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Chapter 1
Treatment of Loops in Hardware

1.1

Loop Support in Hardware

In a general-purpose processor, performance is comprised for flexibility as loops are not handled natively. Instead, loops are emulated by branching to different segments of a program based on certain conditions. Compilers thus convert high-level language loops to these emulated ones after compilation.

However, loops are a fundamental part of any program and deserve to be given some treatment in hardware to reduce or eliminate their management overheads. Because Digital Signal Processors focus on an application-specific domain, as applications become increasingly complex, the number of specific features increase ([Engel04]), and loops are not an exception.

DSPs commonly have a feature known as a Zero-Overhead Loop Buffer, which executes a loop in hardware for a specified number of times without any overhead
.

As Namkoong has indicated in [Namk00], implementations of this loop buffer vary, but the concept remains the same. The DSP16000 ([Gang99]) architecture has registers containing the data: a loop counter, the total loop count, the current loop count pointer and a buffer (i.e. the ZOLB) containing all the instructions in the loop.

[image: image3.png]Another architecture of interest is the RaPiD coarse-grained reconfigurable architecture specified in [Ebeling99]. Loops are optimized in RaPiD with a control unit that understands loops. Instead of keeping the entire loop in a buffer, the start address, end address and loop counts are stored in registers to update the next PC address. The diagram to the right depicts the RaPiD programmed controller.

It can be seen, so far, that loop-enabled hardware seems to be implemented only in application- or domain-specific architectures.
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Thus, it would be interesting to explore the possibilities of enabling loop support in general-purpose processors. An analysis of the possibility of implementing zero-overhead loops and the expected advantages was carried out in [Namk00]. However, Namkoong only analysed zero-overhead loops, and only those which can entirely be incorporated
 in a zero-overhead loop buffer.

This project will attempt to explore the possibilities of reducing overhead in loop management for any type of loop in general-purpose processors from two perspectives – hardware and software.

Trying to remove loop overheads in general loops would require specialised hardware. A possible architecture for such a loop unit will also be proposed.

The expected increase in performance will then be analysed to determine the feasibility of such an implementation.

1.2

Characteristics of Loops

There are several types of loop paradigms in high-level programming languages, but all of them share the same characteristics. A quick analysis of some of these types of loops should reveal them. A standard “for” loop in a language like C or Java might look like the following:


for (i = 0; i < n; i++)



v = v * i;

After translating the above code to assembly language, it can be seen that there should be three instructions of overhead per iteration of the loop
. Assuming that “i" is stored in register 1, “n” in register 2 and “v” in register 3, the loop above might translate to the following MIPS-like assembly code following suggestions given in [Yee97] to reduce the loop overhead to two instructions per iteration:


move $1, $0


b    test

top:  mult $3, $1

      mflo $3

      addi $1, $1, 1

test: blt  $1, $2, top

Thus, removing the loop overhead may result in two less instructions per iteration. The loop above has the following characteristics:

	Characteristic
	Value

	Counter Start
	0

	Counter End
	n-1

	Start PC
	top

	End PC
	test

	Iteration
	+1


If these values are managed in hardware, rather than with explicit incrementing and branch instructions, it might then be possible to reduce or eliminate the loop overhead. 

From this point onward, we will refer to the above type of loop as an incrementing loop for simplicity.

Another type of loop is such where the loop condition could be a variable of any sort, and may not have an explicit iterative condition such as “+1” in the incrementing loop above. A simple example of such a loop is a semaphore loop and may look like the following:


while (!stop)


{


  if (stopbutton.event == event.clicked)


    stop = 1;


  v = v + 1;


}

The loop above depicts a counter that increments itself until a button is clicked. However, the “event” variable in the “stopbutton” object or structure would probably be updated asynchronously via a messaging loop in a separate thread. The loop above might be translated to MIPS-like assembly as such (assuming registers 1 and 2 hold the values of “stopbutton.event” and “event.clicked” respectively, register 3 holds the value “v”, and register 4 holds the value “stop”):

       b    test

top:   bne  $1, $2, doinc

       move $4, 1

doinc: addi $3, 1

test:  bne  $4, 1, top

The characteristics of the loop
 above are as follows:

	Characteristic
	Value

	Counter Start
	?

	Counter End
	1

	Start PC
	top

	End PC
	test

	Iteration
	None


The purpose of analysing the above loops is to understand the mechanics and the various possibilities that might occur. Such mechanics can form the conditions for loop management in hardware:

1. The update of the loop condition variable can occur at any point in the loop, even in a separate thread.

2. The loop condition variable may be used inside the loop.

3. It seems like the main characteristic of the maintenance of any loop is that a test is made at the end of the loop (i.e. at “End PC”).

4. The counter start and end of the loops might be of any value.

5. The counter can be incrementing or non-incrementing.

6. Most loops definitely do not follow a strict incrementing sequence of instructions.

7. The loop can be run any number of times.

The second loop actually depicts an extreme end of loop control management (a “while (true)” loop). It may be possible that there are “break” and “continue” statements within the loop as well. Thus, these are two more conditions that can be specified:

8. It may be possible that the loop can be exited at any point in the loop body.

9. It may be possible that the rest of the loop body might be skipped to perform the next iteration.

It is now necessary to determine how these conditions can be met in hardware.

1.3

Possible Loop Handling Techniques in Hardware

In order to let a loop be managed in hardware, it can be seen that the conditions specified above must be met. Two hardware loop management techniques have been presented in section 1.1, and it would be beneficial at this point to see how they meet up to the requirements.

The DSP zero-overhead loop buffer may not be suitable at all for general purpose processors since the number of iterations must be known prior to the start of the loop. As we can see from conditions 7, 8 and 9, this is not always the case.

In addition, apart from well-defined algorithms with specific loop techniques, programs running on general-purpose processors frequently have conditions in loops (thus resulting in loops with condition 6).

Finally, if conditions 1 to 5 were to be met, the overhead for maintaining the loop counter variable may still exist (especially in condition 2) since the loop count register is held in the buffer unit itself, it is unlikely that it could be used in the instructions unless very specific compilation is carried out.

The RaPiD control unit depicted in Figure 1.1 is a slightly more flexible approach since the begin and end PC addresses are stored instead of the entire loop into the buffer. Thus, it would be possible to meet condition 6 (non-fixed sequence of instructions).

It might also be possible to meet conditions 8 and 9 since the decrementing only occurs at the end PC address, and if an unconditional branch or jump goes past this address, the loop incrementing would not occur nor will the PC be updated with the start address (implementing a “break”). A “continue” could be likewise implemented by jumping to the end address, thus causing an increment of the loop counter and a condition test.

However, it is still not possible to execute loops like the second example, which, in order to manage, would require conditions 1 to 5 and 7 to be met.

In order to meet condition 1, it may be necessary to allow an instruction in the body of the loop to update the loop variable. However, it is also advantageous to reduce incrementing loop overheads (the first loop example) as well by incorporating the incrementer in the loop unit. This gives rise to the following two requirements:

R1. Provide an incrementer for the loop counter in the loop unit.

R2. Allow the loop condition variable to be updated by the loop body.

Requirement R2 above also meets condition 7. If the loop condition variable were to be updated in the main loop body, then it can run any number of times.

In order to satisfy conditions 2 and 4, it might be necessary to allow the loop counter to be actual register in the main register file that can be used and updated, rather than to maintain a separate loop variable in the loop unit itself:

R3. Allow the loop condition variable to be a register in the main register file.

This also supports condition 3. If the register were to be somehow reused in the main body of the loop and reassigned later, it would not be a problem since the test is done only at the end of the loop. To satisfy condition 3 itself, the following is required:

R4. A test must be made at the end of the loop (NextPC == EndPC) as to whether the loop terminating condition has been met (CounterVar == TargetVar).

If condition 5 were to be met, there must be a selection of the two types of loops above:

R5. Two types of loop instructions should be supported: incrementing and non-incrementing.

In order to support non-incrementing loops, tests should be made for either an equals or a not-equals condition:

R6. The terminating condition can be conditionally negated.

Finally, conditions 6, 8 and 9 can be met with the following requirement as implemented in the RaPiD control unit:

R7. The Start PC and End PC addresses should be stored in the loop unit and the terminating condition checked as per the following:

IF NextPC == EndPC AND ConditionVar ==/!= TargetVar THEN


NextPC := StartPC

END IF

Thus, we can generalise the requirements above to a specification of a hardware loop unit as follows:

	Requirement
	Specification

	R1. Provide an incrementer.
	The loop unit must contain an adder.

	R2 & R3. Allow the loop condition to be updated in the loop body, and the loop variable to be in the main register file.
	Instead of keeping the loop variable and count as registers in the loop unit, keep the register numbers of the loop variable and target variable in registers, to access the main register file with.

	R4 & R7. A test must be met at the end of the loop, with the start and end PC addresses.
	Store the start and end PC addresses in the loop unit as registers. Pipe the NextPC address from the instruction fetch into the loop unit and use a comparator to compare them. Use another comparator to compare the loop variable and the target value; the terminating condition will be the conjunction of these two comparisons (AND gate).

	R5. Two types of instructions should be supported: incrementing and non-incrementing.
	Place a flip-flop storing a value to choose between an incremented value or the actual value of the loop variable from the register file.

	R6. The terminating condition can be conditionally negated.
	Place a flip-flop indicating if the condition should be negated and pipe the output through an XOR gate together with the comparison of the loop variable and terminating condition.


With these requirements in place, it is then possible to design a hardware loop unit capable of supporting loops.

Chapter 2
The Hardware Loop Unit

2.1

Integration

A hardware loop unit as described in Chapter 1 has to be integrated into the processor seamlessly, allowing standard instructions to still be executed (including branches and jumps).

To illustrate a proof of concept, this chapter will describe a possible integration of a hardware loop unit into a standard five-stage pipeline general-purpose processor, such as the one described in [Patt97].

In order to allow the hardware loop unit to operate independently and in parallel with the rest of the operations, it would be necessary to provide additional ports in the register file for the loop unit to access the loop condition and target registers.

The loop unit should also receive inputs from the execution stage of the processor to receive updates to the condition variable as soon as possible.

The operation of the hardware loop unit should be as follows:

1. When a loop instruction arrives, the loop unit intercepts it at the instruction fetch stage and sets the following registers:

a. StartPC = NextPC

b. EndPC = NextPC + SignExt(Imm)

c. LoopVar = RegRs

d. TargetVar = RegRt

2. It should also set the conditional negation and loop type flip-flops (incrementing/non-incrementing).

3. When NextPC == EndPC, the loop condition is tested and the output is either “StartPC” or “NextPC”.

4. This output is piped through the MUX originally deciding if the next PC or the branch target from the instruction decode stage is to be taken as the next address.

A diagram showing the integration is presented in Appendix B. The main modifications are as follows:

· The loop unit is placed in the instruction fetch stage to allow the Next PC to be updated immediately without any delay.

· The main register file has another set of ports, piped into the Loop Unit.

· The execution target and result is piped into the Loop Unit as well.

2.2
Description

In order to appreciate that the hardware loop unit described above is implementable in hardware and can operate in an efficient manner, a gate- and standard component-level design is shown in Appendix C.

In total, the hardware loop unit consists of the following components:

1. 3 × 32-bit registers.

2. 2 × 5-bit registers.

3. 2 × 1-bit D flip-flops.

4. 2 × 32-bit adders.

5. 1 × 4-bit comparator.

6. 1 × 5-bit comparator.

7. 2 × 32-bit comparator.

8. 2 × 32-bit 4 to 1 MUXes.

9. 3 × AND gates.

10. 1 × XOR gate.

In order for the loop unit to function, it is necessary to introduce some new instructions into the processor. There are essentially three types of loops: an incrementing loop (for loop), a non-incrementing “equals” condition loop (while (condition == target)) and a non-incrementing “not-equals” condition loop (while (condition != target)).

The condition register number, target register number, start and end PC addresses must be derived from these three types of instructions.

Augmenting a simple MIPS instruction set such as the one specified in [Frenzel98], these three types of loops can be encoded in a single R-type instruction as follows:


Opcode   RegRs   RegRt   Immediate


0101IN   Cond    Target  Offset

The opcode is prefixed with “0101”, an unused opcode prefix in the MIPS instruction specified in [Frenzel98]. The last two bits of the opcode are used for “I” which is indicate whether the loop is incrementing (1) or non-incrementing (0), and “N” to indicate if the loop condition should be negated (1) or not negated (0).

In order to implement a “for” loop or a “while (condition != target)” loop, the loop condition should be negated. A “while (condition == target)” loop will have a non-negated loop condition.

Thus, the following opcodes can be specified for the three loop instructions below:


Opcode   Instruction


010111   INCLOOP


010101   WHILENEQ


010100   WHILEEQ

Register numbers Rs and Rt can represent the register numbers of the condition and target registers, respectively.

The Start Address should be the Next PC address and the End Address should be the Next PC plus the sign-extended offset specified in the immediate portion of the instruction. A typical loop might look like the following:

PC
Instruction Rs  Rt  Rd/Imm
Loop Unit

0
INCLOOP
$1, $2, 2

Initialise registers

1
ADDI

$3, $3, 1

2
ADDI

$4, $4, $3

If ($1 != $2) NextPC := StartPC

3
(Instruction after the loop)

When the “INCLOOP” instruction is fetched, the Next PC value is 1, thus the start of the loop should be directly after the loop instruction. The body of the loop above consists of two instructions; this is specified in the immediate value. Adding 2 to the Next PC value would result in 3, which is directly after the last instruction of the loop. This is the “End PC Address”, which, when compared with “Next PC” at the final instruction of the loop at PC == 2, will cause the loop unit to increment register 1 and check the loop condition.

2.3

Operation

The operation of the hardware loop unit is as follows (please refer to Appendix C):

	Operation
	Delay Before Edge
	Delay After Edge

	When the loop instruction is fetched, “NextPC” i.e. PC+4 gets updated to a new value. This value goes into the loop unit. At the same time, the current instruction is read and the instruction itself goes into the loop unit as well.
	Max(Add, IMR)
	

	The instruction goes into comparator A, and the first 4 bits of the instruction are compared with the prefix “0101”. The result of the comparison goes to drive the write inputs of the registers and flip-flops (except for the “ConditionReg”).
	Max(Add, IMR) + Comp
	

	The Next PC address is fed into the Start Address Register and the Next PC address + SignExt(offset) is fed into the End Address Register. CounterReg and TargetReg are initialised with Rs and Rt from the instruction, respectively.
	Max(Add, IMR) + Comp + RegW
	

	At every instruction, the register numbers from CounterReg and TargetReg are fed into the register file and their corresponding values retrieved.
	
	RegR + RegFileR

	The Counter register is incremented by 1 in adder “D” and compared to the Target in comparator “F”. It passes through Mux “I” to choose whether the counter should be incremented or not.
	
	RegR + RegFileR + Add + Mux + Comp

	If the loop is non-incrementing, then the execution target is compared with the counter register, and if it matches, the value is latched into the condition register.
	
	RegR + RegFileR + Add + Mux + Comp (no change)

	Comparator “E” checks if the end address has been reached. If so, then flip-flop “D” conditionally negates the comparison of the counter and target registers and decides whether to continue the loop.
	
	RegR + RegFileR + Add + Mux + Comp + And + Xor

	The final multiplexer MUX “C” decides if the start address should be used as the next PC, or the next PC address.
	
	RegR + RegFileR + Add + Mux + Comp + And + Xor + Mux

	Both multiplexers select between three different inputs. Selection input “S1” is driven by “LoopStart” in case it is not necessary to enter the loop body at all. In that case, “End PC” should be the next address following the loop instruction.
	
	


The greater of both delays, {Max(Add, IMR) + Comp + RegW} and {RegR + RegFileR + Add + Mux + Comp + And + Xor + Mux} is relatively minimal compared to the overall delay of a standard 5-stage pipeline MIPS processor.

The instruction decode stage in particular has a hazard detection unit which also forwards results to the early branch unit, and from [Patt97], has to forward results from the EX stage, MEM stage and WB stage, which consists of a considerably higher delay
 than the loop unit.

Chapter 3
Implementation

3.1

Method

At this point, it is necessary to prove the concept outlined in chapter 1 with an implementation of the design specified in chapter 2.

The decisions made for implementation are as follows:

1. A VHDL implementation of a five-stage MIPS pipeline processor should be coded up, with full hazard detection and forwarding units.

a. A simple loop should be coded up in MIPS and the number of clock cycles taken should be determined by simulation.

b. The clock cycle time should also be estimated by synthesising the VHDL implementation as an ASIC.

c. The area should also be estimated, as a result of synthesis.

2. A VHDL implementation of the hardware loop unit should then be coded up.

a. The clock cycle time and area should also be estimated via synthesis.

3. The hardware loop unit should then be integrated with the five-stage pipeline processor.

a. The loop that was tested in 1(a) should be re-tested now to ensure that the design is downward-compatible.

b. The loop should then be coded up using the two types of loop instructions and simulated to ensure that performance improvements would be gained.

c. The clock cycle time should be estimated again through synthesis to determine if there are additional overheads involved.

d. The total area should be estimated again to determine the approximate increase in area, especially as a percentage of the traditional five-stage pipeline processor.

3.2

Results

A simple loop was placed in instruction memory, with its variations for the two types of loop instructions, and simulated:


for (i = 0; i < 3; i++) {


  v = v + 3;


  t = t + 1;


}

3.2.1

Standard Pipeline Simulation

The loop above can be translated to the following MIPS assembly code as follows:

0: BEQ  $31, $0, 4

1: ADDI $30, $30, 3

2: ADDI $28, $28, 1

3: ADDI $31, $31, -1

4: BEQ  $0, $0, -5

5: Test Instruction (NOOP) after end of loop

This code was simulated in the processor and the results analysed. Please refer to Appendix D for the waveform. Note: this was simulated using the integrated processor to prove that ordinary branch instructions can still be run even with the loop unit in place.

As expected, the loop ran for three times for a total of 6 clock cycles per iteration i.e. the gold lines at the top (current PC) goes from 0 to 5 and back again (1 clock cycle for a stall due to branch misprediction) and two more instructions of overhead for branching out of the loop. Thus, the total number of clock cycles taken is:


CCStd = (6 × 3) + 2 = 20

If perfect branch prediction were to be applied, then the total number of clock cycles would reduce to:


CCStdPer = (5 × 3) + 1 = 16

If the loop were optimised using the technique in [Yee97], then the total number of clock cycles would be:


CCStdOpt = 1 + (4 × 3) = 13

3.2.2

Incremental Loop Simulation

If the loop above were to be implemented as an incremental loop, the code could be reduced from the one above to the following (assuming registers 31 and 29 contain the values 3 and 0 respectively):

0: INCLOOP $29, $31, 2

1: ADDI    $30, $30, 3

2: ADDI    $28, $28, 1

3: Test Instruction (NOOP) after end of loop

The simulation waveform for the above code is presented in Appendix E. As expected, only instructions 1 and 2 are repeated for three times before arriving at instruction 3 (22A0AAAA).

The gold current PC line at the top now proceeds in this order: 0, 1, 2, 1, 2, 1, 2, 3. Thus, the total number of clock cycles is:


CCInc = 1 + (2 × 3) = 7

This is 13 clock cycles less than CCStd, 9 clock cycles less than CCStdPer and 6 clock cycles less than CCOpt. More importantly, each iteration takes up 2 clock cycles less than CCOpt.

3.2.3

Incremental Loop Simulation (No Iterations)

It is also worthwhile to examine a case where the loop is not entered at all. The starting register file value for register 29 was set to 3, so that the loop body would not be executed at all. This simulation is presented in Appendix F (gold PC goes from 0, then immediately to 3).
3.2.4

Non-Incremental Loop Simulation

Instead of coding up the loop to be automatically incremented, we can change it to be self-managed by the loop body itself. The resulting code would be as such:

0: WHILENEQ $29, $31, 3

1: ADDI     $29, $29, 1

2: ADDI     $30, $30, 3

3: ADDI     $28, $28, 1

4: Test Instruction (NOOP) after end of loop

To illustrate the fact that the loop counter can be updated at any point in the loop body, instruction 1 actually increments the loop counter before executing the other two instructions.

The simulation waveform is included in Appendix G. As expected, the loop again ran without any overheads, resulting in a total cycle time of:


CCNonInc = 1 + (3 × 3) = 10

The gold PC line starts from 0 and executes the loop 1, 2, 3 for 3 times.
This is still three clock cycles less than CCOpt, with 1 less clock cycle per iteration, but with additional flexibility of the loop counter.

3.2.5

Non-Incremental Loop Simulation (No Iterations)

It can be proven that, just as with an incremental loop, the loop may not be entered into at all as well for a non-incremental one. This was simulated and the resulting waveform is included in Appendix H.

It can be seen that the next instruction following the WHILENEQ is instruction 4 (22A0AAAA), effectively skipping the entire loop.

3.3

Discussion

Here is a comparison of the results gathered from the previous section (number of clock cycles):
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It can be seen that for a fairly tight loop the percentage of performance improvement can be fairly substantial. However, this is not representative of all cases. Even if loops were fairly large, the performance improvement may not be negligible.

In order to measure the expected performance improvement more accurately, the number of iterations of incrementing and non-incrementing loops should be measured. This is performed and analysed in Chapter 5.

The importance of this implementation is prove that a hardware loop unit would be feasible to implement in a general-purpose processor and that some performance improvement would be gained.

3.4

Area and Clock Cycle Time

In order to determine the amount of area that would have to be taken up and the impact on clock cycle time, the standard MIPS five-stage pipeline, the loop unit and the integrated processor was synthesised in Synplify ASIC using two configurations: one to optimise for area and the other to optimise for speed.

To get the more accurate results, the entire behavioural design of the processor and hardware loop unit was re-coded into a structural design (except for directly inferred components).

The core IO libraries provided in Synplify were used for synthesis, under AMI operating conditions with a 350MHz maximum clock rate.

Two extreme frequencies were requested: 1 MHz to determine the best area coverage (although this may not be fully optimal), and 1000 MHz to determine the best clock rate that could be achieved. The results are as follows:

	Optimisation
	Base MIPS Processor
	Integrated with Loop Unit
	Loop Unit

	
	Speed
	Area
	Speed
	Area
	Speed
	Area

	Area
	32.8 MHz
	87134 cells
	32.4 MHz

(1.22% dec)
	100250 cells

(15% inc)
	72.5 MHz
	2113 cells

	Speed
	55.6 MHz
	97595 cells
	54.8 MHz

(1.46% dec)
	110570 cells

(13% inc)
	137.3 MHz
	4115 cells


It can be seen from the table above that for both optimisations, the clock frequency only decreased by less than 1.5% when the loop unit was integrated into the CPU. This is probably because of the additional wire lengths and area increase that is a result of the augmentation. With careful design, this small delay (0.4 MHz in the area-optimised version and 0.8 MHz in the speed-optimised version) may be eliminated.

The amount of area taken, however, increased by 15% in the area-optimised version and 13% in the speed-optimised version. If the performance increase can justify this area increase, then it may be a viable option to incorporate a loop unit into general-purpose processors.

The base processor, however, is very simple and does not have complex out-of-order execution and advanced branch prediction techniques. This makes the area increase of the loop unit more than it might be.

3.5

Other Issues
In closing of this chapter, it should be mentioned that the hardware loop unit described here can be improved in several ways, including nested loop support (stacks of Start PC, End PC, CounterReg and TargetReg registers) and different types of loop instructions (with different counter incrementing values, e.g. +2, -1 etc.).

Chapter 4
Treatment of Loops in Software

In order to determine the amount of performance increase that could be gained from reducing loop overheads, we must first analyse how loops are compiled from a high-level language to assembly to determine how much overhead loops take up, exactly.

The amount of performance increase can be taken as a percentage of loop overhead instructions over the total number of instructions executed. The total number of instructions can be gathered through a SimpleScalar
 simulation.

4.1

Standard Compilation

The “for” loop used in the previous chapter was compiled to Alpha instructions and the surprising results are shown here (renamed and streamlined for easy reading):

top:

        cmple $2,  2,   $1

        bne   $1,  loopbody

        br    $31, endloop

loopbody:

        addl  $2,    1,  $1


  addl  $3,    3,  $3

        addl  $1,  $31,  $1

        br    $31, top


endloop:

It is interesting to note that the compiler chooses to place the loop body in a separate code segment (“loopbody”) and reserves an entire code segment for loop management (“top”) while compromising performance by adding four instructions of loop overhead per iteration: one for the branch into the loop body, one for incrementing, one for branching back into the loop top and one for testing the condition
.

Thus, if standard compilation were to be performed, the number of clock cycles that could be saved given good branch prediction techniques would be 4 clock cycles per iteration. If the branch prediction were “not taken”, the number of clock cycles saved could be 6.

4.2

Optimised Compilation

The code was recompiled with optimisations
 and the following assembly code was produced:

top:

        addl  $2, 1, $2


  addl  $3, 3, $3

        cmple $2, 2, $1

        bne   $1, top

In this case, we can see two optimisations being performed. Firstly, the instruction “v = v + 1” was optimised to become the loop counter. However, this incrementing overhead cannot be ignored. The compare and branch instructions are now moved to the bottom of the loop. The total number of loop overhead instructions has now become 3.

4.3

Discussion

Looking at code with and without optimisations, if the number of loop overhead instructions is greater, then the code size is greater; and if the number of loop overhead instructions is less, then the code size is smaller, leading to a hypothesis that the percentage performance increase would not depend too much on optimisation.

For each loop in the non-optimised version, the total number of clock cycles reduced for the total of 7 instructions to manage and execute the loop is 4 (i.e. 1.75 speedup). The optimised version gets from 5 to 2 (5 because it cannot be assumed that “v = v + 1” will always be optimised to the loop counter) (i.e. 2.5 speedup). These speedups get less as the number of instructions in the loop body increase, thus, the only way to determine potential speedup is to simulate benchmarks while keeping a count of the number of loops that can be compiled to incrementing and non-incrementing
 loops.

Chapter 5
Performance

5.1

Method

Determining the total speedup that could be achieved from implementing a hardware loop unit would definitely require the use of well-known benchmarks. The method that was used is as follows:

Firstly, selected SPEC2000 benchmarks were run through SimpleScalar
 to determine the total number of Alpha instructions that were to be executed for each benchmark.

Next, in order to determine the number of iterations of loops, the source code of each benchmark was augmented with two counters; one for counting the number of iterations for incrementing loops and the other for non-incrementing loops. As this augmentation was done by hand
, the number of the benchmarks profiled is not large, but is representative of good test cases.

As each loop was manually identified to be either incrementing or non-incrementing, the results are fairly accurate. In addition, the benchmarks were compiled without loop unrolling (standard optimisations), and with the verifications in the previous chapter, we can speculate with some accuracy the potential speedups. 

The results are then compared with a speculation of how many instructions can be saved vs. the total number of instructions executed.

5.2

Results

The graph below shows the results of the simulations performed. In this graph, each incrementing loop was speculated to have a savings of 3 instructions, and each non-incrementing loop, 2 instructions. In reality, the savings may be greater due to the different levels of optimisations in the code, the quality of the compilers and the variations in architectures.

The Y-Axis shows the percentage of instructions that could be saved due to a hardware loop unit.

Among the benchmarks, two compression algorithms, bzip2 and gzip were selected due to their compute-intensive algorithms. For both of these applications, the CPU spends about 7-9% of the time in loops. Incrementing loops are less frequent than non-incrementing loops, but only because I have manually identified only loops which increase by 1 to be incrementing loops. It can be speculated that at least 10% of the CPU time can be saved if the hardware loop unit can both increment and decrement in varying strides.

Another compute-intensive application, vpr (a FPGA place-and-route program), was analysed. This benchmark provided surprisingly good results, with about 37% savings from about 20% incrementing and 17% non-incrementing loops. It can be hypothesised that this may be because FPGA placement and routing consists of large amounts of micro-algorithms that are executed on different parts of the FPGA. This can also be seen during augmentation of the code, where incrementing loops consisting of a very small number of instructions (typically 1-2) are very common.

Next, a very different application, mcf (single-depot vehicle scheduling) was chosen to observe combinatorial explosion. This gave similar results to the rest of the benchmarks, but slightly better (9%). The final one, equake (seismic wave propagation), which is a floating-point benchmark, had about 7% of loop instructions. A point of interest that can be noted at this point is that these two benchmarks have very large proportions of incrementing loops compared to non-incrementing ones, justifying the support of incrementing loops in the hardware loop unit.

5.3

Discussion

The results above seem to show that standard applications probably spend about 10% of the time in loop overheads, and certain applications may spend their time in tighter loops, thus increasing the loop overhead the smaller the loops become (as in the “vpr” benchmark).

The results above, however, do not show the true amount of loop instructions because the loop counters were only placed into the benchmarks themselves. However, the loops in the system libraries were not counted at all and I believe that system library calls may account for large amounts of loops. Thus, the actual performance increase would be higher than what is shown above. This may be particularly apparent in “mcf” and “equake” as these two benchmarks rely on the standard math libraries, which probably execute many loops.

Finally, the speedup may even be greater still because these simulations were performed assuming perfect branch prediction, which does not normally occur.
5.4

Conclusion

A study of implementing loops in hardware and the expected performance gains was performed. It can be concluded that it is a viable alternative to standard loops due to its downward compatibility support and the integration having virtually no additional increase in the clock cycle time.

The speedups can be increased if more loop support was added into the hardware loop unit. This loop unit almost functions as an additional processing unit that could be exploited for other functions (e.g. instant variable assignment since it is placed in the instruction fetch stage) in the absence of loop instructions.

5.5

Future Work

Several improvements can still be made to the hardware loop unit, for example, to enable loop stacking for nested loops and to support more types of loops.

Compilation techniques can also be developed to parse and identify incrementing and non-incrementing loops.

In addition, more benchmarking can be performed to fully discover the potential of this technique, as well as trying to profile loops in the system libraries to improve the accuracy of the loop counts.
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Note: A point that is of worth to mention here would be that a different method was tried prior to making this decision. The “sim-profile” source code from SimpleScalar was modified to look for loop instructions in this manner:



1.	Look for a conditional branch instruction and keep note of its source register number and PC.

2.	If the source register number is updated by an integer instruction later, it could be an incremental loop. Keep note of this instruction’s PC as well.

3.	If the PC of the conditional branch is executed again, it must be a conditional loop. Keep a count of the number of iterations.



After simulating some test benches, the results did not prove to be substantial. E.g. out of 2,656,000+ conditional branches, only 97,000+ were identified to be loops, which accounts for less than 3% of the conditional branches which seems to be irregular (<0.01% of the entire code!).



This should be because there can be conditional branches to different points of the code within the loop itself. Thus, the simulation only detected very small, tight loops.



� EMBED MSGraph.Chart.8 \s ���



Loops are fundamental programming constructs in any program, but are not natively supported in hardware by general-purpose processors.



This project explores the possibility of supporting loops in general-purpose processors with a review of current loop-support mechanisms in DSPs and other architectures.



A proposed hardware loop unit is presented, and a VHDL implementation, simulation and area and speed estimations are performed to illustrate a proof of concept.



Next, the expected performance increase is then analysed by augmenting SPEC2000 benchmarks with loop counters and comparing them with the total number of instructions that would be executed.



Conclusions are then drawn about the possibility of such an implementation and any improvements that might be made in the future.





� Loop overheads refer to the additional clock cycles required to maintain the operation of a loop. For example, a standard “for” loop may require a conditional branch at the beginning of the loop, and an unconditional branch at the end, to return to the beginning.

� This would indicate that the body of the loop would have to be a sequential stream of instructions with each one following the previous with respect to their address (e.g. a loop body with PC addresses 1, 2, 3, 4, 5, 6 could be buffered into a ZOLB but not one which has the addresses 1, 3, 6, 7, 8, 9).

� One for testing the “for” condition at the beginning of the loop, one for branching back to the beginning of the loop, and one for incrementing the loop.

� At this point, it would be necessary to point out that the loop condition was not optimised to “while (stopbutton.event != event.clicked)” because any number and types of instructions may be executed before or after the testing condition.

� Consider the EX forwarding to the early branch unit. The EX result must be computed, the register numbers compared (4 comparisons for instruction type, writeback, and two register number comparisons), and forwarded to the early branch unit, where it has to accommodate for register file access latency, then compare the result again, and finally output a branch decision.

� The Alpha binaries were used for benchmarking in the next chapter, thus, all compilation results shown in this chapter were also derived from an Alpha-Linux cross-compiler (alpha-linux-gcc (gnu) version 3.2).

� In order to see if this was an Alpha trait, the same source code was compiled to i86-linux (native). The compiled code resulted in the same branching behaviour.

� The compiler options -O1, -O2, -O3 and –O4 all produced the same results for this particular segment of source code.

� The speedups that can be gained from non-incrementing loops would be one clock-cycle less than incrementing loops, as discussed in the chapters above.

� The sim-safe simulator was used, thus implicitly emulating perfect branch prediction, with SPEC2000 binaries provided by Chris Weaver at the University of Michigan (compiled with optimisations) � HYPERLINK "http://www.eecs.umich.edu/~chriswea/benchmarks/spec2000.html" ��http://www.eecs.umich.edu/~chriswea/benchmarks/spec2000.html�.

� This decision was made based on a two-day attempt to write code to augment the source code automatically. After creating a tokeniser and a parser, it seemed that successful automatic processing of the code would require a greater effort (estimated to be more than a week, at least) and hand-modifications seemed to be a faster and more reliable alternative (the modifications to 5 benchmarks were completed in about 10+ hours of work).



PAGE  

_1149254258

_1149262458

