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HW/ SW Co-Design

Sri Parameswaran
University of New South Wales
Sydney, Australia
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Outline of this part of the 
presentation

! Behavioral Synthesis (revisited shortly 
only!)

! HW/SW Co-Design
"Heterogeneous multi-processor systems

! Application Specific Instruction set 
Processors

! Matlab to HW/SW Solution
! Network on a chip
! Real Time Operating Systems
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Behavioral 
Synthesis
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Behavioral Synthesis 

! Given 

! If RTL then                           60ns

! If Behavioral then

-** +

25ns+**

** +-

-

** +-

50ns

50ns
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Issues

! Specify in unambiguous language
! Schedule and Allocate Operations 
! Minimize Hardware
! Minimize Interconnect network
! Minimize Power dissipation
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Specification

! Usually VHDL is used
! Allows IF-THEN-ELSE, WAIT, UNTIL, 

FOR loops
! High level specification allowing several 

implementations
! Need to specify objective

"Area, speed, power 
! May not be the most efficient 

implementation
! Fast time to market
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Functional Unit Allocation

! Allocation of Adders, Multipliers etc
! Try to increase sharing (this might affect 

the schedule)
! Sharing of functional units also increases 

interconnect network, multiplexors etc
! Functional Unit Allocation performed in 

isolation (without considering register 
allocation or scheduling) will lead to 
inefficient designs
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+

Schedule

w = b + 2

u = c + w

v = w + 1

y = u + v

a = b + c

x = a + 3

+

+

b 2

w
1

c

+
b c

a

+

+

b 2

+
wc

w

+
1

+
u v

y

+
b c

a

+

+u v

y1

x

u

v
3

3
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Scheduling – contd…

w = b + 2

u = c + w

v = w + 1

y = u + v

a = b + c

x = a * 3

+

+

b 2

wc

+
b c

a

*

+
1

+u v

y1

x

3
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Final Implementation

! Usually RTL description which is then 
processed through synthesis toolset 
create a layout, or bit stream for FPGAs.

! Inefficient than lower level synthesis, such 
as gate level or RTL, but improves speed 
of design and implementation

! Not widely used, acceptability is still an 
issue

! Several tools are/were available ñ such as 
Behavioral Compiler
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HW/SW Co-
Design
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HW/SW Codesign
Design Flow

Specification

Partition

Compile to Proc. Convert to HDL

Implement software Implement Hardware

Interface Synthesis
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Cosyma Architecture

Co-processor Sparc

RAM

Cosyma contains both an ASIC and a SPARC
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Register Allocation

! As can be seen from the above diagram
" w and v can be shared
" u and a can be shared

w = b + 2
u = c + w
v = w + 1
y = u + v
a = b + c
x = a + 3

w b
u

c

v

a
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Cosyma Comparison
Clock cycles used

Benchmark SW HW-SW tc % Speedup

Diesel 22,403 16,394 9.9 1.4

Smooth 1,781,712 1,393,525 49.6 1.3

3d 1,377 1,514 13.8 0.9

HW/SW Cosynthesis for Microcontrollers: Rolf Ernst, Jorg Henkel, Thomas Benner.,
IEEE Design and Test, December 1993
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Benchmark Special 
features of 
benchmark 

Lines of 
C code 

in 
HW/SW 

Section 
Speedup 

Overall 
Speedup 

XILINX 
clock 
speed 
(MHz) 

PPR time 
(hours) 

Integer Square functional 74 17.1 15.8 6.25 0.7 
Towers of 

Hanoi 
recursive 72 15.2 12.7 6.25 3.2 

Heap Sort 
Hardware 1 

functional  
196 

 
15.1 

 
2.6 

1.5625 
3.125 

6.3 
1.9 

Hardware 2 memory  1.3  1.5625 6.6 
Matrix 

Multiplication 
memory & 
functional 

127  
8.3 

 
4.4 

1.5625 
1.5625 

3.7 
2.6 

Plumhall functional 153  
3.5 

 
3.5 

4 
4 

5.6 
1.7 

Bubble Sort memory 111 2.3 2.1 1.5625 3.4 
Sieve of 

Eratosthenes 
memory 206 1.7 1.7 1.5625 4.5 

 

ASP Speedup Results – with 68K 
& Xilinx 4013
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Why do these systems not give 
superior results?

! To achieve a good partition between HW and SW we need 
information on the code

! This information could be obtained by either profiling or 
estimating the time taken and the size of HW needed for a 
segment of code

! The simplest task is to find the time taken on the software 
side of things

! We can profile data with the program to get
" how long each segment takes
" how many times each segment executes
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The Problems

! Specification
"Still early days

! Profiling
"Different values on differing architectures

! Estimates
"The sizes and the speed changing slightly 

can alter the whole make up of the 
partition

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n 

@
 C

O
M

P 
42

11

Heterogeneous  Multi-Processor 
System

HeMPS strategy 
" Input: 

# task data flow graph
# library of processor and communication link types

" Output:
# synthesizes a distributed, heterogeneous multiprocessor 

architecture using a point-to-point network 
# allocates subtasks to each processor 
# provides a static task schedule
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Introductory Example

! Processor costs and subtask times
P0:
P1:   
P2:
Links:

3

2

4

1

1
2

1
2

4
3 4

3

P1P0

Total Cost: 4+2+1 = 7
Total Time: 4

Given

Find a schedule

x, 3, 1, x
1, 1, x, 34

2

1 1
8 1, 1, x, 3
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Implementation Cost CPU Time (sec) 

example #subtasks period HeMPS Wolf SHEMUS P&P HeMPS Wolf SHEMUS P&P

pp1 4 2.5 - 14 - 14 - 0.05 - 11

3 14 14 - 13 0.09 0.05 - 24

4 7 7 - 7 0.09 0.05 - 28

7 5 5 - 5 0.09 0.05 - 37

pp2 9 5 15 15 15 15 0.24 0.7 1.3 3732

6 12 12 - 12 0.16 1.1 - 26710

7 8 8 - 8 0.16 1.6 - 32320

8 7 8 7 7 0.18 1.0 1.1 4511

15 5 5 - 5 0.12 1.1 - 385012

cfuge 3 0.1 17 17 - - 0.08 0.1 - -

juice 4 0.1 27 41 - - 0.08 0.1 - -

dye 15 0.1 59 59 - - 0.83 7.2 - -

robot 25 20 14 - - - 1.55 - - -

23 9 - 17 - 1.55 - 7.3 -

Results
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The biggest competitor - CPU!

YEARS

1000

1

10

100

CPU

VLSI

CPU performance has increased a 1000 fold in the last 15 years due to super 
scalar and super pipelined microprocessors.
VLSI - 10 times or less?

PE
R

FO
R

M
A

N
C

E
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Application Specific 
Instruction Set 
Processor
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ASIPs

! Application Specific Instruction-Set Processor
" Specifically designed for a particular application / a 

set of applications (e.g. JPEG (cameras), Motion 
Estimation (video), MPEG4 etc)

" Implement custom-designed instructions to 
improve performance of an application.
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Advantages of ASIPs

! Shorten Time-to-market
! Reduce Area
! Increase Performance
! Programmability

ASIC ñ ASIP ñ FPGA ñ GP (General Processor)
Most Customised Least Customised
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Xtensa® Processor

! A configurable and extensible processor developed by 
Tensilica, Inc.

1. Selecting configurable core using Xtensa Processor 
Generator  

2. Designing specific instructions using Tensilica 
Instruction Extension (TIE)
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Xtensa® Processor Generator

Diagram is captured from [1]
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Tensilica® Instruction Extension 
(TIE)

! The TensilicaÆ Instruction Extension (TIE) Language 
provides the designer with a concise way of extending the 
Xtensa processorís instruction set.

! A TIE description consists of basic description blocks to 
delineate the attributes of new instructions. TIE has the 
following description blocks:
" opcode ñ assigns opcodes and sub-opcodes to an 

instruction.
" iclass ñ defines the assembly language syntax for a 

class of instructions.
" semantic ñ defines the computations performed by an 

instruction or a group of similar instructions
" etc 
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TIE Example

// This is a sample TIE file describing two new instructions

// ADD8_4 and MIN16_2

// The ADD8_4 instruction performs four 8-bit additions

// The MIN16_2 instruction performs two 16-bit minimum selections

opcode ADD8_4 CUST0 op2=4’b0000
opcode MIN16_2 CUST0 op2=4’b0001
iclass addmin {ADD8_4, MIN16_2}{out arr, in art, in ars}
semantic addmin_sem{ADD8_4, MIN16_2} {

wire [31:0] add, min;
wire [15:0] min0, min1;
assign add = {art [31:24]+ars[31:24],

art [23:16]+ars [23:16],
art [15:8]+ars [15:8],
art [7:0]+ars [7:0]};

assign min1 = art [31:16] < ars [31:16] ? art [31:16] : ars [31:16];
assign min0 = art [15:0] < ars [15:0] ? art [15:0] : ars [15:0];
assign min = {min1,min0}
assign arr = ({32{ADD8_4}} & add) | ({32{MIN16_2}} & min);

}
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C program with TIE

#include <stdio.h>
#include <stdlib.h>

int main() {
// use ADD8_4 to add numbers
// p = a+e; q = b+f; r = c+g; s = d+h;
int a = 11; int e = 23;
int b = 34; int f = 44;
int c = 12; int g = 22;
int d = 34; int h = 41;

x = ( a<<24 | b<<16 | c<<8 | d);
y = ( e<<24 | f<<16 | g<<8 | h);
z = ADD8_4(x,y);
p = z >> 24
q = z & 0x0F00;
r = z & 0x00F0;
s = z & 0x000F;

}
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Performance

Diagram is captured from [1]
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Xtensa® Performance Summary

! Processor Architecture:
" 5-stage pipeline, 32-bit RISC

! Instruction Set:
" Xtensa ISA with compact 16-bit and 24-bit encoding

! Clock Speed:
" 350MHz in 0.13µ process
" 200MHz in 0.18µ process

! Performance:
" 5X, 10X, and even 100X+ increases in performance by extending 

the Xtensa processor with Tensilica Instruction Extension (TIE)
! Size:

" Approximately 25,000 gates ñ base processor; 
! Power:

" 0.1mW/MHz in 0.13µ process @ 1.0V
" 0.4mW/MHz in 0.18µ process @ 1.8V
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Method for Instruction Set 
Selection

! Integer Programming Approach (Imai et al.[2])
! Branch & Bound Algorithm (Alomary et al.[3])
! Pattern Matching (Liem et al.[4])
! Genetic Algorithm (Shu et al.[5])
! Simulated Annealing Algorithm (Huang and 

Despain[6])
! Simulation of an application (Gupta et al.[7])
! Performance Estimation of an application (Gupta 

et al.[8])
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Research Issues

For instruction set selection, research issues 
include:

! Area of the instruction
! Power consumption of the instruction 
! Performance improvement over the software
! Latency of the pipeline
! Reusability between applications
! Resource Sharing between instructions
! Coupling/decoupling of function calls
! Other components associate with the instructions 

(such as specific register file for the instruction)
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Tools

! ASIP-Meister 
" Academic uses only (free)
" http://www.eda-meister.org/asip-meister/

! ARC (ARCtangentô )
" user-customisable 32-bit RISC core 
" Commerical
" http://www.arc.com/products/arctangent.htm

! Infineon Technologies . (Carmelô architecture)
" Next generation wireless, broadband connectivity, DSP
" Commerical
" http://www.carmeldsp.com

! Tensilica, Inc (Xtensaô )
" 5-stage pipeline, 32-bit RISC
" Commerical
" http://www.tensilica.com
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Matlab to HW/SW
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Simulink

ï System simulation and 
modeling tool for 
performance evaluation 
and optimization

ï Allows Matlab ,C, C++ 
algorithms be 
implemented into  
simulation models

ï Supports Linear, 
nonlinear, continuous-time 
(Analog), discrete-time 
(digital) and mixed-signal 
systems

P/f
detect Sin+

- 2

1

Input Frequency

Output 
Frequency
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From Simulink to VHDL

! Conversion utility 
bridges the gap between 
system level 
specification and RTL 
design 

! Two types of digital 
circuits:

1. Control Logic (FSM)
2. Data Path Circuit

Simulink Model
(.mdl file)

Performance
Evaluation

Conversion 
Utility

VHDL
(.vhd file)

Logic 
simulation

Logic
Synthesis

Layout 
Place& Route

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n 

@
 C

O
M

P 
42

11

Control Logic Extraction

! Stateflow :A tool 
within Simulink used 
for finite state 
machine design

! Graphical 
representation using 
state diagrams

! Each FSM 
represented by 
inputs, outputs, 
states and 
transitions

Increment

Entry: j ++

Hold

[J==8]

Module 1
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State flow representation in 
VHDL

! Each FSM is a separate entity
! Each state is represented in a  case statement

" If/Elsif block checks all transitions top-
down

"Junctions result in cascaded if/else 
statements

"Else statement contains during actions 
for current state and all parents

! Output is performed after success transition
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Data Path Translation

! Basic blocks in Simulink
are directly mapped to 
its appropriate VHDL 
model   
eg. Add, Sub, MAC 

! Complex functions 
implemented using a 
combination of simple 
models.

! Multiplier , adder, switch

+
+
ADD

1
UWB
signal

S18

MULT
S12 REG

Z
1

MUX

3
Constant

FIR filter
Coefficient

1
Z

2

FIR Filter MAC datapath
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Design Example – FIR Filter MAC

D
A
WEN

FIFO

Q
2

addr

wen

reset_acc

CONTROL

1

A

B

RESET

MAC

Z

Stateflow-
VHDL

translator

Vendor SRAM

TAP_COEF

D
A
WEN

Q

Result

Vendor SRAM

3

Simulink -
Datapath 
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Commercial Solutions

! Xilinx System Generatorô for Simulink

! Altera DSP Builder - Quartus II and 
MATLAB/Simulink interface

! Bit-true and cycle-true Simulink library for common 
functions

! Automatic HDL code generation from a Simulink model
! Maps design automatically to vendor specific IP core 

library
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Case Study- Texas 
Instrument DSP processors

Simulink Model
(.mdl file)

Performance
Evaluation

Texas Instrument
Code Composwer Studio TM

Target specific 
Assembly code

C code 
(.mex file)

DSP CHIP Implementation

! Design space exploration with 
Simulink Model

! Simulink generated C code
! Translate down to TI processor 

specific DSP instructions
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Berkley IC design flow group 
SSHAFT

! Bypasses data path translation by directly 
mapping Simulinkís primitives such as adders 
and switches into EDIF files

! Simulink parameters are passed into circuit 
generators to produce circuits with corresponding 
parameters

! Provides physical place/route and layout 
capability 
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Network on Chip
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Network on Chip

! SoCs are likely to be made up to several 
heterogeneous processing units (CPUs, 
DSP, FPGA)

! Need communication architecture to cope 
with billion gate designs
"Orthogonalisation of concerns (separation 

of communication and application) and 
platform based design
#Reduction in design time => Faster time to 

market
"Likely to contain complex interconnect
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Why Networks?

! More predictable electrical properties
! Promote reuse of components (get 

components working from different 
domains)

! Increased bandwidth
! Scalable
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Conventional vs. Network

CPU

Memory

PHYMAC 
Processor

Baseband
Processor

CPU

Interface MAC 
Processor

PHY

Baseband
Processor

Conventional uP architecture A network architecture

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n 

@
 C

O
M

P 
42

11

Designing Network on Chips

! NaÔve approach
"Select a topology (mesh, torus, cube etc) 

and protocol
"Does it meet constraints? If not, try 

something different
"Large design space, often not optimal
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Designing Network on Chips

! One approach
" Pick an application
" HW/SW co-simulation to extract traffic behavior

# Characterize traffic behavior (MPEG exhibits long-
range dependence)

# Optimize traffic for this behavior in mind (reduce 
contention by changing topology)

" Make an initial estimate of design
" Select a set of parameters to vary based on 

optimization goal (e.g. increasing buffers may 
decrease offered load) 
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Designing Network on Chips

! Select a set of parameters to vary based 
on optimization goal (e.g. increasing 
buffers may decrease offered load) 

! Co-simulate design or use performance 
estimates to verify that design meets 
constraints

! Iterate design until there are no more 
alternatives
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Sonics Inc. 

"Components connect using OCP socket 
(common interface)

"Bus based topology 2-level TDMA, round 
robin arbitration scheme.  

"Provides QoS using TDMA (slot 
reservation)

"Choose a data path width and clock 
frequency to meet peak bandwidths.  

"Set pipeline to balance latency vs. targeted 
clock frequency

Sr
i P

ar
am

es
wa

ra
n,

 C
o-

D
es

ig
n 

@
 C

O
M

P 
42

11

Sonics Design Flow

CoreGenerator

SOCCreator

ïConnect and configure 
components, simulate 
and synthesize

ïSimulate and analyze 
timing

ïConfigure to meet 
communication 
requirements
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Research Areas

! Fast simulation of networks
" Estimating performance

! Automatic Synthesis of Interconnect
! Sizing of components

" Smaller input buffers.
" Thinner buses.
" Smaller controllers.
" Result: smaller area and power consumption.

! Flow control and Congestion management
! Power management
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Summary

! Network on Chip possible successor to 
bus architectures

! Further work required to create tools for 
automatic synthesis and fast simulation
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Summary of Path to 
implementation

! To achieve the productivity necessary to 
create multi million gate designs we need 
a path to implementation from a high level 
specification

! Several new methods are being 
investigated

! A number of promising choices are 
becoming available

! More work needs to be done to cover a 
wider possibility of choices
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