
04s1 COMP4211 Advanced Architectures & Algorithms Project Report Lih Wen Koh (2282320)

SIMdD: A New Taxonomy for Data-Parallel Architectures

Abstract
SIMD architectures improve execution throughput by exploiting data-level parallelism inherent in
programs. Conventional SIMD implementations (referred to as packed-SIMD hereafter) require
the data elements to be properly arranged in vector registers before SIMD operations can be
performed on the vector elements. Packed-SIMD (SIMpD) architectures are efficient for
sequential data accesses but incur overhead in performing data rearrangement for more flexible
data accesses where the vector elements could potentially come from arbitrary, disjoint sources.
This report discusses disjoint-SIMD (SIMdD) architectures, introduced by the IBM eLite DSP
team[1], which address the limitation of SIMpD features in a vector-DSP. It is shown that there
exists a group of telecommunication and multimedia benchmarks which exhibits data-level
parallelism well mapped to SIMdD patterns. In this project, the SIMdD idea is adapted for a
variant of general-purpose processors. Both SIMpD and SIMdD extensions are added to a basic 5-
stage pipelined, MIPS-like architecture to demonstrate the concept of data-level parallelism.
VHDL models are simulated to verify the designs and to assist performance evaluation of the
designs in terms of clock cycles. Simulation results show that SIMdD has a performance
advantage over SIMpD extensions for programs with flexible data access patterns.

Organization of Report

Table of Content Page
1. Overview of Data Parallel Architectures 2

1.1 Overview of SISD, VLIW, SIMpD and SIMdD Architectures 2
1.2 General vs. Indirect SIMdD Implementations 3

2. Motivation for SIMdD Architectures 4
3. Architectural Impact of SIMpD and SIMdD Extensions On General-Purpose
 Processors

6

3.1 Experimental Setup 6
3.1.1 Basic 5-stage Pipelined Processor
3.1.2 Data Memory Access Patterns

3.2 Hardware Requirements for SIMpD Extensions 9
3.2.1 SIMD Execution Units
3.2.2 Data Re-arrangement of Vector Elements

3.3 Hardware Requirements for Indirect-SIMdD Extensions 13
3.3.1 SIMD Execution Units
3.3.2 Indirect- SIMdD Addressing Using Pointers

3.4 Assembly Programming Requirements 16
4. Performance Evaluation 17
5. Conclusion 20
References 20

 1

04s1 COMP4211 Advanced Architectures & Algorithms Project Report Lih Wen Koh (2282320)

1. Overview of Data Parallel Architectures
1.1 Overview of SISD, VLIW, SIMpD and SIMdD Architectures
Single-Instruction-Single-Data (SISD) is the basic processor architecture where a single
instruction stream operates on a single data stream, as shown in Figure 1(a). Assuming three-
address instructions, register-to-register architectures, the instructions must specify an opcode
identifying the operation to be performed; a destination register address for result storage; and
two source register addresses providing the source operands.

The Very-Long-Instruction-Word (VLIW) architecture in Figure 1(b) is an example of Multiple-
Instructions-Multiple-Data (MIMD) architectures where multiple instructions are executed in
parallel on multiple data streams. Parallel execution is possible for a sequence of instructions with
no data and control dependencies. VLIW architectures exploit both instruction-level and data-
level parallelism in programs to improve execution throughput. The instruction format for VLIW
architectures is necessarily a very long word, composed of multiple SISD instructions.

SISD
Data In Data Out

Instructions

Op RegReg Reg

SIMpD
Data In Data Out

Instructions

VRegVRegVRegOp

Data In Data Out

SIMdD

Instructions

RegReg RegOp RegReg Reg RegReg Reg RegReg Reg

VLIW
Data In Data Out

Instructions

RegReg RegOp Op RegReg RegOp RegReg RegOp RegReg Reg

(a) (b)

(c) (d)

Figure 1 (adapted from [2]): (a) Single-Instruction-Single-Data architecture. (b) Very-Long-Instruction-
Word architecture. (c) Packed Single-Instruction-Multiple-Data architecture. (d) Disjoint Single-
Instruction-Multiple-Data architecture.

SIMpD extensions are normally seen in vector processors and general-purpose processors. In
vector processing, a single instruction is performed on data elements pre-arranged in vector
registers. SIMpD features are also typically implemented as multimedia extensions to general-
purpose processors. Multimedia data types are typically 8-bit or 16-bit. For 32-bit general-
purpose processors, four 8-bit (or two 16-bit) operations could be performed in parallel using 32-
bit execution units. This is known as sub-word parallelism. Thus the 32-bit scalar registers in
general-purpose processors may be seen as vector registers with four 8-bit elements (or two 16-bit
elements). Thus the term “vector registers” may refer to the true vector registers in vector
processors; as well as the scalar registers in general-purpose processors with SIMD extensions.
The instructions for SIMpD architectures must specify an opcode identifying the single operation

 2

04s1 COMP4211 Advanced Architectures & Algorithms Project Report Lih Wen Koh (2282320)

to be performed; a destination vector register address and two source vector register addresses.
Note that the multiple data elements must be “packed” into vector registers before SIMD
operations can be performed, hence the name packed-SIMD (SIMpD).

For SIMdD architectures, as shown in Figure 1(d), the data need not be packed into vector
registers prior to execution. The vector elements may be come from disjoint locations as long as
they are available in one of the programmer-visible registers, and are composed dynamically
during instruction execution. This implies that the instructions for SIMdD architectures must
include an opcode; a destination register address and two source register addresses for each data
stream. This result in long instruction words much like that of VLIW architectures. We will see
later in the report that SIMdD architectures prove to be more efficient for programs with flexible
data access patterns.

1.2 General vs. Indirect SIMdD Implementations
As seen in Section 1.1, general SIMdD architectures require a long instruction word to specify the
single operation; source and destination register addresses for each data stream. This poses
difficulty in extending the ISA of general-purpose processors that typically have fixed instruction
formats. In this report, an alternative SIMdD implementation, named indirect-SIMdD, is
considered. The indirect-SIMdD implementation uses a level of indirection, i.e. pointers, to
specify the locations of multiple data elements. Each pointer may contain multiple indices to
indicate disjoint data sources, so fewer bits are required for the instructions. Figure 2(b) shows
that the instructions for indirect-SIMdD architectures need only specify an opcode, a destination
pointer address and two source pointer addresses. This instruction format closely resembles that
of existing general-purpose processors and so indirect-SIMdD features can be easily added as
multimedia extensions to general-purpose processors.

(b)

Data In Data Out

SIMdD

Instructions

Op PtrPtr Ptr

Pointer
Registers

Byte
Elements

Data In Data Out

SIMdD

Instructions

RegReg RegOp RegReg Reg RegReg Reg RegReg Reg

(a)

Figure 2 (adapted from [2]): (a) General SIMdD architecture. (b) Indirect-SIMdD implementation.

 3

04s1 COMP4211 Advanced Architectures & Algorithms Project Report Lih Wen Koh (2282320)

2. Motivation for SIMdD Architectures
The IBM eLite DSP team showed that while some telecommunication and multimedia algorithms
are well mapped to SIMpD patterns, others are more efficiently scheduled and executed by SIMdD
architectures. Data access patterns may be characterized by two metrics: vector element distance
and vector stride. Recall that the term “vector elements” may refer to elements in vector registers
for vector processors; as well as the sub-word elements in scalar registers for general-purpose
processors with SIMD extensions. Vector element distance, ∆ , may be defined as the distance
between the multiple elements pointed to by a single pointer register. This pointer register may
then be updated such that a constant vector stride, Ψ , is added to the current position of each
element. Figure 3 and Figure 4 illustrate the definition of these metrics.

32-bit pointer register

Byte-addressable
data elements

2=∆ 4=∆ 4=∆

:∆ vector element distance
Figure 3 (adapted from [2]): Illustration of vector element distance.

32-bit pointer registers

Byte-addressable
data elements

5=Ψ

:Ψ vector stride
Figure 4 (adapted from [2]): Illustration of vector stride.

Figure 5 shows the data access pattern characterization for a set of commonly used multimedia
and telecommunication benchmarks based on the metrics ∆ and Ψ . Benchmark kernels used
include block FIR filter, autocorrelation matrix, decimation and interpolation, least-mean-squares
filter, H.263 quantization, Viterbi decoding algorithm etc.

Data accesses with ∆=0,1 and =0,1,4,8,12… are categorized as SIMΨ pD patterns. ROT patterns
(=1 and Ψ =1,2,3) are easily handled by rotating registers typically found in digital signal
processors and vector processors. Rotating registers are used in hardware renaming mechanism to
eliminate the need for software loop unrolling, and thus avoid unnecessary expansion of program
code. All other (flexible) data access patterns are categorized as FLEX patterns.

∆

 4

04s1 COMP4211 Advanced Architectures & Algorithms Project Report Lih Wen Koh (2282320)

From Figure 5, we may conclude that there exists a group of telecommunication and multimedia
benchmarks containing significant amount of data access patterns more flexible than the
conventional SIMpD and ROT patterns. Thus, there is a need to extend SIMpD architectures to
allow for SIMD operations on disjoint vector elements. The extended architecture, SIMdD, will
be able to handle FLEX data accesses with minimal overhead while leaving unchanged the
performance of SIMpD data accesses.

Figure 5 (extracted from [2]): Data access pattern characterization of telecommunication and multimedia
benchmarks.

 5

04s1 COMP4211 Advanced Architectures & Algorithms Project Report Lih Wen Koh (2282320)

3. Architectural Impact of SIMpD and SIMdD Extensions On General-Purpose Processors
In this project, we will use a basic 5-stage pipelined, MIPS-like general-purpose processor as the
reference architecture. This pipelined processor will be extended to incorporate conventional
SIMpD features as well as the proposed indirect-SIMdD features. In this section, the architectural
impact of SIMpD and indirect-SIMdD extensions will be discussed. In particular, additional
hardware and changes to assembly programming requirements are identified for each type of
extension.

3.1 Experimental Setup
3.1.1 Basic 5-stage Pipelined Processor
Figure 6 shows the block diagram of the basic pipelined, MIPS-like general-purpose processor
with five pipeline stages as described in Table 1.

Necessary information (for example, control signals for later pipeline stages) is passed down the
pipeline by the pipeline registers located between stages. Note that branch address calculations
and the zero-condition are evaluated in the ID stage, and so branch decisions are available as
early as the ID stage. In addition, a forwarding unit is added to the processor to feed the proper
data among internal resources. Forwarding techniques are commonly used to eliminate data
hazards in the pipeline, and are only possible when the destination stage is later in time than the
source stage.

Pipeline
Stage

Pipeline Stage
Name

Description of Pipeline Stage

1 Instruction
Fetch
(IF)

Instruction is read from the instruction memory using the current
PC value. The PC address is incremented by 4 and the instruction
is placed in the IF/ID pipeline register.

2 Instruction
Decode &

Register File
Read
(ID)

The instruction from the IF/ID pipeline register is decoded into an
opcode, a destination register address, two source register
addresses and a 16-bit immediate value. The opcode field of the
instruction is fed into the control logic to produce the necessary
control signals such as RegWrite, ALUOp etc. The register file is
read using the decoded source register addresses. The immediate
value is sign-extended to 32 bits and may be used for branch
address calculation in this stage. The sign-extended value is also
stored in the ID/EX pipeline register for use in later pipeline
stages.

3 Execution or
Address

Calculation
(EX)

The ALU performs arithmetic and logical operations (only
additions in this version) on the source register contents passed
from the ID/EX pipeline register.

4 Data Memory
Access
(MEM)

Data is either read from or written to the data memory using
addresses passed from the EX/MEM pipeline register.

5 Write Back
(WB)

Execution result or data from memory is chosen for writeback to
the register file, depending on the control signal MemToReg.

Table 1: Brief description of the five pipeline stages in the basic pipelined, MIPS-like processor
architecture (refer to [4] for more details).

 6

04s1 COMP4211 Advanced Architectures & Algorithms Project Report Lih Wen Koh (2282320)

Fi
gu

re
 6

 (e
xt

ra
ct

ed
 fr

om
 [4

])
: B

as
ic

 fi
ve

-s
ta

ge
 p

ip
el

in
ed

, M
IP

S-
lik

e
pr

oc
es

so
r a

rc
hi

te
ct

ur
e

w
ith

 fo
rw

ar
di

ng
 u

ni
t.

 7

04s1 COMP4211 Advanced Architectures & Algorithms Project Report Lih Wen Koh (2282320)

3.1.2 Data Memory Access Patterns
Two simple loop programs with different data access patterns are hand-coded and manually
scheduled for the following architectures:

(a) the basic five-stage pipelined processor (as described in Section 3.1.1)
(b) the pipelined processor from (a), extended with SIMpD features
(c) the pipelined processor from (a), extended with indirect-SIMdD features.

These two simple programs, as shown in pseudo-code in Table 2, are sufficient to demonstrate
the improved efficiency of indirect-SIMdD extensions with respect to the processor architectures
(a) and (b).

Program 1

define N=8
char x[N], y[N], z[N];

for (int i = 0; i < N; i++)
 z[n] = x[n] + y[n];
end for;

Program 2

define N=8
char x[N], y[N], z[N];

for (int i = 0; i < N/2; i++)
 z[n] = x[2n] + y[2n];
end for;

Table 2: Two simple loop programs with different data access patterns are used for processor simulations
in this project.

The first program is a loop performing addition on sequential elements (SIMpD pattern with ∆=1,

=4) of the byte arrays x and y. On the other hand, the second program is a loop performing
addition on every other elements (FLEX pattern with
Ψ

∆=2, Ψ =8) of the byte arrays x and y. We
will see in Section 4 that the VHDL simulations of the processor architectures (a), (b) and (c)
using these two simple programs clearly show the advantage of indirect-SIMdD extensions for
handling flexible data accesses.

We also assume that the data memory unit in the MEM pipeline stage contains the elements of
the source arrays x and y in the manner shown in Figure 7. Memory locations 0x10 to 0x17 are
reserved for the result array z. Note that the elements of the arrays x, y and z are 8-bit values
(“sub-words”), much like the data types normally encountered in telecommunication and
multimedia applications.

x[3]

x[7]

y[3]

y[7]

z[3]

z[7]

Data MemoryByte
Address

x[0] x[1] x[2]0x00

0x04

0x08

0x0C

0x10

0x14

x[4] x[5] x[6]

y[0] y[1] y[2]

y[4] y[5] y[6]

z[0] z[1] z[2]

z[4] z[5] z[6]

Figure 7: Data arrangement in the data memory unit.

 8

04s1 COMP4211 Advanced Architectures & Algorithms Project Report Lih Wen Koh (2282320)

3.2 Hardware Requirements for SIMpD Extensions
3.2.1 SIMD Execution Unit
To extend the basic pipelined processor with SIMpD features, all the execution units must be
extended to handle SIMD operations. For our pipelined processor, there is only an ALU that
performs additions. In typical ripple-carry adder implementation, the carry-out bit of each byte
addition is channeled into the next more significant byte as the carry-in bit. Thus we must ensure
that carry-out bit of each byte into the next more significant byte is disabled for SIMD operations.
A control signal ALUOp is added as an input to the ALU to decide whether the currently executed
instruction is a SIMD operation, and thus appropriately disable the carry-out bits of each byte
addition.

More generally, general-purpose processors have ALUs that perform arithmetic (add, subtract)
and logical (AND, NOT, XOR etc.) operations; as well as shifters to perform bit-shifting. The
task of extending these functional units to handle SIMD operations may seem more complicated.
For combined adder/subtractor implementation, the carry-out bit of each byte into the next more
significant byte is simply disabled for SIMD instructions, just like for the ripple-carry adder
discussed above. The same technique is applied to the shifters to disable the left-most or right-
most shifted bits for each byte. As for the logical operations, nothing needs to be modified since
the logical operations are bitwise.

3.2.2 Data Re-Arrangement of Vector Elements
SIMpD paradigm requires the data elements to be properly arranged in vector registers. This does
not pose any problem to sequential data accesses since the data elements are pre-arranged in
sequential fashion. However, for non-sequential data accesses such as accesses with a constant
vector element distance or vector stride, data re-arrangement is required. Typically, a
combination of mix and permute operations will produce the required arrangement.

As an illustration, program 2 performs addition on the pair of every other elements of arrays x
and y. Figure 8(b) shows the elements of x that must reside in one of the source registers (say,
register R3). Note that the elements of y must also be arranged in a similar fashion. Two memory
loads are necessary to temporarily store the four elements of x required in a single loop iteration.
Mix and permute operations are then performed on the elements in R1 and R2 to pack x[0], x[2],
x[4] and x[6], in that order, into register R3.

R1

R2

R3 (packed x)

x[0] x[1] x[2] x[3]

x[4] x[5] x[6] x[7]

x[2] x[4] x[6]x[0]

Mix & Permutation
x[3]

x[7]

y[3]

y[7]

z[3]

z[7]

Data MemoryByte
Address

x[0] x[1] x[2]0x00

0x04

0x08

0x0C

0x10

0x14

x[4] x[5] x[6]

y[0] y[1] y[2]

y[4] y[5] y[6]

z[0] z[1] z[2]

z[4] z[5] z[6]
(a) (b)

Figure 8: (a) Locations of array elements in the data memory. (b) Data re-arrangement (mix and permute)
is required to properly pack data for SIMD operations.

 9

04s1 COMP4211 Advanced Architectures & Algorithms Project Report Lih Wen Koh (2282320)

We identify that an additional execution unit is needed in the EX pipeline stage to support the
aforementioned data rearrangement. This “mix & permute unit” (MPU), as shown in red in
Figure 10, operates in parallel with the ALU and supports two new instructions mixr and perm.
The operations and instruction formats for mixr and perm are shown in Figure 9. The instruction
formats of these two instructions are selected to conform to the existing ISA formats of the basic
pipelined processor such that the hardware and software impact of these additions is minimal.
However, the burden of mix and permute operations is placed on the programmer. These data re-
arrangement instructions will contribute to overhead especially when the accessed data elements
reside in random locations.

R1

R2

R3

x[0] x[1] x[2] x[3]

x[4] x[5] x[6] x[7]

x[4] x[2] x[6]x[0]

mixr R3, R1, R2

R3

R3

x[0] x[4] x[2] x[6]

x[2] x[4] x[6]x[0]

perm R3, R3, 0x0027

 (a)

0x19 rs rt rd 0x00 0x00

6 65 5 5 5

mixr rd, rs, rt

0x1A rs rt imm

6 15 5

perm rt, imm

6
 (b)

Figure 9: (a) Operations of the new instructions mixr and perm. (b) Instruction formats of the new
instructions mixr and perm.

Putting it all together, the additional hardware required to extend the basic pipelined processor
with SIMpD features is highlighted in red in Figure 10. Firstly, the ALU must be able to handle
SIMD operations as decided by the control signal ALUOp. Secondly, a “mix & permute unit”
(MPU) that handles “mix right” and “permute” operations is added to the EX pipeline stage. The
output of the MPU must be passed down to the WB stage so that it may be selected as the data to
be written back into the destination register. Table 3 summarizes the additional control signals
required for the SIMpD pipelined processor.

Note that the MPU is basically a functional unit rewiring the input signals to give the appropriate
output arrangement. Thus the MPU is likely to have less computation delay than the ALU and so
will not affect the pipeline clock period.

 10

04s1 COMP4211 Advanced Architectures & Algorithms Project Report Lih Wen Koh (2282320)

Control Signal Stage Values Description
ALUOp EX 0 ALU performs normal addition operation.

 1 SIMD addition is required. Carry out bits of each byte
addition into the next more significant byte is
disabled.

MPOp EX 0 MPU is performing mixr on two source registers.
 1 MPU is performing perm on a single source register.

MemToReg WB 00 Writeback data comes from the ALU result.
 01 Writeback data comes from the data memory.
 10 Writeback data comes from the MPU result.

Table 3: Additional control signals required for SIMpD extensions.

There are minor details that are not implemented in our version of SIMpD pipelined processor.
For example, functional units in general-purpose processors normally output condition flags such
as N (sign bit), Z (zero), V (overflow), C (carryout), for each arithmetic or logical instruction.
The handling of SIMD operations depends on the implementation decision whether to output a set
of condition flags for each SIMD element; or only output the condition flags based on the
operation on the first (or last) SIMD element. The former approach is typically seen in vector
processors such as UC Berkeley’s VIRAM architecture[5]. On the other hand, the Intel
processors only have a set of flag registers. Thus the Intel-MMX[6] instructions are implemented
such that the condition codes for each byte operation are stored as the destination operand, rather
than in the flag registers.

 11

04s1 COMP4211 Advanced Architectures & Algorithms Project Report Lih Wen Koh (2282320)

Fi
gu

re
 1

0:
 B

as
ic

 fi
ve

-s
ta

ge
 p

ip
el

in
ed

 p
ro

ce
ss

or
 e

xt
en

de
d

w
ith

 S
IM

pD
 fe

at
ur

es
.

 12

04s1 COMP4211 Advanced Architectures & Algorithms Project Report Lih Wen Koh (2282320)

3.3 Hardware Requirements for Indirect-SIMdD Extensions
3.3.1 SIMD Execution Unit
Just like the hardware requirements for SIMpD extension, the execution units for SIMdD
extension must be able to handle SIMD instructions. Once again, a control signal ALUOp is
added as an input to the ALU to decide whether the currently executed instruction is a SIMD
operation, and thus appropriately disable the carry out bits of each byte addition.

3.3.2 Indirect-SIMdD Addressing Using Pointers
In Section 1.2, we introduced indirect-SIMdD implementation to achieve simplicity in extending
the ISA of general-purpose processors. Pointers are used to indirectly specify the possibly disjoint
vector elements. The packing of vector elements is performed dynamically depending on the
current pointer values. Thus, SIMdD extensions free programmers from the burden of re-
arranging the vector elements, and yet achieve flexibility in data accesses in comparison to
SIMpD extensions.

As one of the requirements of SIMD extensions, the vector elements must reside in the register
file. Since indirect-SIMdD extensions are able to specify multiple disjoint sub-words as the vector
elements, the register file in the basic pipelined processor must be modified to contain byte-
addressable registers. The block diagram of the modified register file is shown in Figure 11.

Register Write

Read register 1

Read register 2

Read regbyte 1

Read regbyte 2

Register file

Read data 1

Read data 2

Addr Mode

Write data

32

32

32

32

32
20

20

R1

R2

R7

0 1 2 3
Byte

offset

Figure 11: Byte-addressable 32-bit register file

The register file handles two addressing modes: normal register read, and register read using
pointers. To support register read using pointers, a pointer unit is added to the ID pipeline stage,
just before the byte-addressable register file. The pointer unit is essentially a small register file
that performs pointer setup and manipulation. Note that the pointer values may be loaded from
memory or explicitly set. For our implementation, a new instruction lptr (“load pointer”) is added
to explicitly set the value of a pointer. The instruction format of lptr is shown in Figure 12. The
source addresses of the vector elements are specified by 5-bit immediate values: 3 bits for register
address and 2 bits for the byte offset of the specified register. Note that the execution of the
instruction lptr will complete by the second pipeline stage, the ID stage. We will see later in
Section 3.4 that this will further simplify the scheduling of assembly instructions and so
contribute to reduced overhead for indirect-SIMdD extensions.

 13

04s1 COMP4211 Advanced Architectures & Algorithms Project Report Lih Wen Koh (2282320)

0x1C pt 0 imm1

6 55 1

lptr pt, imm1, imm2, imm3, imm4

imm4imm3imm2

555

Figure 12: The instruction format for lptr.

Figure 13 shows the pipelined processor extended with indirect-SIMdD features. The additional
hardware is highlighted in red. A pointer unit is added to the ID pipeline stage and the register file
is byte-addressable to support indirect addressing with pointers. Table 4 summarizes the
additional control signal required to extend the basic pipelined processor with indirect-SIMdD
features.

Control Signal Stage Values Description
PtrWrite ID 0 Pointer register read.

 1 Pointer register write.
AddrMode ID 0 Normal register file read (source register addresses

provided in the instruction).
 1 Register file read using pointers.

ALUOp EX 0 ALU performs normal addition operation.
 1 SIMD addition is required. Carry out bits of each byte

addition into the next more significant byte is
disabled.

Table 4: Additional control signals required for indirect-SIMdD extensions.

Adding a pointer unit just before the register file in the ID pipeline stage may increase the
processor clock cycle. No quantitative measure is done on the impact of the pointer unit on the
processor clock cycle. However, the pointer unit is typically a small register file and so may not
incur too much propagation delay.

Furthermore, a more complex data forwarding unit is needed for the indirect-SIMdD pipelined
processor. In SIMpD architectures, reuse of data in the pipeline is inconvenient because the
forwarded vector elements may have to be re-arranged before data can be used by the subsequent
instructions in the pipelined. This problem remains in the indirect-SIMdD architectures and so the
forwarding unit must be extended to forward individual bytes among the pipeline stages. The
forwarding unit decides the appropriate feeding of data by performing comparison on the register
source and destination addresses, where the SIMD elements are addressed using a 3-bit register
address and a 2-bit byte offset.

We saw in Section 3.2 and 3.3 that the additional hardware required for SIMpD and indirect-
SIMdD extensions is minimal. However, the area occupied by the architecture implementations
depends heavily on the placing and routing of hardware resources on the physical chips. While
automated place-and-route tools for ASICs or FPGAs may not produce the optimal arrangement,
manual placing and routing of hardware resources are extremely tedious and will not be
attempted for the scope of this project.

 14

04s1 COMP4211 Advanced Architectures & Algorithms Project Report Lih Wen Koh (2282320)

Fi
gu

re
 1

3:
 B

as
ic

 fi
ve

-s
ta

ge
 p

ip
el

in
ed

 p
ro

ce
ss

or
 e

xt
en

de
d

w
ith

 in
di

re
ct

-S
IM

dD
 fe

at
ur

es
.

 15

04s1 COMP4211 Advanced Architectures & Algorithms Project Report Lih Wen Koh (2282320)

3.4 Assembly Programming Requirements
In previous sections, we identified the additional hardware required to extend a pipelined,
general-purpose processor with SIMD features. We now discuss the changes to assembly
programming requirements for the extended pipelined processors, implemented as described in
Section 3.2 and 3.3.

Figure 15 shows the scheduled assembly instructions for program 1 and program 2 (refer Section
3.1.2) for the three architectures considered:

(a) the basic five-stage pipelined processor
(b) the pipelined processor from (a), extended with SIMpD features
(c) the pipelined processor from (b), extended with SIMdD features

Recall that program 1 is a simple loop performing addition on sequential elements of the byte
arrays x and y. Figure 15 shows that the assembly instructions for program 1 do not differ much
for all three architectures. However, we expect the pipelined processor with SIMpD and SIMdD
extensions to occupy less execution time for program 1 since the number of loop iterations is
reduced by a factor of 4, i.e. by a factor of the number of sub-word elements for SIMD operations.
Quantitative performance measurements for all three architectures are presented in Section 4.

Program 2 is a loop performing addition on every other element of the byte arrays x and y. The
data access pattern in program 2 can be characterized as FLEX pattern with ∆=2 and =8. For
pipelined processor with SIM

Ψ
pD extensions, assembly programmers have the responsibility to

rearrange or pack the vector elements using mix and permute operations, contributing to
instruction overheads. Furthermore, stalls are inevitable in the assembly program 2 for SIMpD
architectures due to the data dependencies of the re-arrangement instructions on the memory
loads, and the data dependencies of SIMD instructions on the re-arrangement instructions. Figure
14 illustrates the segments of program 2 for SIMpD architectures.

add simd: SIMD addition

perm: data re-arrangement

mixr: data re-arrangement

lw: memory loads

Figure 14: Assembly instructions for program 2, scheduled for SIMpD architectures.

 16

04s1 COMP4211 Advanced Architectures & Algorithms Project Report Lih Wen Koh (2282320)

On the other hand, SIMdD architectures eliminate the problems in SIMpD architectures by pointer
load instructions. No instruction overhead is spent for data rearrangement, but pointers need to be
setup for use. The lptr instructions will complete execution by the second pipeline stage and so
ensure that any data dependencies on the lptr instructions are easily solved by data forwarding.
As a result, the assembly instructions for SIMdD architectures are more easily scheduled without
any stalls (refer Figure 15(c)).

For random data access patterns with arbitrary values for ∆ and Ψ , we anticipate even less
instruction overhead for SIMdD architectures. Note that the same number of memory loads (as
many as the number of sub-word elements for SIMD operations) is needed to retrieve the vector
elements that could potentially reside in arbitrary locations. However, two simple pointer setup
instructions are sufficient to locate the disjoint vector elements for SIMdD architectures. On the
other hand, many more mix and permute instructions are required to properly arrange the disjoint
vector elements for SIMpD architectures, contributing to instruction overhead. In addition, the
ISA of general-purpose processors need to be extended with many versions of mix and permute
instructions to handle complex data re-arrangement. These factors reinstate the advantage of
SIMdD architectures in handling flexible data accesses with minimal overhead.

4. Performance Evaluation
VHDL models are developed for all the three architectures in consideration. Functional
simulations of the architectures are performed using the two programs discussed in Section 3.1.2.
Table 5 lists the performance of the three architectures in terms of clock cycles.

Simulation Results
for Program 1

Simulation Results
for Program 2

Processor
Architecture

Clock Cycles Speedup Clock Cycles Speedup
Basic 5-stage

pipelined (reference)
61 cc 1.00 33 cc 1.00

Pipelined with
SIMpD extensions

19 cc

3.21 21 cc 1.57

Pipelined with
SIMdD extensions

19 cc

3.21 17 cc 1.94

Table 5: Performance evaluation of pipelined processor with and without SIMpD or SIMdD extensions.

Simulation results show a performance speedup for both types of SIMD extensions with respect
to the basic pipelined processor. This is because the number of loop iterations is reduced (roughly)
by a factor up to the number of sub-word elements for SIMD operations. The SIMpD and
indirect-SIMdD processors have the same performance (speedup of 3.2) for program 1 where the
vector elements reside in sequential locations. However, much data-rearrangement overhead is
incurred in program 2 for the SIMpD pipelined processor, when the vector elements do not come
from sequential locations, but with a constant vector stride. The indirect-SIMdD pipelined
processor eliminates much of this overhead by pointer addressing, achieving a total speedup of
1.94 for program 2 with respect to the basic pipelined processor.

 17

04s1 COMP4211 Advanced Architectures & Algorithms Project Report Lih Wen Koh (2282320)

ad
di

R
0,

 R
0,

 0
x0

00
8

lb
R

3,
 R

2(
0x

00
00

)
lb

R
4,

 R
2(

0x
00

08
)

ad
di

R
1,

 R
1,

 0
x0

00
1

ad
di

R
2,

 R
2,

 0
x0

00
2

ad
d

R
5,

 R
3,

 R
4

bn
e

R
2,

 R
0,

 fo
r1

sb
R

5,
 R

1(
0x

00
0F

)
no

p

P
ro

g2
 -

pi
pe

lin
ed

fo
r1

:

en
df

or
1:

ad
di

R
0,

 R
0,

 0
x0

00
8

lb
R

2,
 R

1(
0x

00
00

)
lb

R
3,

 R
1(

0x
00

08
)

<<
st

al
l>

>
ad

di
R

1,
 R

1,
 0

x0
00

1
ad

d
R

4,
 R

2,
 R

3
bn

e
R

2,
 R

0,
 fo

r1
sb

R
5,

 R
1(

0x
00

0F
)

no
p

Pr
og

1
- p

ip
el

in
ed

fo
r1

:

en
df

or
1:

ad
di

R
0,

 R
0,

 0
x0

00
8

lw
R

2,
 R

1(
0x

00
00

)
lw

R
3,

 R
1(

0x
00

00
)

ad
di

R
1,

 R
1,

 0
x0

00
4

<<
st

al
l>

>
ad

d_
si

m
d

R
4,

 R
2,

 R
3

bn
e

R
1,

 R
0,

 fo
r1

sw
R

4,
 R

1(
0x

00
0C

)
no

p

Pr
og

1
- p

ac
ke

d
S

IM
D

fo
r1

:

en
df

or
1:

ad
di

R
0,

 R
0,

 0
x0

00
4

lw
R

3,
 R

2(
0x

00
00

)
lw

R
4,

 R
2(

0x
00

08
)

lw
R

5,
 R

2(
0x

00
04

)
lw

R
6,

 R
2(

0x
00

0C
)

m
ix

r
R

7,
 R

3,
 R

4
ad

di
R

2,
 R

2,
 0

x0
00

4
m

ix
r

R
8,

 R
5,

 R
6

ad
di

R
1,

 R
1,

 0
x0

00
1

<<
st

al
l>

>
ad

d_
si

m
d

R
9,

 R
7,

 R
8

<<
st

al
l>

>
pe

rm
R

9,
 R

9,
 0

x0
02

7
<<

st
al

l>
>

bn
e

R
2,

 R
0,

 fo
r1

sw
R

9,
 R

1(
0x

00
0F

)
no

p

Pr
og

2
- p

ac
ke

d
SI

M
D

fo
r1

:

en
df

or
1:

ad
di

R
0,

 R
0,

 0
x0

00
8

lw
R

2,
 R

1(
0x

00
00

)
lw

R
3,

 R
1(

0x
00

00
)

ad
di

R
1,

 R
1,

 0
x0

00
4

<<
st

al
l>

>
ad

d_
si

m
d

R
4,

 R
2,

 R
3

bn
e

R
1,

 R
0,

 fo
r1

sw
R

4,
 R

1(
0x

00
0C

)
no

p

Pr
og

1
- d

is
jo

in
t S

IM
D

fo
r1

:

en
df

or
1:

ad
di

R

0,
 R

0,
 0

x0
00

4
lw

R

2,
 R

1(
0x

00
00

)
ad

di

R
1,

 R
1,

 0
x0

00
1

lw

 R

4,
 R

1(
0x

00
08

)
lw

R

3,
 R

1(
0x

00
00

)
lw

R

5,
 R

1(
0x

00
08

)
lp

tr

P0
, R

2(
0)

, R
2(

2)
, R

3(
0)

, R
3(

2)
lp

tr

P1
, R

4(
0)

, R
4(

2)
, R

5(
0)

, R
5(

2)
ad

di

R
7,

 R
7,

 0
x0

00
4

ad
d_

si
m

d_
w

p
 R

9,
 R

7,
 R

8
bn

e

R
7,

 R
0,

 fo
r1

sw

R
6,

 R
7(

0x
00

0C
)

no
p

Pr
og

2
- d

is
jo

in
t S

IM
D

fo
r1

:

en
df

or
1:

 (
a)

 (b
)

 (c
)

Fi
gu

re
 1

5:
 H

an
d-

co
de

d
an

d
sc

he
du

le
d

as
se

m
bl

y
in

st
ru

ct
io

ns
 fo

r P
ro

gr
am

 1
 a

nd
 2

 fo
r (

a)
 th

e
ba

si
c

pi
pe

lin
ed

 p
ro

ce
ss

or
, (

b)
 th

e
pi

pe
lin

ed

pr
oc

es
so

r e
xt

en
de

d
w

ith
 S

IM
pD

 fe
at

ur
es

 a
nd

 (c
) t

he
 p

ip
el

in
ed

 p
ro

ce
ss

or
 e

xt
en

de
d

w
ith

 in
di

re
ct

-S
IM

dD
 fe

at
ur

es
.

 18

04s1 COMP4211 Advanced Architectures & Algorithms Project Report Lih Wen Koh (2282320)

SI
M

D
 a

dd
iti

on
 o

f
0x

01
01

92
0A

 a
nd

0x

03
04

A
40

3
gi

ve
s t

he

re
su

lt
0x

04
05

36
0D

SI
M

D
 re

su
lt

is
 w

rit
te

n
ba

ck
 to

 m
em

or
y

lo
ca

tio
n

0x
00

10

Fi
gu

re
 1

6:
 V

H
D

L
Si

m
ul

at
io

n
of

 P
ro

gr
am

 2
 fo

r i
nd

ir
ec

t-S
IM

dD
 p

ip
el

in
ed

 p
ro

ce
ss

or
.

 19

04s1 COMP4211 Advanced Architectures & Algorithms Project Report Lih Wen Koh (2282320)

5. Conclusion
We briefly discussed the VLIW and SIMpD architectures that improve execution throughput by
exploiting data-level parallelism inherent in programs. VLIW instructions specify multiple
operations to be performed on multiple disjoint data streams. On the other hand, SIMpD
architectures specify a single operation to be performed on multiple packed data elements.
Motivated by the flexible data access patterns found in commonly used telecommunication and
multimedia kernels, SIMdD architectures combine the features of both VLIW and SIMpD
architectures by specifying a single operation to be performed on multiple disjoint data streams.
The indirect-SIMdD implementation is proposed to achieve simplicity in extending the ISA of
general-purpose processors. Indirect addressing using pointers allow the disjoint vector elements
to be composed dynamically, and thus achieve much flexibility in data accesses without the data
re-arrangement overhead of SIMpD instructions.

We also considered the architectural impact of SIMpD and indirect-SIMdD extensions on a variant
of general-purpose processors, the basic five-stage pipelined, MIPS-like processor. The
architectural impact is considered from both the hardware and software perspectives. We saw that
the additional hardware required to implement the SIMD extensions is minimal. On the other
hand, the assembly instructions for SIMpD architectures are harder to schedule without processor
stalls in comparison to the assembly instructions for indirect-SIMdD architectures.

Finally, VHDL models developed for the SIMpD and indirect-SIMdD pipelined processors are
simulated using two simple loop programs that have different data access patterns, characterized
by the metrics vector element distance and vector stride. Simulation results show a performance
speedup for both types of SIMD extensions with respect to the basic pipelined processor. This is
because the number of loop iterations is reduced (roughly) by a factor up to the number of sub-
word elements for SIMD operations. However, much data re-arrangement overhead is incurred by
the SIMpD instructions when the vector elements do not come from sequential locations. The
indirect-SIMdD pipelined processor eliminates much of this overhead by specifying the disjoint
locations of vector elements using pointers. We conclude that the indirect-SIMdD architectures
are more efficient in handling flexible data accesses; yet leaving unchanged the performance of
programs with SIMpD data accesses.

References

1. IBM eLite DSP Project http://www.research.ibm.com/elite/elite_dsp_project.html

2. A New Look at Exploiting Data Parallelism in Embedded Systems

Hillery C. Hunter, Jaime H. Moreno, International Conference on Compilers,
Architectures and Synthesis for Embedded Systems 2003.

3. A High-Performance Embedded DSP Core with Novel SIMD features

Jeff H. Derby and Jaime H. Moreno, International Conference on Acoustics, Speech, and
Signal Processing 2003.

4. COMP3211 Computer Architecture Assignment 2 Report: Pipelined Processor Design
Weng Mun Au Yong, Lih Wen Koh, Seng Lin Shee, S2 2002.

5. UC Berkeley Vector IRAM project http://iram.cs.berkeley.edu/

6. Intel MMX Technology http://www.intel.com

 20

http://www.research.ibm.com/elite/elite_dsp_project.html
http://iram.cs.berkeley.edu/
http://www.intel.com/

	Page
	Simulation Results

