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SIMdD: A New Taxonomy for Data-Parallel Architectures 
 
Abstract 
SIMD architectures improve execution throughput by exploiting data-level parallelism inherent in 
programs. Conventional SIMD implementations (referred to as packed-SIMD hereafter) require 
the data elements to be properly arranged in vector registers before SIMD operations can be 
performed on the vector elements. Packed-SIMD (SIMpD) architectures are efficient for 
sequential data accesses but incur overhead in performing data rearrangement for more flexible 
data accesses where the vector elements could potentially come from arbitrary, disjoint sources. 
This report discusses disjoint-SIMD (SIMdD) architectures, introduced by the IBM eLite DSP 
team[1], which address the limitation of SIMpD features in a vector-DSP. It is shown that there 
exists a group of telecommunication and multimedia benchmarks which exhibits data-level 
parallelism well mapped to SIMdD patterns. In this project, the SIMdD idea is adapted for a 
variant of general-purpose processors. Both SIMpD and SIMdD extensions are added to a basic 5-
stage pipelined, MIPS-like architecture to demonstrate the concept of data-level parallelism. 
VHDL models are simulated to verify the designs and to assist performance evaluation of the 
designs in terms of clock cycles. Simulation results show that SIMdD has a performance 
advantage over SIMpD extensions for programs with flexible data access patterns. 
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1. Overview of Data Parallel Architectures 
1.1 Overview of SISD, VLIW, SIMpD and SIMdD Architectures 
Single-Instruction-Single-Data (SISD) is the basic processor architecture where a single 
instruction stream operates on a single data stream, as shown in Figure 1(a). Assuming three-
address instructions, register-to-register architectures, the instructions must specify an opcode 
identifying the operation to be performed; a destination register address for result storage; and 
two source register addresses providing the source operands. 
 
The Very-Long-Instruction-Word (VLIW) architecture in Figure 1(b) is an example of Multiple-
Instructions-Multiple-Data (MIMD) architectures where multiple instructions are executed in 
parallel on multiple data streams. Parallel execution is possible for a sequence of instructions with 
no data and control dependencies. VLIW architectures exploit both instruction-level and data-
level parallelism in programs to improve execution throughput. The instruction format for VLIW 
architectures is necessarily a very long word, composed of multiple SISD instructions.  
 
 

SISD
Data In Data Out

Instructions

Op RegReg Reg

SIMpD
Data In Data Out

Instructions

VRegVRegVRegOp

Data In Data Out

SIMdD

Instructions

RegReg RegOp RegReg Reg RegReg Reg RegReg Reg

VLIW
Data In Data Out

Instructions

RegReg RegOp Op RegReg RegOp RegReg RegOp RegReg Reg

(a) (b)

(c) (d)
 

Figure 1 (adapted from [2]): (a) Single-Instruction-Single-Data architecture. (b) Very-Long-Instruction-
Word architecture. (c) Packed Single-Instruction-Multiple-Data architecture. (d) Disjoint Single-
Instruction-Multiple-Data architecture. 
 
 
SIMpD extensions are normally seen in vector processors and general-purpose processors. In 
vector processing, a single instruction is performed on data elements pre-arranged in vector 
registers. SIMpD features are also typically implemented as multimedia extensions to general-
purpose processors. Multimedia data types are typically 8-bit or 16-bit. For 32-bit general-
purpose processors, four 8-bit (or two 16-bit) operations could be performed in parallel using 32-
bit execution units. This is known as sub-word parallelism. Thus the 32-bit scalar registers in 
general-purpose processors may be seen as vector registers with four 8-bit elements (or two 16-bit 
elements). Thus the term “vector registers” may refer to the true vector registers in vector 
processors; as well as the scalar registers in general-purpose processors with SIMD extensions. 
The instructions for SIMpD architectures must specify an opcode identifying the single operation 
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to be performed; a destination vector register address and two source vector register addresses. 
Note that the multiple data elements must be “packed” into vector registers before SIMD 
operations can be performed, hence the name packed-SIMD (SIMpD). 
 
For SIMdD architectures, as shown in Figure 1(d), the data need not be packed into vector 
registers prior to execution. The vector elements may be come from disjoint locations as long as 
they are available in one of the programmer-visible registers, and are composed dynamically 
during instruction execution. This implies that the instructions for SIMdD architectures must 
include an opcode; a destination register address and two source register addresses for each data 
stream. This result in long instruction words much like that of VLIW architectures. We will see 
later in the report that SIMdD architectures prove to be more efficient for programs with flexible 
data access patterns. 
 
 
1.2 General vs. Indirect SIMdD Implementations 
As seen in Section 1.1, general SIMdD architectures require a long instruction word to specify the 
single operation; source and destination register addresses for each data stream. This poses 
difficulty in extending the ISA of general-purpose processors that typically have fixed instruction 
formats. In this report, an alternative SIMdD implementation, named indirect-SIMdD, is 
considered. The indirect-SIMdD implementation uses a level of indirection, i.e. pointers, to 
specify the locations of multiple data elements. Each pointer may contain multiple indices to 
indicate disjoint data sources, so fewer bits are required for the instructions. Figure 2(b) shows 
that the instructions for indirect-SIMdD architectures need only specify an opcode, a destination 
pointer address and two source pointer addresses. This instruction format closely resembles that 
of existing general-purpose processors and so indirect-SIMdD features can be easily added as 
multimedia extensions to general-purpose processors. 
 
 

(b)

Data In Data Out

SIMdD

Instructions

Op PtrPtr Ptr

Pointer
Registers

Byte
Elements

Data In Data Out

SIMdD

Instructions

RegReg RegOp RegReg Reg RegReg Reg RegReg Reg

(a)

 
Figure 2 (adapted from [2]): (a) General SIMdD architecture. (b) Indirect-SIMdD implementation. 
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2. Motivation for SIMdD Architectures 
The IBM eLite DSP team showed that while some telecommunication and multimedia algorithms 
are well mapped to SIMpD patterns, others are more efficiently scheduled and executed by SIMdD 
architectures. Data access patterns may be characterized by two metrics: vector element distance 
and vector stride. Recall that the term “vector elements” may refer to elements in vector registers 
for vector processors; as well as the sub-word elements in scalar registers for general-purpose 
processors with SIMD extensions. Vector element distance, ∆ , may be defined as the distance 
between the multiple elements pointed to by a single pointer register. This pointer register may 
then be updated such that a constant vector stride, Ψ , is added to the current position of each 
element. Figure 3 and Figure 4 illustrate the definition of these metrics.  
 
 

32-bit pointer register

Byte-addressable
data elements

2=∆ 4=∆ 4=∆

:∆ vector element distance  
Figure 3 (adapted from [2]): Illustration of vector element distance. 

 
 

32-bit pointer registers

Byte-addressable
data elements

5=Ψ

:Ψ vector stride  
Figure 4 (adapted from [2]): Illustration of vector stride. 

 
 
Figure 5 shows the data access pattern characterization for a set of commonly used multimedia 
and telecommunication benchmarks based on the metrics ∆  and Ψ . Benchmark kernels used 
include block FIR filter, autocorrelation matrix, decimation and interpolation, least-mean-squares 
filter, H.263 quantization, Viterbi decoding algorithm etc. 
 
Data accesses with ∆=0,1 and =0,1,4,8,12… are categorized as SIMΨ pD patterns. ROT patterns 
( =1 and Ψ =1,2,3) are easily handled by rotating registers typically found in digital signal 
processors and vector processors. Rotating registers are used in hardware renaming mechanism to 
eliminate the need for software loop unrolling, and thus avoid unnecessary expansion of program 
code.  All other (flexible) data access patterns are categorized as FLEX patterns. 

∆
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From Figure 5, we may conclude that there exists a group of telecommunication and multimedia 
benchmarks containing significant amount of data access patterns more flexible than the 
conventional SIMpD and ROT patterns. Thus, there is a need to extend SIMpD architectures to 
allow for SIMD operations on disjoint vector elements. The extended architecture, SIMdD, will 
be able to handle FLEX data accesses with minimal overhead while leaving unchanged the 
performance of SIMpD data accesses. 

 
 

 

 
 

Figure 5 (extracted from [2]): Data access pattern characterization of telecommunication and multimedia 
benchmarks. 
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3. Architectural Impact of SIMpD and SIMdD Extensions On General-Purpose Processors 
In this project, we will use a basic 5-stage pipelined, MIPS-like general-purpose processor as the 
reference architecture. This pipelined processor will be extended to incorporate conventional 
SIMpD features as well as the proposed indirect-SIMdD features. In this section, the architectural 
impact of SIMpD and indirect-SIMdD extensions will be discussed. In particular, additional 
hardware and changes to assembly programming requirements are identified for each type of 
extension. 
 
 
3.1 Experimental Setup 
3.1.1 Basic 5-stage Pipelined Processor 
Figure 6 shows the block diagram of the basic pipelined, MIPS-like general-purpose processor 
with five pipeline stages as described in Table 1.  
 
Necessary information (for example, control signals for later pipeline stages) is passed down the 
pipeline by the pipeline registers located between stages. Note that branch address calculations 
and the zero-condition are evaluated in the ID stage, and so branch decisions are available as 
early as the ID stage. In addition, a forwarding unit is added to the processor to feed the proper 
data among internal resources. Forwarding techniques are commonly used to eliminate data 
hazards in the pipeline, and are only possible when the destination stage is later in time than the 
source stage. 
 
 

Pipeline 
Stage 

Pipeline Stage 
Name 

Description of Pipeline Stage 

1 Instruction 
Fetch  
(IF) 

Instruction is read from the instruction memory using the current 
PC value. The PC address is incremented by 4 and the instruction 
is placed in the IF/ID pipeline register. 

2 Instruction 
Decode & 

Register File 
Read 
(ID) 

The instruction from the IF/ID pipeline register is decoded into an 
opcode, a destination register address, two source register 
addresses and a 16-bit immediate value. The opcode field of the 
instruction is fed into the control logic to produce the necessary 
control signals such as RegWrite, ALUOp etc. The register file is 
read using the decoded source register addresses. The immediate 
value is sign-extended to 32 bits and may be used for branch 
address calculation in this stage. The sign-extended value is also 
stored in the ID/EX pipeline register for use in later pipeline 
stages.  

3 Execution or  
Address 

Calculation 
(EX) 

The ALU performs arithmetic and logical operations (only 
additions in this version) on the source register contents passed 
from the ID/EX pipeline register. 

4 Data Memory 
Access 
(MEM) 

Data is either read from or written to the data memory using 
addresses passed from the EX/MEM pipeline register.  

5 Write Back 
(WB) 

Execution result or data from memory is chosen for writeback to 
the register file, depending on the control signal MemToReg.  
 

Table 1: Brief description of the five pipeline stages in the basic pipelined, MIPS-like processor 
architecture (refer to [4] for more details). 
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3.1.2 Data Memory Access Patterns 
Two simple loop programs with different data access patterns are hand-coded and manually 
scheduled for the following architectures: 

(a) the basic five-stage pipelined processor (as described in Section 3.1.1) 
(b) the pipelined processor from (a), extended with SIMpD features 
(c) the pipelined processor from (a), extended with indirect-SIMdD features. 

 
These two simple programs, as shown in pseudo-code in Table 2, are sufficient to demonstrate 
the improved efficiency of indirect-SIMdD extensions with respect to the processor architectures 
(a) and (b). 
 
 
Program 1 
 
# define N=8 
char x[N], y[N], z[N]; 
 
for (int i = 0; i < N; i++) 
    z[n] = x[n] + y[n]; 
end for; 

Program 2 
 
# define N=8 
char x[N], y[N], z[N]; 
 
for (int i = 0; i < N/2; i++) 
    z[n] = x[2n] + y[2n]; 
end for; 
 

Table 2: Two simple loop programs with different data access patterns are used for processor simulations 
in this project. 
 
 
The first program is a loop performing addition on sequential elements (SIMpD pattern with ∆=1, 

=4) of the byte arrays x and y. On the other hand, the second program is a loop performing 
addition on every other elements (FLEX pattern with 
Ψ

∆=2, Ψ =8) of the byte arrays x and y. We 
will see in Section 4 that the VHDL simulations of the processor architectures (a), (b) and (c) 
using these two simple programs clearly show the advantage of indirect-SIMdD extensions for 
handling flexible data accesses. 
 
We also assume that the data memory unit in the MEM pipeline stage contains the elements of 
the source arrays x and y in the manner shown in Figure 7. Memory locations 0x10 to 0x17 are 
reserved for the result array z. Note that the elements of the arrays x, y and z are 8-bit values 
(“sub-words”), much like the data types normally encountered in telecommunication and 
multimedia applications. 
 
 

x[3]

x[7]

y[3]

y[7]

z[3]

z[7]

Data MemoryByte
Address

x[0] x[1] x[2]0x00

0x04

0x08

0x0C

0x10

0x14

x[4] x[5] x[6]

y[0] y[1] y[2]

y[4] y[5] y[6]

z[0] z[1] z[2]

z[4] z[5] z[6]
 

 
Figure 7: Data arrangement in the data memory unit. 
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3.2 Hardware Requirements for SIMpD Extensions 
3.2.1 SIMD Execution Unit 
To extend the basic pipelined processor with SIMpD features, all the execution units must be 
extended to handle SIMD operations. For our pipelined processor, there is only an ALU that 
performs additions. In typical ripple-carry adder implementation, the carry-out bit of each byte 
addition is channeled into the next more significant byte as the carry-in bit. Thus we must ensure 
that carry-out bit of each byte into the next more significant byte is disabled for SIMD operations. 
A control signal ALUOp is added as an input to the ALU to decide whether the currently executed 
instruction is a SIMD operation, and thus appropriately disable the carry-out bits of each byte 
addition. 
 
More generally, general-purpose processors have ALUs that perform arithmetic (add, subtract) 
and logical (AND, NOT, XOR etc.) operations; as well as shifters to perform bit-shifting. The 
task of extending these functional units to handle SIMD operations may seem more complicated. 
For combined adder/subtractor implementation, the carry-out bit of each byte into the next more 
significant byte is simply disabled for SIMD instructions, just like for the ripple-carry adder 
discussed above. The same technique is applied to the shifters to disable the left-most or right-
most shifted bits for each byte. As for the logical operations, nothing needs to be modified since 
the logical operations are bitwise. 
 
 
3.2.2 Data Re-Arrangement of Vector Elements 
SIMpD paradigm requires the data elements to be properly arranged in vector registers. This does 
not pose any problem to sequential data accesses since the data elements are pre-arranged in 
sequential fashion. However, for non-sequential data accesses such as accesses with a constant 
vector element distance or vector stride, data re-arrangement is required. Typically, a 
combination of mix and permute operations will produce the required arrangement.  
 
As an illustration, program 2 performs addition on the pair of every other elements of arrays x 
and y. Figure 8(b) shows the elements of x that must reside in one of the source registers (say, 
register R3). Note that the elements of y must also be arranged in a similar fashion. Two memory 
loads are necessary to temporarily store the four elements of x required in a single loop iteration. 
Mix and permute operations are then performed on the elements in R1 and R2 to pack x[0], x[2], 
x[4] and x[6], in that order, into register R3.  
 

 

R1

R2

R3 (packed x)

x[0] x[1] x[2] x[3]

x[4] x[5] x[6] x[7]

x[2] x[4] x[6]x[0]

Mix & Permutation
x[3]

x[7]

y[3]

y[7]

z[3]

z[7]

Data MemoryByte
Address

x[0] x[1] x[2]0x00

0x04

0x08

0x0C

0x10

0x14

x[4] x[5] x[6]

y[0] y[1] y[2]

y[4] y[5] y[6]

z[0] z[1] z[2]

z[4] z[5] z[6]  
(a) (b) 
  

Figure 8: (a) Locations of array elements in the data memory. (b) Data re-arrangement (mix and permute) 
is required to properly pack data for SIMD operations.  
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We identify that an additional execution unit is needed in the EX pipeline stage to support the 
aforementioned data rearrangement. This “mix & permute unit” (MPU), as shown in red in 
Figure 10, operates in parallel with the ALU and supports two new instructions mixr and perm. 
The operations and instruction formats for mixr and perm are shown in Figure 9. The instruction 
formats of these two instructions are selected to conform to the existing ISA formats of the basic 
pipelined processor such that the hardware and software impact of these additions is minimal. 
However, the burden of mix and permute operations is placed on the programmer. These data re-
arrangement instructions will contribute to overhead especially when the accessed data elements 
reside in random locations. 

 
 

R1

R2

R3

x[0] x[1] x[2] x[3]

x[4] x[5] x[6] x[7]

x[4] x[2] x[6]x[0]

mixr R3, R1, R2

 

 

R3

R3

x[0] x[4] x[2] x[6]

x[2] x[4] x[6]x[0]

perm R3, R3, 0x0027

 

                                                                       (a) 
 

 

0x19 rs rt rd 0x00 0x00

6 65 5 5 5

mixr    rd, rs, rt

0x1A rs rt imm

6 15 5

perm rt, imm

6  
                                                                      (b)  

 
Figure 9: (a) Operations of the new instructions mixr and perm. (b) Instruction formats of the new 
instructions mixr and perm. 

 
 
Putting it all together, the additional hardware required to extend the basic pipelined processor 
with SIMpD features is highlighted in red in Figure 10. Firstly, the ALU must be able to handle 
SIMD operations as decided by the control signal ALUOp. Secondly, a “mix & permute unit” 
(MPU) that handles “mix right” and “permute” operations is added to the EX pipeline stage. The 
output of the MPU must be passed down to the WB stage so that it may be selected as the data to 
be written back into the destination register. Table 3 summarizes the additional control signals 
required for the SIMpD pipelined processor. 
 
Note that the MPU is basically a functional unit rewiring the input signals to give the appropriate 
output arrangement. Thus the MPU is likely to have less computation delay than the ALU and so 
will not affect the pipeline clock period. 
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Control Signal Stage Values Description 
ALUOp EX 0 ALU performs normal addition operation. 

  1 SIMD addition is required. Carry out bits of each byte 
addition into the next more significant byte is 
disabled. 

MPOp EX 0 MPU is performing mixr on two source registers. 
  1 MPU is performing perm on a single source register. 

MemToReg WB 00 Writeback data comes from the ALU result. 
  01 Writeback data comes from the data memory. 
  10 Writeback data comes from the MPU result. 

 
Table 3: Additional control signals required for SIMpD extensions. 
 
 
There are minor details that are not implemented in our version of SIMpD pipelined processor. 
For example, functional units in general-purpose processors normally output condition flags such 
as N (sign bit), Z (zero), V (overflow), C (carryout), for each arithmetic or logical instruction. 
The handling of SIMD operations depends on the implementation decision whether to output a set 
of condition flags for each SIMD element; or only output the condition flags based on the 
operation on the first (or last) SIMD element. The former approach is typically seen in vector 
processors such as UC Berkeley’s VIRAM architecture[5]. On the other hand, the Intel 
processors only have a set of flag registers. Thus the Intel-MMX[6] instructions are implemented 
such that the condition codes for each byte operation are stored as the destination operand, rather 
than in the flag registers. 
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3.3 Hardware Requirements for Indirect-SIMdD Extensions 
3.3.1 SIMD Execution Unit 
Just like the hardware requirements for SIMpD extension, the execution units for SIMdD 
extension must be able to handle SIMD instructions. Once again, a control signal ALUOp is 
added as an input to the ALU to decide whether the currently executed instruction is a SIMD 
operation, and thus appropriately disable the carry out bits of each byte addition. 
 
3.3.2 Indirect-SIMdD Addressing Using Pointers 
In Section 1.2, we introduced indirect-SIMdD implementation to achieve simplicity in extending 
the ISA of general-purpose processors. Pointers are used to indirectly specify the possibly disjoint 
vector elements. The packing of vector elements is performed dynamically depending on the 
current pointer values. Thus, SIMdD extensions free programmers from the burden of re-
arranging the vector elements, and yet achieve flexibility in data accesses in comparison to 
SIMpD extensions. 
 
As one of the requirements of SIMD extensions, the vector elements must reside in the register 
file. Since indirect-SIMdD extensions are able to specify multiple disjoint sub-words as the vector 
elements, the register file in the basic pipelined processor must be modified to contain byte-
addressable registers. The block diagram of the modified register file is shown in Figure 11.  
 
 

Register Write

Read register 1

Read register 2

Read regbyte 1

Read regbyte 2

Register file

Read data 1

Read data 2

Addr Mode

Write data

32

32

32

32

32
20

20

R1

R2

R7

0 1 2 3
Byte

offset

 
 

Figure 11: Byte-addressable 32-bit register file 
 
 

The register file handles two addressing modes: normal register read, and register read using 
pointers. To support register read using pointers, a pointer unit is added to the ID pipeline stage, 
just before the byte-addressable register file. The pointer unit is essentially a small register file 
that performs pointer setup and manipulation. Note that the pointer values may be loaded from 
memory or explicitly set. For our implementation, a new instruction lptr (“load pointer”) is added 
to explicitly set the value of a pointer. The instruction format of lptr is shown in Figure 12. The 
source addresses of the vector elements are specified by 5-bit immediate values: 3 bits for register 
address and 2 bits for the byte offset of the specified register. Note that the execution of the 
instruction lptr will complete by the second pipeline stage, the ID stage. We will see later in 
Section 3.4 that this will further simplify the scheduling of assembly instructions and so 
contribute to reduced overhead for indirect-SIMdD extensions. 
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0x1C pt 0 imm1

6 55 1

lptr    pt, imm1, imm2, imm3, imm4

imm4imm3imm2

555  
 

Figure 12: The instruction format for lptr. 
 
 

Figure 13 shows the pipelined processor extended with indirect-SIMdD features. The additional 
hardware is highlighted in red. A pointer unit is added to the ID pipeline stage and the register file 
is byte-addressable to support indirect addressing with pointers. Table 4 summarizes the 
additional control signal required to extend the basic pipelined processor with indirect-SIMdD 
features.  
 
 

Control Signal Stage Values Description 
PtrWrite ID 0 Pointer register read. 

  1 Pointer register write. 
AddrMode ID 0 Normal register file read (source register addresses 

provided in the instruction). 
  1 Register file read using pointers. 

ALUOp EX 0 ALU performs normal addition operation. 
  1 SIMD addition is required. Carry out bits of each byte 

addition into the next more significant byte is 
disabled. 
 

Table 4: Additional control signals required for indirect-SIMdD extensions. 
 
 
Adding a pointer unit just before the register file in the ID pipeline stage may increase the 
processor clock cycle. No quantitative measure is done on the impact of the pointer unit on the 
processor clock cycle. However, the pointer unit is typically a small register file and so may not 
incur too much propagation delay.  
 
Furthermore, a more complex data forwarding unit is needed for the indirect-SIMdD pipelined 
processor. In SIMpD architectures, reuse of data in the pipeline is inconvenient because the 
forwarded vector elements may have to be re-arranged before data can be used by the subsequent 
instructions in the pipelined. This problem remains in the indirect-SIMdD architectures and so the 
forwarding unit must be extended to forward individual bytes among the pipeline stages. The 
forwarding unit decides the appropriate feeding of data by performing comparison on the register 
source and destination addresses, where the SIMD elements are addressed using a 3-bit register 
address and a 2-bit byte offset. 
 
We saw in Section 3.2 and 3.3 that the additional hardware required for SIMpD and indirect-
SIMdD extensions is minimal. However, the area occupied by the architecture implementations 
depends heavily on the placing and routing of hardware resources on the physical chips. While 
automated place-and-route tools for ASICs or FPGAs may not produce the optimal arrangement, 
manual placing and routing of hardware resources are extremely tedious and will not be 
attempted for the scope of this project. 
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3.4 Assembly Programming Requirements 
In previous sections, we identified the additional hardware required to extend a pipelined, 
general-purpose processor with SIMD features. We now discuss the changes to assembly 
programming requirements for the extended pipelined processors, implemented as described in 
Section 3.2 and 3.3. 
 
Figure 15 shows the scheduled assembly instructions for program 1 and program 2 (refer Section 
3.1.2) for the three architectures considered: 

(a) the basic five-stage pipelined processor 
(b) the pipelined processor from (a), extended with SIMpD features 
(c) the pipelined processor from (b), extended with SIMdD features 

 
Recall that program 1 is a simple loop performing addition on sequential elements of the byte 
arrays x and y. Figure 15 shows that the assembly instructions for program 1 do not differ much 
for all three architectures. However, we expect the pipelined processor with SIMpD and SIMdD 
extensions to occupy less execution time for program 1 since the number of loop iterations is 
reduced by a factor of 4, i.e. by a factor of the number of sub-word elements for SIMD operations. 
Quantitative performance measurements for all three architectures are presented in Section 4. 
 
Program 2 is a loop performing addition on every other element of the byte arrays x and y. The 
data access pattern in program 2 can be characterized as FLEX pattern with ∆=2 and =8. For 
pipelined processor with SIM

Ψ
pD extensions, assembly programmers have the responsibility to 

rearrange or pack the vector elements using mix and permute operations, contributing to 
instruction overheads. Furthermore, stalls are inevitable in the assembly program 2 for SIMpD 
architectures due to the data dependencies of the re-arrangement instructions on the memory 
loads, and the data dependencies of SIMD instructions on the re-arrangement instructions. Figure 
14 illustrates the segments of program 2 for SIMpD architectures. 
 
 

 

add simd: SIMD addition 

perm: data re-arrangement 

mixr: data re-arrangement 

lw: memory loads

 
Figure 14: Assembly instructions for program 2, scheduled for SIMpD architectures. 
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On the other hand, SIMdD architectures eliminate the problems in SIMpD architectures by pointer 
load instructions. No instruction overhead is spent for data rearrangement, but pointers need to be 
setup for use. The lptr instructions will complete execution by the second pipeline stage and so 
ensure that any data dependencies on the lptr instructions are easily solved by data forwarding. 
As a result, the assembly instructions for SIMdD architectures are more easily scheduled without 
any stalls (refer Figure 15(c)). 
 
For random data access patterns with arbitrary values for ∆  and Ψ , we anticipate even less 
instruction overhead for SIMdD architectures. Note that the same number of memory loads (as 
many as the number of sub-word elements for SIMD operations) is needed to retrieve the vector 
elements that could potentially reside in arbitrary locations. However, two simple pointer setup 
instructions are sufficient to locate the disjoint vector elements for SIMdD architectures. On the 
other hand, many more mix and permute instructions are required to properly arrange the disjoint 
vector elements for SIMpD architectures, contributing to instruction overhead. In addition, the 
ISA of general-purpose processors need to be extended with many versions of mix and permute 
instructions to handle complex data re-arrangement. These factors reinstate the advantage of 
SIMdD architectures in handling flexible data accesses with minimal overhead. 
 
 
4. Performance Evaluation 
VHDL models are developed for all the three architectures in consideration. Functional 
simulations of the architectures are performed using the two programs discussed in Section 3.1.2. 
Table 5 lists the performance of the three architectures in terms of clock cycles.  
 
 

Simulation Results  
for Program 1  

Simulation Results  
for Program 2  

Processor 
Architecture 

Clock Cycles Speedup Clock Cycles Speedup 
Basic 5-stage 

pipelined (reference) 
61 cc 1.00 33 cc 1.00 

Pipelined with  
SIMpD extensions 

19 cc 
 

3.21 21 cc 1.57 

Pipelined with  
SIMdD extensions 

19 cc 
 

3.21 17 cc 1.94 

Table 5: Performance evaluation of pipelined processor with and without SIMpD or SIMdD extensions. 
 
 
Simulation results show a performance speedup for both types of SIMD extensions with respect 
to the basic pipelined processor. This is because the number of loop iterations is reduced (roughly) 
by a factor up to the number of sub-word elements for SIMD operations. The SIMpD and 
indirect-SIMdD processors have the same performance (speedup of 3.2) for program 1 where the 
vector elements reside in sequential locations. However, much data-rearrangement overhead is 
incurred in program 2 for the SIMpD pipelined processor, when the vector elements do not come 
from sequential locations, but with a constant vector stride. The indirect-SIMdD pipelined 
processor eliminates much of this overhead by pointer addressing, achieving a total speedup of 
1.94 for program 2 with respect to the basic pipelined processor. 
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5. Conclusion 
We briefly discussed the VLIW and SIMpD architectures that improve execution throughput by 
exploiting data-level parallelism inherent in programs. VLIW instructions specify multiple 
operations to be performed on multiple disjoint data streams. On the other hand, SIMpD 
architectures specify a single operation to be performed on multiple packed data elements. 
Motivated by the flexible data access patterns found in commonly used telecommunication and 
multimedia kernels, SIMdD architectures combine the features of both VLIW and SIMpD 
architectures by specifying a single operation to be performed on multiple disjoint data streams. 
The indirect-SIMdD implementation is proposed to achieve simplicity in extending the ISA of 
general-purpose processors. Indirect addressing using pointers allow the disjoint vector elements 
to be composed dynamically, and thus achieve much flexibility in data accesses without the data 
re-arrangement overhead of SIMpD instructions. 
 
We also considered the architectural impact of SIMpD and indirect-SIMdD extensions on a variant 
of general-purpose processors, the basic five-stage pipelined, MIPS-like processor. The 
architectural impact is considered from both the hardware and software perspectives. We saw that 
the additional hardware required to implement the SIMD extensions is minimal. On the other 
hand, the assembly instructions for SIMpD architectures are harder to schedule without processor 
stalls in comparison to the assembly instructions for indirect-SIMdD architectures.  
 
Finally, VHDL models developed for the SIMpD and indirect-SIMdD pipelined processors are 
simulated using two simple loop programs that have different data access patterns, characterized 
by the metrics vector element distance and vector stride. Simulation results show a performance 
speedup for both types of SIMD extensions with respect to the basic pipelined processor. This is 
because the number of loop iterations is reduced (roughly) by a factor up to the number of sub-
word elements for SIMD operations. However, much data re-arrangement overhead is incurred by 
the SIMpD instructions when the vector elements do not come from sequential locations. The 
indirect-SIMdD pipelined processor eliminates much of this overhead by specifying the disjoint 
locations of vector elements using pointers. We conclude that the indirect-SIMdD architectures 
are more efficient in handling flexible data accesses; yet leaving unchanged the performance of 
programs with SIMpD data accesses. 
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