation

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11
Summary of Path to
implementation

! To achieve the productivity necessary to
create multi million gate designs we need
a path to implementation from a high level
specification

! Several new methods are being
investigated

! A number of promising choices are
becoming available

! More work needs to be done to cover a
wider possibility of choices

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n

@
 C

O
M

P
42

11

References
! [1] XtensaÆ Microprocessor Overview Handbook For XtensaÆ V (T1050) Processor Cores, Tensilica, Inc

2002
! [2] Imai, M, Sato, J, Almoary, A, Hikichi, N, An Integer Programming Approach to Instruction

Implementation Method Selection Problem, 1992
! [3] Alomary, A., Nakata, T., Honma, Y., Imai, M., and Hikichi, N., "An ASIP instruction set optimization

algorithm with functional module sharing constraint," presented at IEEE/ACM International Conf. on
Computer-Aided Design, Santa Clara, USA, 1993

! [4] Liem, C. May,T. Paulin, P: Instruction-Set Matching and Selection for DSP and ASIP Code Generation,
European Design and Test Conference (ED & TC), 1994, pp. 31-37

! [5] Shu, J., Wilson, T.C., Banerji, D.K., Instruction-Set Matching and GA-based Selection for Embedded-
Processor Code Generation, 9th IC on VLSI Design, 1996

! [6] Huang, I, Despain, A.M. Synthesis of application specific instruction sets, IEEE Trans. On CAD of IC &
Systems, June 1995, Vol 14 Issue 6, pp 663-675

! [7] Gupta, T. V. K., Sharma, P., Balakrishnan, M., and Malik, S., "Processor evaluation in an embedded
systems design environment," presented at Thirteenth International Conf. on VLSI Design, Calcutta, India,
2000, pp. 98-103

! [8] Gupta, T. V. K., Ko, R. E., and Barua, R., "Compiler-directed Customization of ASIP Cores," presented
at 10th International Symposium on Hardware/Software Co-Design, Estes Park, US, 2002

! [9] Benini L and De Micheli G, ìNetwork on Chips: A New SoC Paradigmî
! [10] Varatkar G, Marculescu R, ìTraffic Analysis for On-chip Networks Design of Multimedia Applicationsî
! [11] Lahiri K, Raghunathan A, Lakshminarayana G, ìA Methodology for the Design of High-Performance

Communication Architectures for System-on-Chipsî
! [12] Sonics Inc, ìSonics uNetworks : Technical Overviewî,

