HW/ SW Co-Design

Sri Parameswaran University of New South Wales Sydney, Australia

Behavioral Synthesis

Outline of this part of the presentation

- Behavioral Synthesis (revisited shortly only!)
- HW/SW Co-Design
 - Heterogeneous multi-processor systems
- Application Specific Instruction set Processors
- Matlab to HW/SW Solution
- Network on a chip
- Real Time Operating Systems

Behavioral Synthesis

Given

**--If RTL then

60ns

50ns

25ns **+ If Behavioral then 50ns

Sri Parameswaran, Co-design for COMP4211

Issues

- Specify in unambiguous language
- Schedule and Allocate Operations
- Minimize Hardware
- Minimize Interconnect network
- Minimize Power dissipation

Specification

- Usually VHDL is used
- Allows IF-THEN-ELSE, WAIT, UNTIL, FOR loops
- High level specification allowing several implementations
- Need to specify objective
 - ◆ Area, speed, power
- May not be the most efficient implementation
- Fast time to market

- Allocation of Adders, Multipliers etc
- Try to increase sharing (this might affect the schedule)
- Sharing of functional units also increases interconnect network, multiplexors etc
- Functional Unit Allocation performed in isolation (without considering register allocation or scheduling) will lead to inefficient designs

Scheduling – contd...

Sri Parameswaran, Co-design for COMP4211

Final Implementation

- Usually RTL description which is then processed through synthesis toolset create a layout, or bit stream for FPGAs.
- Inefficient than lower level synthesis, such as gate level or RTL, but improves speed of design and implementation
- Not widely used, acceptability is still an issue
- Several tools are/were available ñ such as Behavioral Compiler

HW/SW Co-Design

HW/SW Codesign Design Flow

Sri F

Sri Par

Cosyma Architecture

Cosyma contains both an ASIC and a SPARC

Register Allocation

- As can be seen from the above diagram
 - \blacklozenge w and v can be shared
 - ◆ u and a can be shared

Co-Design

Sri Pa

Cosyma Comparison

	Clock cycles	s used		
Benchmark	SW	HW-SW	$t_c \%$	Speedup
Diesel	22,403	16,394	9.9	1.4
Smooth	1,781,712	1,393,525	49.6	1.3
3d	1,377	1,514	13.8	0.9

HW/SW Cosynthesis for Microcontrollers: Rolf Ernst, Jorg Henkel, Thomas Benner., IEEE Design and Test, December 1993

ASP Speedup Results – with 68K & Xilinx 4013

Benchmark	Special	Lines of	Section	Overall	XILINX	PPR time
	features of	C code	Speedup	Speedup	clock	(hours)
	benchmark	in			speed	
		HW/SW			(MHz)	
Integer Square	functional	74	17.1	15.8	6.25	0.7
Towers of	recursive	72	15.2	12.7	6.25	3.2
Hanoi						
Heap Sort	functional				1.5625	6.3
Hardware 1		196	15.1	2.6	3.125	1.9
Hardware 2	memory		1.3		1.5625	6.6
Matrix	memory &	127			1.5625	3.7
Multiplication	functional		8.3	4.4	1.5625	2.6
Plumhall	functional	153			4	5.6
			3.5	3.5	4	1.7
Bubble Sort	memory	111	2.3	2.1	1.5625	3.4
Sieve of	memory	206	1.7	1.7	1.5625	4.5
Eratosthenes						

Why do these systems not give superior results?

- To achieve a good partition between HW and SW we need information on the code
- This information could be obtained by either profiling or estimating the time taken and the size of HW needed for a segment of code
- The simplest task is to find the time taken on the software side of things
- We can profile data with the program to get
- how long each segment takes
- how many times each segment executes

The Problems

- Specification
 - Still early days
- Profiling
 - Different values on differing architectures
- Estimates
 - The sizes and the speed changing slightly can alter the whole make up of the partition

Heterogeneous Multi-Processor System

HeMPS strategy

- ♦ Input:
 - task data flow graph
 - library of processor and communication link types
- ♦ Output:
 - synthesizes a distributed, heterogeneous multiprocessor architecture using a point-to-point network
 - allocates subtasks to each processor
 - provides a static task schedule

Introductory Example

Given

Total Time: 4

Design @ COMP 4211

Sri Paı

Results

ıran, Co-Design @ COMP 4211

Sri Pa

Sri Parameswaran, Co-design for COMP4211

			l Ir	nplemer	ntation Cost			CPU 1	Fime (sec)	
example	#subtasks	period	H <i>e</i> MPS	Wolf	SHEMUS	P&P	H <i>e</i> MPS	Wolf	SHEMUS	P&P
pp1	4	2.5	-	14	-	14	-	0.05	-	11
		3	14	14	-	13	0.09	0.05	-	24
		4	7	7	-	7	0.09	0.05	-	28
		7	5	5	-	5	0.09	0.05	-	37
pp2	9	5	15	15	15	15	0.24	0.7	1.3	3732
		6	12	12	-	12	0.16	1.1	-	26710
		7	8	8	-	8	0.16	1.6	-	32320
		8	7	8	7	7	0.18	1.0	1.1	4511
		15	5	5	-	5	0.12	1.1	-	385012
cfuge	3	0.1	17	17	-	-	0.08	0.1	-	-
juice	4	0.1	27	41	-	-	0.08	0.1	-	-
dye	15	0.1	59	59	-	-	0.83	7.2	-	-
robot	25	20	14	-	-	-	1.55	-	-	-
		23	9	-	17	-	1.55	-	7.3	-

Application Specific Instruction Set Processor

Sri Parameswaran, Co-Design @ COMP 4211

The biggest competitor - CPU!

CPU performance has increased a 1000 fold in the last 15 years due to super scalar and super pipelined microprocessors.

ASIPs

- Application Specific Instruction-Set Processor
 - Specifically designed for a particular application / a set of applications (e.g. JPEG (cameras), Motion Estimation (video), MPEG4 etc)
 - Implement custom-designed instructions to improve performance of an application.

Advantages of ASIPs

- Shorten Time-to-market
- Reduce Area
- Increase Performance
- Programmability

ASIC ñ ASIP ñ FPGA ñ GP (General Processor) Most Customised Least Customised

Xtensa® Processor

- A configurable and extensible processor developed by Tensilica, Inc.
 - 1. Selecting configurable core using Xtensa Processor Generator
 - 2. Designing specific instructions using Tensilica Instruction Extension (TIE)

Xtensa® Processor Generator

Target				
turbers flevter	Sates HEFOR			
Numeron en fertien	The discourse likewake discourse has one comparison of a state of the second se	CAD Environment		
E formation E Santiación Levo B Agencia	norty Kappenink II-rapidy Mildin g II: Noo Inter-Vendelogija II: Acciented Vervoog variaut dat	By with a set to AME, if Derivatives 0 (1991) (1992) (199		
The characteristic of the second seco	All of the Concept Derivative Market Report The Fill Control Concept Date of the Concept Date of the Control Concept Date of the Concept Date of	Synthese E Three Treated		
Instant I		Pace & Route Accord to entry Reser Court Tores		
Ι	Diagram is captured from [1]			

Tensilica[®] Instruction Extension (TIE)

- The TensilicaÆInstruction Extension (TIE) Language provides the designer with a concise way of extending the Xtensa processorís instruction set.
- A TIE description consists of basic description blocks to delineate the attributes of new instructions. TIE has the following description blocks:
 - opcode ñ assigns opcodes and sub-opcodes to an instruction.
 - iclass ñ defines the assembly language syntax for a class of instructions.
 - semantic ñ defines the computations performed by an instruction or a group of similar instructions

◆ etc

Sri Paı

TIE Example

// This is a sample TIE file describing two new instructions
// ADD8_4 and MIN16_2
// The ADD8_4 instruction performs four 8-bit additions
// The MIN16_2 instruction performs two 16-bit minimum selections
pcode ADD8_4 CUST0 op2=4'b0000
<pre>pcode MIN16_2 CUST0 op2=4'b0001</pre>
<pre>class addmin {ADD8_4, MIN16_2}{out arr, in art, in ars}</pre>
emantic addmin_sem{ADD8_4, MIN16_2} {
wire [31:0] add, min;
<pre>wire [15:0] min0, min1;</pre>
$assign add = \{art [31:24] + ars [31:24],$
art [23:16]+ars [23:16],
art [15:8]+ars [15:8],
art [7:0]+ars [7:0]};
assign min1 = art [31:16] < ars [31:16] ? art [31:16] : ars [31:16];
assign min0 = art [15:0] < ars [15:0] ? art [15:0] : ars [15:0];
<pre>assign min = {min1,min0}</pre>
assign arr = ({32{ADD8_4}} & add) ({32{MIN16_2}} & min);
}

C program with TIE

#include <stdio.h>
#include <stdlib.h>

```
int main() {
    // use ADD8_4 to add numbers
    // p = a+e; q = b+f; r = c+g; s = d+h;
    int a = 11; int e = 23;
    int b = 34; int f = 44;
    int c = 12; int g = 22;
    int d = 34; int h = 41;
    x = ( a<<24 | b<<16 | c<<8 | d);
    y = ( e<<24 | f<<16 | g<<8 | h);
    z = ADD8_4(x,y);
    p = z >> 24
    q = z & 0x0F00;
    r = z & 0x00F0;
    s = z & 0x000F;
}
```

Performance

Xtensa® Performance Summary

- Processor Architecture:
 - ◆ 5-stage pipeline, 32-bit RISC
- Instruction Set:

Sri F

COMP 4211

Co-Design @

Sri Parc

- ◆ Xtensa ISA with compact 16-bit and 24-bit encoding
- Clock Speed:
 - ◆ 350MHz in 0.13µ process
 - ◆ 200MHz in 0.18µ process
- Performance:
 - ♦ 5X, 10X, and even 100X+ increases in performance by extending the Xtensa processor with Tensilica Instruction Extension (TIE)
- Size:
 - ◆ Approximately 25,000 gates ñ base processor;
- Power:
 - ◆ 0.1mW/MHz in 0.13µ process @ 1.0V
 - ◆ 0.4mW/MHz in 0.18µ process @ 1.8V

waran, Co-Design @ COMP 4211

Sri Parame:

Method for Instruction Set Selection

- Integer Programming Approach (Imai et al.[2])
- Branch & Bound Algorithm (Alomary et al.[3])
- Pattern Matching (Liem et al.[4])
- Genetic Algorithm (Shu et al.[5])
- Simulated Annealing Algorithm (Huang and Despain[6])
- Simulation of an application (Gupta et al.[7])
- Performance Estimation of an application (Gupta et al.[8])

Research Issues

- For instruction set selection, research issues include:
- Area of the instruction
- Power consumption of the instruction
- Performance improvement over the software
- Latency of the pipeline
- Reusability between applications
- Resource Sharing between instructions
- Coupling/decoupling of function calls
- Other components associate with the instructions (such as specific register file for the instruction)

Tools

- ASIP-Meister
 - Academic uses only (free)
 - http://www.eda-meister.org/asip-meister/
- ARC (ARCtangentô)
 - user-customisable 32-bit RISC core
 - Commerical
 - http://www.arc.com/products/arctangent.htm
- Infineon Technologies . (Carmelô architecture)
 - Next generation wireless, broadband connectivity, DSP
 - Commercial
 - http://www.carmeldsp.com
- Tensilica, Inc (Xtensaô)
 - ◆ 5-stage pipeline, 32-bit RISC
 - Commerical
 - http://www.tensilica.com

Co Jacim En COMPLEI

Matlab to HW/SW

Sri Parameswaran, Co-Design @ COMP 4211

Simulink

- System simulation and modeling tool for performance evaluation and optimization
- Allows Matlab ,C, C++ algorithms be implemented into simulation models

Supports Linear, nonlinear, continuous-time (Analog), discrete-time (digital) and mixed-signal systems

From Simulink to VHDL

- **Conversion utility** bridges the gap between system level specification and RTL design
- Two types of digital circuits:
- Control Logic (FSM)
- Data Path Circuit 2

Sri F

Co-Des

Sri Param

Control Logic Extraction

Stateflow : A tool . within Simulink used for finite state machine design

representation using

state diagrams

represented by

inputs, outputs,

Each FSM

states and

transitions

Graphical

Module 1 • [J==8] Increment Entry: j ++ Hold

State flow representation in VHDL

- Each FSM is a separate entity
- Each state is represented in a case statement
 - ◆ If/Elsif block checks all transitions topdown
 - Junctions result in cascaded if/else statements
 - Else statement contains during actions for current state and all parents
- Output is performed after success transition

Data Path Translation

- Basic blocks in Simulink are directly mapped to its appropriate VHDL model
 - eg. Add, Sub, MAC
- Complex functions implemented using a combination of simple models.
- Multiplier , adder, switch

Design Example – FIR Filter MAC

Commercial Solutions

- Xilinx System Generatorô for Simulink
- Altera DSP Builder Quartus II and MATLAB/Simulink interface

Sri Pa

- Bit-true and cycle-true Simulink library for common functions
- Automatic HDL code generation from a Simulink model
- Maps design automatically to vendor specific IP core library

Case Study- Texas Instrument DSP processors

Design @ COMP 4211

m, Co-

Sri Pa

Berkley IC design flow group SSHAFT

- Bypasses data path translation by directly mapping Simulinkis primitives such as adders and switches into EDIF files
- Simulink parameters are passed into circuit generators to produce circuits with corresponding parameters
- Provides physical place/route and layout capability

Sri Pa

Network on Chip

- SoCs are likely to be made up to several heterogeneous processing units (CPUs, DSP, FPGA)
- Need communication architecture to cope with billion gate designs
 - Orthogonalisation of concerns (separation of communication and application) and platform based design
 - Reduction in design time => Faster time to market
 - Likely to contain complex interconnect

Why Networks?

More predictable electrical properties

Network on Chip

- Promote reuse of components (get components working from different domains)
- Increased bandwidth
- Scalable

Conventional vs. Network

Designing Network on Chips

- NaÔe approach
 - Select a topology (mesh, torus, cube etc) and protocol
 - Does it meet constraints? If not, try something different
 - ◆ Large design space, often not optimal

Designing Network on Chips

- One approach
 - Pick an application
 - HW/SW co-simulation to extract traffic behavior
 - Characterize traffic behavior (MPEG exhibits longrange dependence)
 - Optimize traffic for this behavior in mind (reduce contention by changing topology)
 - Make an initial estimate of design
 - Select a set of parameters to vary based on optimization goal (e.g. increasing buffers may decrease offered load)

Designing Network on Chips

- Select a set of parameters to vary based on optimization goal (e.g. increasing buffers may decrease offered load)
- Co-simulate design or use performance estimates to verify that design meets constraints
- Iterate design until there are no more alternatives

Sonics Inc.

- Components connect using OCP socket (common interface)
- Bus based topology 2-level TDMA, round robin arbitration scheme.
- Provides QoS using TDMA (slot reservation)
- Choose a data path width and clock frequency to meet peak bandwidths.
- Set pipeline to balance latency vs. targeted clock frequency

Sonics Design Flow

Research Areas

- Fast simulation of networks
 - Estimating performance
- Automatic Synthesis of Interconnect
- Sizing of components
 - Smaller input buffers.
 - Thinner buses.
 - Smaller controllers.
 - Result: smaller area and power consumption.
- Flow control and Congestion management
- Power management

Summary

Co-Design

- Network on Chip possible successor to bus architectures
- Further work required to create tools for automatic synthesis and fast simulation

Summary of Path to implementation

- To achieve the productivity necessary to create multi million gate designs we need a path to implementation from a high level specification
- Several new methods are being investigated
- A number of promising choices are becoming available
- More work needs to be done to cover a wider possibility of choices

References

- [1] XtensaÆ Microprocessor Overview Handbook For XtensaÆ V (T1050) Processor Cores, Tensilica, Inc 2002
- [2] Imai, M, Sato, J, Almoary, A, Hikichi, N, An Integer Programming Approach to Instruction
 Implementation Method Selection Problem, 1992
- [3] Alomary, A., Nakata, T., Honma, Y., Imai, M., and Hikichi, N., "An ASIP instruction set optimization algorithm with functional module sharing constraint," *presented at IEEE/ACM International Conf. on Computer-Aided Design*, Santa Clara, USA, 1993
- [4] Liem, C. May, T. Paulin, P: Instruction-Set Matching and Selection for DSP and ASIP Code Generation, European Design and Test Conference (ED & TC), 1994, pp. 31-37
- [5] Shu, J., Wilson, T.C., Banerji, D.K., Instruction-Set Matching and GA-based Selection for Embedded-Processor Code Generation, 9th IC on VLSI Design, 1996
- [6] Huang, I, Despain, A.M. Synthesis of application specific instruction sets, IEEE Trans. On CAD of IC & Systems, June 1995, Vol 14 Issue 6, pp 663-675
- [7] Gupta, T. V. K., Sharma, P., Balakrishnan, M., and Malik, S., "Processor evaluation in an embedded systems design environment," *presented at Thirteenth International Conf. on VLSI Design*, Calcutta, India, 2000, pp. 98-103
- [8] Gupta, T. V. K., Ko, R. E., and Barua, R., "Compiler-directed Customization of ASIP Cores," presented at 10th International Symposium on Hardware/Software Co-Design, Estes Park, US, 2002
- [9] Benini L and De Micheli G, iNetwork on Chips: A New SoC Paradigmî
- I10] Varatkar G, Marculescu R, iTraffic Analysis for On-chip Networks Design of Multimedia Applicationsi
- [11] Lahiri K, Raghunathan A, Lakshminarayana G, iA Methodology for the Design of High-Performance Communication Architectures for System-on-Chipsî
- [12] Sonics Inc, iSonics uNetworks : Technical Overviewî,

Sri Pa