Tree Review

Binary search trees ...
- data structures designed for $O(\log n)$ search
- consist of nodes containing item (incl. key) and two links
- can be viewed as recursive data structure (subtrees)
- have overall ordering (data(Left) < root < data(Right))
- insert new nodes as leaves (or as root), delete from anywhere
- have structure determined by insertion order (worst: $O(n)$)
- operations: insert, delete, search, rotate, rebalance, ...

Randomised BST Insertion

Effects of order of insertion on BST shape:
- best case: keys inserted in pre-order (median key first, then median of lower half, median of upper half, etc.)
- worst case: keys inserted in ascending/descending order
- average case: keys inserted in random order => $O(\log n)$

Tree ADT has no control over order that keys are supplied.

Can the algorithm itself introduce some randomness?

In the hope that this randomness helps to balance the tree ...

Sidetrack: Random Numbers

How can a computer pick a number at random?
- it cannot

Software can only produce pseudo random numbers.
- a pseudo random number is one that is predictable
 - (although it may appear unpredictable)

⇒ Implementation may deviate from expected theoretical behaviour

Sidetrack: Random Numbers

The most widely-used technique is called the Linear Congruential Generator (LCG)
- it uses a recurrence relation:

$$X_{n+1} = (aX_n + c) \mod m,$$
where:
- m is the "modulus"
- $a, 0 < a < m$ is the "multiplier"
- $c, 0 \leq c \leq m$ is the "increment"
- X_0 is the "seed"
- if $c=0$ it is called a multiplicative congruential generator

LCG is not good for applications that need extremely high-quality random numbers
- the period length is too short (length of the sequence at which point it repeats itself)
- a short period means the numbers are correlated

Sidetrack: Random Numbers

Trivial example:
- for simplicity assume $c=0$
- so the formula is $X_{n+1} = aX_n \mod m$
- try $a=11=X_0$, $m=31$, which generates the sequence:

11, 28, 29, 9, 6, 4, 13, 19, 23, 5, 24, 16, 21, 14, 30, 20, 3, 2, 22, 25, 27, 18, 12, 8, 26, 7, 15, 10, 17, 1, 11, 28, 29, 9, 6, 4, 13, 19, 23, 5, 24, 16, 21, 14, 30, 20, 3, 2, 22, 25, 27, 18, 12, 8, 26, 7, 15, 10, 17, 1, 11, 28, 29, 9, 6, 4, 13, 19, 23, 5, 24, 16, 21, 14, 30, 20, 3, 2, 22, 25, 27, 18, 12, 8, 26, 7, 15, 10, 17, 1, ...

all the integers from 1 to 30 are here

Sidetrack: Random Numbers

Another trivial example:
- again let $c=0$
- try $a=12=X_0$ and $m=30$
 - that is, $X_{n+1} = 12X_n \mod 30$
 - which generates the sequence:

12, 24, 18, 6, 12, 24, 18, 6, 12, 24, 18, 6, 12, 24, 18, 6, 12, 24, 18, 6, 12, 24, 18, 6, 12, 24, 18, 6, 12, 24, 18, 6, 12, 24, 18, 6, ...

notice the period length … clearly a terrible sequence

Sidetrack: Random Numbers

It is a complex task to pick good numbers. A bit of history:

Lewis, Goodman and Miller (1969) suggested
\[X_{n+1} = 7^5 X_n \mod (2^{31} - 1) \]

note:
- \(7^5 = 16807 \)
- \(2^{31} - 1 = 2147483674 \)
- \(X_0 = 0 \) is not a good seed value

Most compilers use LCG-based algorithms that are slightly more involved; see www.mscs.dal.ca/~selinger/random/ for details (including a short C program that produces the exact same pseudo-random numbers as `gcc` for any given seed value).

Sidetrack: Random Numbers

- Two functions are required:
 - `srandom(int seed)` // sets its argument as the seed
 - `random()` // uses a LCG technique to generate random
 // numbers in the range 0 .. RAND_MAX

 where the constant `RAND_MAX` is defined in `stdlib.h`
 (depends on the computer: on the CSE network, `RAND_MAX = 2147483647`)

- The period length of this random number generator is very large
 approximately \(16 \times (2^{31} - 1) \)

Sidetrack: Random Numbers

To convert the return value of `random()` to a number between 0 .. RANGE
- compute the remainder after division by `RANGE+1`

Using the remainder to compute a random number is not the best way:
- can generate a 'better' random number by using a more complex division
- but good enough for most purposes

Some applications require more sophisticated, *cryptographically secure* pseudo random numbers

Exercise #1: Random Numbers

Write a program to simulate 10,000 rounds of Two-up.
- Assume a $10 bet at each round
- Compute the overall outcome and average per round

```c
#include <stdlib.h>
#include <stdio.h>

#define RUNS 10000
#define BET 10

int main(void) {
   int coin1, coin2, n, sum = 0;
   for (n = 0; n < RUNS; n++) {
      do {
         coin1 = random() % 2;
         coin2 = random() % 2;
      } while (coin1 != coin2);
      if (coin1==1 && coin2==1)
         sum += BET;
      else
         sum -= BET;
   }
   printf("Final result: %d\n", sum);
   printf("Average outcome: %f\n", (float) sum / RUNS);
   return 0;
}
```

Sidetrack: Random Numbers

Seeding

There is one significant problem:

- every time you run a program with the same seed, you get exactly the same sequence of 'random' numbers (why?)

To vary the output, can give the random seeder a starting point that varies with time

- an example of such a starting point is the current time, `time(NULL)`
 (NB: this is different from the UNIX command `time`, used to measure program running time)

```c
#include <time.h>
time(NULL) // returns the time as the number of seconds
  // since the Epoch, 1970-01-01 00:00:00 +0000

// time(NULL) on October 10th, 2017, 12:59pm was 1507600763
// time(NULL) about a minute later was 1507600825
```

Randomised BST Insertion

Approach: normally do leaf insert, randomly do root insert.

```c
insertRandom(tree, item)
  Input   tree, item
  Output  tree with item randomly inserted

  if tree is empty then
      return new node containing item
  end if
  // p/q chance of doing root insert
  if random() mod q < p then
```
return insertAtRoot(tree, item)
else
 return insertAtLeaf(tree, item)
end if

E.g. 30% chance ⇒ choose p=3, q=10

Randomised BST Insertion

Cost analysis:
- similar to cost for inserting keys in random order: \(O(\log_2 n)\)
- does not rely on keys being supplied in random order

Approach can also be applied to deletion:
- standard method promotes inorder successor to root
- for the randomised method …
 - promote inorder successor from right subtree, OR
 - promote inorder predecessor from left subtree

Splay Trees

A kind of "self-balancing" tree …

Splay tree insertion modifies insertion-at-root method:
- by considering parent-child-grandchild (three level analysis)
- by performing double-rotations based on p-c-g orientation

The idea: appropriate double-rotations improve tree balance.

Splay tree implementations also do rotation-in-search:
- can provide similar effect to periodic rebalance
- improves balance, but makes search more expensive

Splay Trees

Cases for splay tree double-rotations:
- case 1: grandchild is left-child of left-child
- case 2: grandchild is right-child of left-child
- case 3: grandchild is left-child of right-child
- case 4: grandchild is right-child of right-child

Splay Trees

Example: double-rotation case for left-child of left-child:

Splay Trees

Example: double-rotation case for right-child of left-child:

Splay Trees

Algorithm for splay tree insertion:

\[
\text{insertSplay}(\text{tree}, \text{item})
\]
Exercise #2: Splay Trees

Insert 18 into this splay tree:

... Splay Trees

Searching in splay trees:

searchSplay(tree, item):

| Input tree, item |
| Output address of item if found in tree |

| if tree=NULL then return NULL |
| else |
| tree=splay(tree, item) |
| if data(tree)=item then return tree |
| else return NULL |
| end if |
| end if |

where splay() is similar to insertSplay(), except that it doesn't add a node ... simply moves item to root if found, or nearest node if not found

Exercise #3: Splay Trees

If we search for 22 in the splay tree

... how does this affect the tree?
... Splay Trees

Analysis of splay tree performance:

- assume that we "splay" for both insert and search
- consider: \(m \) insert+search operations, \(n \) nodes
- total number of comparisons: average \(O((n+m) \cdot \log_2(n+m)) \)

Gives good overall (amortized) cost.

- insert cost not significantly different to insert-at-root
- search cost increases, but...
 - improves balance on each search
 - moves frequently accessed nodes closer to root

But … still has worst-case search cost \(O(n) \)

Real Balanced Trees

Better Balanced Binary Search Trees

So far, we have seen …

- randomised trees … make poor performance unlikely
- occasional rebalance … fix balance periodically
- splay trees … reasonable amortized performance
- but both types still have \(O(n) \) worst case

Ideally, we want both average/worst case to be \(O(\log n) \)

- AVL trees … fix imbalances as soon as they occur
- 2-3-4 trees … use varying-sized nodes to assist balance
- red-black trees … isomorphic to 2-3-4, but binary nodes

AVL Trees

Invented by Georgy Adelson-Velsky and Evgenii Landis

Approach:

- insertion (at leaves) may cause imbalance
- repair balance as soon as we notice imbalance
- repairs done locally, not by overall tree restructure

A tree is unbalanced when: \(\text{abs}(\text{height(left)} - \text{height(right)}) > 1 \)

This can be repaired by a single rotation:

- if left subtree too deep, rotate right
- if right subtree too deep, rotate left

Problem: determining height/depth of subtrees may be expensive.

AVL Trees

Implementation of AVL insertion

```
insertAVL(tree, item):
    Input tree, item
    Output tree with item AVL-inserted

    if tree is empty then
        return new node containing item
    else if item=data(tree) then
        return tree
    else
        if item<data(tree) then
            left(tree)=insertAVL(left(tree), item)
        else if item>data(tree) then
            right(tree)=insertAVL(right(tree), item)
        end if
        if height(left(tree))-height(right(tree)) > 1 then
            if item>data(left(tree)) then
                left(tree)=rotateLeft(left(tree))
            end if
            tree=rotateRight(tree)
        end if
        else if height(right(tree))-height(left(tree)) > 1 then
            if item<data(right(tree)) then
                right(tree)=rotateRight(right(tree))
            end if
            tree=rotateLeft(tree)
        end if
        return tree
    end if
```

Exercise #4: AVL Trees

Insert 27 into the AVL tree

Analysis of AVL trees:
- trees are height-balanced; subtree depths differ by +/-1
- average/worst-case search performance of $O(\log n)$
- require extra data to be stored in each node (efficiency)
- may not be weight-balanced; subtree sizes may differ

2-3-4 Trees

2-3-4 trees are ordered similarly to BSTs

In a balanced 2-3-4 tree:
- all leaves are at same distance from the root
2-3-4 trees grow "upwards" from the leaves.

2-3-4 Trees

Possible 2-3-4 tree data structure:

```c
typedef struct node {
    int order;     // 2, 3 or 4
    int data[3];   // items in node
    struct node *child[4];  // links to subtrees
} node;
```

2-3-4 Trees

Searching in 2-3-4 trees:

```c
Search(tree, item):
    Input tree, item
    Output address of item if found in 2-3-4 tree
          NULL otherwise
    if tree is empty then
        return NULL
    else
        i=0
        while i<tree.order-1 ∧ item>tree.data[i] do
            i=i+1   // find relevant slot in data[]
        end while
        if item=tree.data[i] then  // item found
            return address of tree.data[i]
    end if
```
else // keep looking in relevant subtree
 return Search(tree.child[i], item)
end if

... 2-3-4 Trees

2-3-4 tree searching cost analysis:
- as for other trees, worst case determined by height h
- 2-3-4 trees are always balanced \Rightarrow height is $O(\log n)$
- worst case for height: all nodes are 2-nodes
 same case as for balanced BSTs, i.e. $h = \log_2 n$
- best case for height: all nodes are 4-nodes
 balanced tree with branching factor 4, i.e. $h = \log_4 n$

Insertion into 2-3-4 Trees

Insertion algorithm:
- find leaf node where Item belongs (via search)
- if not full (i.e. order < 4)
 - insert Item in this node, order++
- if node is full (i.e. contains 3 items)
 - split into two 2-nodes as leaves
 - promote middle element to parent
 - insert item into appropriate leaf 2-node
 - if parent is a 4-node
 - continue split/promote upwards
 - if promote to root, and root is a 4-node
 - split root node and add new root

Exercise #5: Insertion into 2-3-4 Tree

Show what happens when D, S, F, U are inserted into this tree:
Insertion into 2-3-4 Trees

Insertion algorithm:

```python
insert(tree, item):
    | Input  2-3-4 tree, item
    | Output tree with item inserted
    |
    if tree is empty then
        return new node containing item
    end if
    node = Search(tree, item)
    parent = parent of node
    if node.order < 4 then
        insert item into node
        increment node.order
    else
        promote = node.data[1] // middle value
        nodeL = new node containing data[0]
        nodeR = new node containing data[2]
        if item < node.data[1] then
            insert(nodeL, item)
        else
            insert(nodeR, item)
        end if
        insert(parent, promote)
        while parent.order = 4 do
            continue promote/split upwards
        end while
        if parent is root ∧ parent.order = 4 then
            split root, making new root
        end if
    end if
```

Variations on 2-3-4 trees …

Variation #1: why stop at 4? why not 2-3-4-5 trees? or M-way trees?

- allow nodes to hold up to M-1 items, and at least M/2
- if each node is a disk-page, then we have a B-tree (databases)
- for B-trees, depending on item size, M > 100/200/400

Variation #2: don't have "variable-sized" nodes

- use standard BST nodes, augmented with one extra piece of data
- implement similar strategy as 2-3-4 trees → red-black trees.

Red-Black Trees

Red-black trees are a representation of 2-3-4 trees using BST nodes.

- each node needs one extra value to encode link type
- but we no longer have to deal with different kinds of nodes

Link types:

- red links … combine nodes to represent 3- and 4-nodes
- black links … analogous to "ordinary" BST links (child links)

Advantages:

- standard BST search procedure works unmodified
- get benefits of 2-3-4 tree self-balancing (although deeper)

Red-Black Trees

Definition of a red-black tree

- a BST in which each node is marked red or black
- no two red nodes appear consecutively on any path
- a red node corresponds to a 2-3-4 sibling of its parent
- a black node corresponds to a 2-3-4 child of its parent

Balanced red-black tree

- all paths from root to leaf have same number of black nodes

Insertion algorithm: avoids worst case $O(n)$ behaviour

Search algorithm: standard BST search

Representing 4-nodes in red-black trees:

Some texts colour the links rather than the nodes.
Representing 3-nodes in red-black trees (two possibilities):

Equivalent trees (one 2-3-4, one red-black):

Red-black tree implementation:

```c
typedef enum {RED, BLACK} Colour;
typedef struct node *RBTree;
typedef struct node {
    int    data;    // actual data
    Colour colour;    // relationship to parent
    RBTree left;    // left subtree
    RBTree right;   // right subtree
} node;

#define colour(tree) ((tree)->colour)
#define isRed(tree)  ((tree) != NULL && (tree)->colour == RED)

RED = node is part of the same 2-3-4 node as its parent (sibling)
BLACK = node is a child of the 2-3-4 node containing the parent

New nodes are always red:

```c
RBTree newNode(Item it) {
 RBTree new = malloc(sizeof(Node));
 assert(new != NULL);
 data(new) = it;
 colour(new) = RED;
 left(new) = right(new) = NULL;
 return new;
}
```

Node.red allows us to distinguish links

- black = parent node is a "real" parent
- red = parent node is a 2-3-4 neighbour

Search method is standard BST search:

```c
SearchRedBlack(tree, item):
 Input tree, item
 Output true if item found in red-black tree
 false otherwise
 |
 if tree is empty
 |
 return false
 |
 else if item < data(tree)
 |
 return SearchRedBlack(left(tree), item)
 |
 else if item > data(tree)
 |
 return SearchRedBlack(right(tree), item)
 |
 else
 |
 return true
 |
 end if
```

Red-Black Tree Insertion

Insertion is more complex than for standard BSTs
need to recall direction of last branch (L or R)
need to recall whether parent link is red or black
splitting/promoting implemented by rotateLeft/rotateRight
several cases to consider depending on colour/direction combinations

---

... Red-Black Tree Insertion

High-level description of insertion algorithm:

```
insertRB(tree, item, inRight):
| Input tree, item, inRight indicating direction of last branch |
| Output tree with it inserted |
| if tree is empty then |
| return newNode(item) |
| end if |
| if left(tree) and right(tree) both are RED then |
| split 4-node |
| end if |
| recursive insert cases (cf. regular BST) |
| re-arrange links/colours after insert |
| return modified tree |
```

```
insertRedBlack(tree, item):
| Input red-black tree, item |
| Output tree with item inserted |
| tree=insertRB(tree, item, false) |
| colour(tree)=BLACK |
| return tree |
```

---

... Red-Black Tree Insertion

Splitting a 4-node, in a red-black tree:

```
if isRed(left(currentTree)) ∧ isRed(right(currentTree)) then
 currentTree=rotateRight(currentTree)
 colour(currentTree)=BLACK
 colour(right(currentTree))=RED
end if
```

---

... Red-Black Tree Insertion

Simple recursive insert (a la BST):

```
if item<data(tree)) then
 left(tree)=insertRB(left(tree), item, false)
re-arrange links/colours after insert
else
 // item larger than data in root
 right(tree)=insertRB(right(tree), item, true)
re-arrange links/colours after insert
end if
```

Not affected by colour of tree node.

---

... Red-Black Tree Insertion

Re-arrange after insert (1): two successive red links = newly-created 4-node

```
if isRed(left(currentTree)) ∧ isRed(left(left(currentTree))) then
 currentTree=rotateRight(currentTree)
 colour(currentTree)=BLACK
 colour(right(currentTree))=RED
end if
```

---

... Red-Black Tree Insertion

Re-arrange after insert (2): "normalise" direction of successive red links

```
if isRed(left(currentTree)) ∧ isRed(right(currentTree)) then
 colour(currentTree)=RED
 colour(left(currentTree))=BLACK
 colour(right(currentTree))=BLACK
end if
```
Algorithm:

```plaintext
if inRight ∧ isRed(currentTree) ∧ isRed(left(currentTree)) then
 currentTree = rotateRight(currentTree)
end if
```

---

**Red-Black Tree Insertion**

Example of insertion, starting from empty tree:

22, 12, 8, 15, 11, 19, 43, 44, 45, 42, 41, 40, 39

---

**Red-black Tree Performance**

Cost analysis for red-black trees:

- tree is well-balanced; worst case search is $O(\log_2 n)$
- insertion affects nodes down one path; max #rotations is $2 \cdot h$
  (where $h$ is the height of the tree)

Only disadvantage is complexity of insertion/deletion code.

Note: red-black trees were popularised by Sedgewick.

---

**Summary**

- Random numbers
- Self-adjusting trees
  - Splay trees
  - AVL trees
  - 2-3-4 trees
  - Red-black trees

- Suggested reading:
  - Sedgewick, Ch.13.1-13.4

Produced: 3 Nov 2017