Week 11: Search Tree Algorithms 2

Tree Review

Binary search trees …

- data structures designed for $O(\log n)$ search
- consist of nodes containing item (incl. key) and two links
- can be viewed as recursive data structure (subtrees)
- have overall ordering (data(Left) < root < data(Right))
- insert new nodes as leaves (or as root), delete from anywhere
- have structure determined by insertion order (worst: $O(n)$)

operations: insert, delete, search, rotate, rebalance, …

Randomised BST Insertion

Effects of order of insertion on BST shape:

- best case (for at-leaf insertion): keys inserted in pre-order (median key first, then median of lower half, median of upper half, etc.)
- worst case: keys inserted in ascending/descending order
- average case: keys inserted in random order $\Rightarrow O(\log_2 n)$

Tree ADT has no control over order that keys are supplied.

Can the algorithm itself introduce some randomness?

In the hope that this randomness helps to balance the tree …

Sidetrack: Random Numbers

How can a computer pick a number at random?

- it cannot

Software can only produce pseudo random numbers.

- a pseudo random number is one that is predictable
 - (although it may appear unpredictable)

\Rightarrow Implementation may deviate from expected theoretical behaviour

Sidetrack: Random Numbers

The most widely-used technique is called the Linear Congruential Generator (LCG)

- it uses a recurrence relation:

 $X_{n+1} = (a \cdot X_n + c) \mod m,$ where:

 - m is the "modulus"
 - $a, 0 < a < m$ is the "multiplier"
 - $c, 0 \leq c < m$ is the "increment"
 - X_0 is the "seed"
 - if $c=0$ it is called a multiplicative congruential generator

LCG is not good for applications that need extremely high-quality random numbers

- the period length is too short (length of the sequence at which point it repeats itself)
- a short period means the numbers are correlated

Sidetrack: Random Numbers

Trivial example:

- for simplicity assume $c=0$
- so the formula is $X_{n+1} = a \cdot X_n \mod m$
- try $a=11, m=31$, which generates the sequence:

 11, 28, 29, 9, 6, 4, 13, 19, 23, 5, 24, 16, 21, 14, 30, 20, 3, 22, 25, 27, 18, 12, 8, 26, 7, 15, 10, 17, 1, 11, 28, 29, 9, 6, 4, 13, 19, 23, 5, 24, 16, 21, 14, 30, 20, 3, 22, 25, 27, 18, 12, 8, 26, 7, 15, 10, 17, 1, 11, 28, 29, 9, 6, 4, 13, 19, 23, 5, 24, 16, 21, 14, 30, 20, 3, 22, 25, 27, 18, 12, 8, 26, 7, 15, 10, 17, 1, 11, 28, 29, 9, 6, 4, 13, 19, 23, 5, 24, 16, 21, 14, 30, 20, 3, 22, 25, 27, 18, 12, 8, 26, 7, 15, 10, 17, 1, 11, 28, 29, 9, 6, 4, 13, 19, 23, 5, 24, 16, 21, 14, 30, 20, 3, 22, 25, 27, 18, 12, 8, 26, 7, 15, 10, 17, 1, ...

- all the integers from 1 to 30 are here

Sidetrack: Random Numbers

Another trivial example:

- again let $c=0$
- try $a=12, m=30$
 - that is, $X_{n+1} = 12 \cdot X_n \mod 30$
 - which generates the sequence:

 12, 24, 18, 6, 12, 24, 18, 6, 12, 24, 18, 6, 12, 24, 18, 6, 12, 24, 18, 6, ...

- notice the period length ... clearly a terrible sequence
Most compilers use LCG-based algorithms that are slightly more involved; see www.mscs.dal.ca/~selinger/random/ for details (including a short C program that produces the exact same pseudo-random numbers as gcc for any given seed value).

... Sidetrack: Random Numbers

Two functions are required:

```c
srandom(int seed) // sets its argument as the seed
random() // uses a LCG technique to generate random
// numbers in the range 0 .. RAND_MAX
```

where the constant RAND_MAX is defined in stdlib.h
(depending on the computer: on the CSE network, RAND_MAX = 2147483647)

The period length of this random number generator is very large
approximately $16 \cdot \left(2^{31} - 1\right)$

... Sidetrack: Random Numbers

To convert the return value of `random()` to a number between 0 .. RANGE

- compute the remainder after division by RANGE+1

Using the remainder to compute a random number is not the best way:

- can generate a 'better' random number by using a more complex division
- but good enough for most purposes

Some applications require more sophisticated, cryptographically secure pseudo random numbers

Exercise #1: Random Numbers

Write a program to simulate 10,000 rounds of Two-up.

- Assume a $10 bet at each round
- Compute the overall outcome and average per round

```c
#include <stdlib.h>
#include <stdio.h>
#define RUNS 10000
#define BET 10
int main(void) {
   int coin1, coin2, n, sum = 0;
   for (n = 0; n < RUNS; n++) {
      do {
         coin1 = random() % 2;
         coin2 = random() % 2;
      } while (coin1 != coin2);
      if (coin1==1 && coin2==1)
         sum += BET;
      else
         sum -= BET;
   }
   printf("Final result: %d\n", sum);
   printf("Average outcome: %f\n", (float) sum / RUNS);
   return 0;
}
```

Randomised BST Insertion

Approach: normally do leaf insert, randomly do root insert.

```c
insertRandom(tree, item)
   Input tree, item
   Output tree with item randomly inserted
   if tree is empty then
      return new node containing item
   end if
   // p/q chance of doing root insert
   if random() mod q < p then
      return insertAtRoot(tree, item)
   else
      return insertAtLeaf(tree, item)
   end if
```

Seeding

There is one significant problem:

- every time you run a program with the same seed, you get exactly the same sequence of 'random' numbers (why?)

To vary the output, can give the random seeder a starting point that varies with time

- an example of such a starting point is the current time, `time(NULL)`
(NB: this is different from the UNIX command `time`, used to measure program running time)

```c
#include <time.h>
#include <time.h>

time(NULL) // returns the time as the number of seconds
// since the Epoch, 1970-01-01 00:00:00 +0000

// time(NULL) on October 10th, 2017, 12:59pm was 1507600763
// time(NULL) about a minute later was 1507600825
```
E.g. 30% chance ⇒ choose \(p=3, q=10 \)

Randomised BST Insertion

Cost analysis:
- similar to cost for inserting keys in random order: \(O(\log_2 n) \)
- does not rely on keys being supplied in random order

Approach can also be applied to deletion:
- standard method promotes inorder successor to root
- for the randomised method …
 - promote inorder successor from right subtree, OR
 - promote inorder predecessor from left subtree

Splay Trees

A kind of "self-balancing" tree …

Splay tree insertion modifies insertion-at-root method:
- by considering parent-child-grandchild (three level analysis)
- by performing double-rotations based on p-c-g orientation

The idea: appropriate double-rotations improve tree balance.

Splay tree implementations also do rotation-in-search:
- can provide similar effect to periodic rebalance
- improves balance, but makes search more expensive

Splay Trees

Cases for splay tree double-rotations:
- case 1: grandchild is left-child of left-child
- case 2: grandchild is right-child of left-child
- case 3: grandchild is left-child of right-child
- case 4: grandchild is right-child of right-child

Algorithm for splay tree insertion:

```plaintext
insertSplay(tree, item):
  Input tree, item
  Output tree with item splay-inserted
  if tree is empty then return new node containing item
  else if item = data(tree) then return tree
  else if item < data(tree) then
    if left(tree) is empty then rotateLeft
    else rotateLeft if item < data(left(tree))
    if right(tree) is empty then rotateRight
    else rotateRight if item > data(right(tree))
  else
    if right(tree) is empty then rotateRight
    else rotateRight if item > data(right(tree))
    if left(tree) is empty then rotateLeft
    else rotateLeft if item < data(left(tree))

```
Exercise #2: Splay Trees

Insert 18 into this splay tree:

```
    14
   / \
  11   22
 /     /
10     31
```

Correction:

```
if left(tree) is empty then
    left(tree)=new node containing item
else if item<data(left(tree)) then
    left(left(tree))=insertSplay(left(left(tree)),item)
    left(tree)=rotateRight(left(tree))
else // Case 2: right-child of left-child
    right(left(tree))=insertSplay(right(left(tree)),item)
    left(tree)=rotateLeft(left(tree))
end if
return rotateRight(tree)
else if item>data(tree) then
    if right(tree) is empty then
        right(tree)=new node containing item
    else if item<data(right(tree)) then
        right(right(tree))=insertSplay(right(right(tree)),item)
        right(tree)=rotateRight(right(tree))
    else // Case 4: right-child of right-child
        right(right(tree))=insertSplay(right(right(tree)),item)
        right(tree)=rotateLeft(right(tree))
    end if
    return rotateLeft(tree)
else
    return rotateRight(tree)
end if
```

Exercise #3: Splay Trees

If we search for 22 in the splay tree

```
    14
   / \
  11   22
 /     /
10     31
```

... how does this affect the tree?

... Splay Trees

Searching in splay trees:

```
searchSplay(tree,item):
```

Analysis of splay tree performance:

- assume that we "splay" for both insert and search
- consider: m insert+search operations, n nodes
- total number of comparisons: average $O((n+m) \cdot \log_2(n+m))$

Gives good overall (amortized) cost.
insert cost not significantly different to insert-at-root
search cost increases, but …
 improves balance on each search
 moves frequently accessed nodes closer to root

But … still has worst-case search cost $O(n)$

Real Balanced Trees

Better Balanced Binary Search Trees

So far, we have seen …

- randomised trees … make poor performance unlikely
- occasional rebalance … fix balance periodically
- splay trees … reasonable amortized performance
- but both types still have $O(n)$ worst case

Ideally, we want both average/worst case to be $O(\log n)$

- AVL trees … fix imbalances as soon as they occur
- 2-3-4 trees … use varying-sized nodes to assist balance
- red-black trees … isomorphic to 2-3-4, but binary nodes

AVL Trees

Invented by Georgy Adelson-Velsky and Evgenii Landis

Approach:

- insertion (at leaves) may cause imbalance
- repair balance as soon as we notice imbalance
- repairs done locally, not by overall tree restructure

A tree is unbalanced when: $\text{abs}(\text{height(left)} - \text{height(right)}) > 1$

This can be repaired by a single rotation:

- if left subtree too deep, rotate right
- if right subtree too deep, rotate left

Problem: determining height/depth of subtrees may be expensive.

Implementation of AVL insertion

```
insertAVL(tree, item):
  Input  tree, item
  Output tree with item AVL-inserted
  if tree is empty then
    return new node containing item
  else if item = data(tree) then
    return tree
  else
    if item < data(tree) then
      left(tree) = insertAVL(left(tree), item)
    else if item > data(tree) then
      right(tree) = insertAVL(right(tree), item)
    end if
    if height(left(tree)) - height(right(tree)) > 1 then
      tree = rotateRight(tree)
    else if height(right(tree)) - height(left(tree)) > 1 then
      tree = rotateLeft(tree)
    end if
    return tree
end if
```

Exercise #4: AVL Trees

Insert 27 into the AVL tree
Analysis of AVL trees:
- trees are height-balanced; subtree depths differ by +/-1
- average/worst-case search performance of $O(\log n)$
- require extra data to be stored in each node (efficiency)
- may not be weight-balanced; subtree sizes may differ

2-3-4 Trees

2-3-4 trees have three kinds of nodes
- 2-nodes, with two children (same as normal BSTs)
- 3-nodes, two values and three children
- 4-nodes, three values and four children

2-3-4 trees are ordered similarly to BSTs

In a balanced 2-3-4 tree:
- all leaves are at same distance from the root
- 2-3-4 trees grow "upwards" from the leaves.

Possible 2-3-4 tree data structure:

```c
typedef struct node {
   int          order;     // 2, 3 or 4
   int          data[3];   // items in node
   struct node *child[4];  // links to subtrees
} node;
```

Searching in 2-3-4 trees:

Search(tree, item):

```c
Input  tree, item
Output address of item if found in 2-3-4 tree
       NULL otherwise
if tree is empty then
   return NULL
else
   i=0
   while i<tree.order-1 ∧ item>tree.data[i] do
      i=i+1  // find relevant slot in data[]
   end while
   if item=tree.data[i] then
      // item found
      return address of tree.data[i]
   else    // keep looking in relevant subtree
      return Search(tree.child[i], item)
   end if
end if
```

2-3-4 tree searching cost analysis:
- as for other trees, worst case determined by height h
- 2-3-4 trees are always balanced ⇒ height is $O(\log n)$
- worst case for height: all nodes are 2-nodes
 same case as for balanced BSTs, i.e. $h = \log_2 n$
- best case for height: all nodes are 4-nodes
 balanced tree with branching factor 4, i.e. $h = \log_4 n$

Insertion into 2-3-4 Trees

Insertion algorithm:
- find leaf node where Item belongs (via search)
- if not full (i.e. order < 4)
Insertion into a 2-node or 3-node:

Insertion into a 4-node (requires a split):

Insertion into 4-node (requires a split):

Splitting the root:

Exercise #5: Insertion into 2-3-4 Tree

Show what happens when D, S, F, U are inserted into this tree:

Insertion algorithm:

```python
insert(tree, item):
    Input 2-3-4 tree, item
    Output tree with item inserted
    if tree is empty then
        return new node containing item
    end if
    node=Search(tree, item)
    parent=parent of node
    if node.order<4 then
        increment node.order
        insert item into node
    else
        promote = node.data[1]  // middle value
        nodeL  = new node containing data[0]
        nodeR  = new node containing data[2]
        if item<node.data[1] then
            nodeL.data = node.data[0:1]
            nodeL = insert(nodeL, item)
        else
            nodeR.data = node.data[1:2]
            nodeR = insert(nodeR, item)
        end if
        insert nodeL to parent as a new leaf
        if parent.order<4 then
            nodeL.order = nodeL.order+1
        else
            promote = nodeL.data[1]
            nodeLL = new node containing data[0]
            nodeLR = new node containing data[1]
            if item<nodeL.data[1] then
                nodeLL.data = nodeL.data[0:1]
                nodeLL = insert(nodeLL, item)
            else
                nodeLR.data = nodeL.data[1:2]
                nodeLR = insert(nodeLR, item)
            end if
            insert nodeLL to parent as a new leaf
            promote = nodeLL.data[1]
            nodeLLL = new node containing data[0]
            nodeLLR = new node containing data[1]
            if item<nodeLL.data[1] then
                nodeLLL.data = nodeLL.data[0:1]
                nodeLLL = insert(nodeLLL, item)
            else
                nodeLLR.data = nodeLL.data[1:2]
                nodeLLR = insert(nodeLLR, item)
            end if
            promote = nodeLLR.data[1]
            nodeLLLR = new node containing data[1:2]
            nodeLLR = insert(nodeLLR, item)
            insert nodeLLLR to parent as a new leaf
            promote = nodeLLLR.data[1]
            nodeLLLL = new node containing data[0:1]
            nodeLLRL = new node containing data[1:2]
            if item<nodeLL.data[1] then
                nodeLLLL.data = nodeLLL.data[0:1]
                nodeLLLL = insert(nodeLLLL, item)
            else
                nodeLLRL.data = nodeLLR.data[1:2]
                nodeLLRL = insert(nodeLLRL, item)
            end if
            promote = nodeLLRL.data[1]
            nodeLLRLR = new node containing data[1:2]
            nodeLLRL = insert(nodeLLRL, item)
            promote = nodeLLRLR.data[1]
            nodeLLRLL = new node containing data[1:2]
            nodeLLRL = insert(nodeLLRL, item)
            promote = nodeLLRLL.data[1]
            nodeLLRLR = new node containing data[1:2]
            nodeLLRL = insert(nodeLLRL, item)
            promote = nodeLLRLR.data[1]
            nodeLLRLL = new node containing data[1:2]
            nodeLLRL = insert(nodeLLRL, item)
            promote = nodeLLRLL.data[1]
            nodeLLRLR = new node containing data[1:2]
            nodeLLRL = insert(nodeLLRL, item)
            promote = nodeLLRLR.data[1]
            nodeLLRLL = new node containing data[1:2]
            nodeLLRL = insert(nodeLLRL, item)
            promote = nodeLLRLL.data[1]
            nodeLLRLR = new node containing data[1:2]
            nodeLLRL = insert(nodeLLRL, item)
            promote = nodeLLRLR.data[1]
            nodeLLRLL = new node containing data[1:2]
            nodeLLRL = insert(nodeLLRL, item)
            promote = nodeLLRLL.data[1]
            nodeLLRLR = new node containing data[1:2]
            nodeLLRL = insert(nodeLLRL, item)
            promote = nodeLLRLR.data[1]
            nodeLLRLL = new node containing data[1:2]
            nodeLLRL = insert(nodeLLRL, item)
            promote = nodeLLRLL.data[1]
            nodeLLRLR = new node containing data[1:2]
            nodeLLRL = insert(nodeLLRL, item)
            promote = nodeLLRLL.data[1]
            nodeLLRLR = new node containing data[1:2]
            nodeLLRL = insert(nodeLLRL, item)
        end if
        insert promote to parent
        if parent.order<4 then
            parent.order = parent.order+1
            insert parent into new root
        else
            promote = parent.data[1]
            parentLP = new node containing data[0]
            parentRP = new node containing data[1]
            if item<parent.data[1] then
                parentLP.data = parent.data[0:1]
                parentLP = insert(parentLP, item)
            else
                parentRP.data = parent.data[1:2]
                parentRP = insert(parentRP, item)
            end if
            insert parentLP to parent as a new leaf
            promote = parentLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
            parentLPLP = new node containing data[0]
            parentLP = insert(parentLP, item)
            promote = parentLPLP.data[1]
        end if
    end if
end if
```

Building a 2-3-4 tree … / insertions:

Insertion into 2-3-4 Trees

Splitting the root:

Exercise #5: Insertion into 2-3-4 Tree

Show what happens when D, S, F, U are inserted into this tree:

Insertion into 2-3-4 Trees

Splitting the root:

Exercise #5: Insertion into 2-3-4 Tree

Show what happens when D, S, F, U are inserted into this tree:

Insertion into 2-3-4 Trees

Splitting the root:
```
insert(nodeL, item)
else
insert(nodeR, item)
end if
insert(parent, promote)
while parent.order = 4 do
    continue promote/split upwards
end while
if parent is root ∧ parent.order = 4 then
    split root, making new root
end if
```

... Insertion into 2-3-4 Trees

Variations on 2-3-4 trees ...

Variation #1: why stop at 4? why not 2-3-4-5 trees? or M-way trees?
- allow nodes to hold up to \(M-1 \) items, and at least \(M/2 \)
- if each node is a disk-page, then we have a *B-tree* (databases)
 for B-trees, depending on item size, \(M > 100/200/400 \)

Variation #2: don't have "variable-sized" nodes
- use standard BST nodes, augmented with one extra piece of data
- implement similar strategy as 2-3-4 trees → red-black trees.

Red-Black Trees

Red-black trees are a representation of 2-3-4 trees using BST nodes.

- each node needs one extra value to encode link type
- but we no longer have to deal with different kinds of nodes

Link types:
- *red* links … combine nodes to represent 3- and 4-nodes
- *black* links … analogous to "ordinary" BST links (child links)

Advantages:
- standard BST search procedure works unmodified
- get benefits of 2-3-4 tree self-balancing (although deeper)

Definition of a red-black tree

- a BST in which each node is marked red or black
- no two red nodes appear consecutively on any path
- a red node corresponds to a 2-3-4 sibling of its parent
- a black node corresponds to a 2-3-4 child of its parent

Balanced red-black tree
- all paths from root to leaf have same number of black nodes

Insertion algorithm: avoids worst case \(O(n) \) behaviour

Search algorithm: standard BST search

Red-Black Trees

Representing 4-nodes in red-black trees:

Some texts colour the links rather than the nodes.

Red-Black Trees

Representing 3-nodes in red-black trees (two possibilities):

Red-Black Trees

Equivalent trees (one 2-3-4, one red-black):
Red-Black Trees

Red-black tree implementation:

typedef enum {RED, BLACK} Colour;
typedef struct node *RBTree;
typedef struct node {
 int data; // actual data
 Colour colour; // relationship to parent
 RBTree left; // left subtree
 RBTree right; // right subtree
} node;

#define colour(tree) ((tree)->colour)
#define isRed(tree) ((tree) != NULL && (tree)->colour == RED)

RED = node is part of the same 2-3-4 node as its parent (sibling)
BLACK = node is a child of the 2-3-4 node containing the parent

Search method is standard BST search:

SearchRedBlack(tree, item):

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree, item</td>
<td>true if item found in red-black tree</td>
</tr>
<tr>
<td></td>
<td>false otherwise</td>
</tr>
</tbody>
</table>

if tree is empty then
 return false
else if item < data(tree) then
 return SearchRedBlack(left(tree), item)
else if item > data(tree) then
 return SearchRedBlack(right(tree), item)
else // found
 return true
end if

Red-Black Tree Insertion

Insertion is more complex than for standard BSTs

- need to recall direction of last branch (L or R)
- need to recall whether parent link is red or black
- splitting/promoting implemented by rotateLeft/rotateRight
- several cases to consider depending on colour/direction combinations

High-level description of insertion algorithm:

insertRB(tree, item, inRight):

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree, item, inRight indicating direction of last branch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tree with it inserted</td>
</tr>
</tbody>
</table>

if tree is empty then
 return newNode(item)
end if
if left(tree) and right(tree) both are RED then
 split 4-node
else
 // found
 return true
end if
insertRedBlack(tree, item):
 Input red-black tree, item
 Output tree with item inserted
 tree = insertRB(tree, item, false)
 colour(tree) = BLACK
 return tree

... Red-Black Tree Insertion

Splitting a 4-node, in a red-black tree:

Algorithm:
if isRed(left(currentTree)) \& isRed(right(currentTree)) then
 colour(currentTree) = RED
 colour(left(currentTree)) = BLACK
 colour(right(currentTree)) = BLACK
end if

... Red-Black Tree Insertion

Simple recursive insert (a la BST):

Algorithm:
if item < data(tree) then
 left(tree) = insertRB(left(tree), item, false)
 re-arrange links/colours after insert
else
 item larger than data in root
 right(tree) = insertRB(right(tree), item, true)
 re-arrange links/colours after insert
end if

... Red-Black Tree Insertion

Example of insertion, starting from empty tree:
22, 12, 8, 15, 11, 19, 43, 44, 45, 42, 41, 40, 39

Not affected by colour of tree node.
Red-black Tree Performance

Cost analysis for red-black trees:

- tree is well-balanced; worst case search is $O(\log_2 n)$
- insertion affects nodes down one path; max #rotations is $2h$
 (where h is the height of the tree)

Only disadvantage is complexity of insertion/deletion code.

Note: red-black trees were popularised by Sedgewick.

Summary

- Random numbers
- Real balanced trees
 - Splay trees
 - AVL trees
 - 2-3-4 trees
- Red-black trees

Suggested reading:
- Sedgewick, Ch.13.1-13.4