
Linux, Locking and Lots of Processors

Peter Chubb — Principal Research Engineer

peter.chubb@data61.csiro.au

July 17, 2020

To give a complete rundown on the features and internals of Linux would take
a very very long time — it’s a large and complex operating system, with many
interesting features.
Instead, I’m going to give a bit of history of POSIX OSes leading up to Linux,
a (very brief) skim over the key abstractions and how they’re implemented,
and then talk about some things I’ve done over the last few years to improve
Linux scalability. I’ll also touch on Amdahl’s law and Gunther’s more gen-
eral ‘Universal Scalability Law’ in this section, and talk about the way locking
works for multi-processor support in the Linux kernel.

Copyright © 2020 Linux, Locking and Lots of Processors 1-1

A little bit of history

• MULTICS in the ’60s

• Ken Thompson and Dennis Ritchie in 1967–70

• USG and BSD

• John Lions 1976–95

• Andrew Tanenbaum 1987

• Linus Torvalds 1991

Copyright © 2020 Linux, Locking and Lots of Processors 2

The history of UNIX-like operating systems is a history of people being dissat-
isfied with what they have and wanting to do something better. It started when
Ken Thompson got a bit burnt-out programming MULTICS and wanted to port
a computer game (Space Travel). He found a disused PDP-7, and wrote an
interactive operating system to run his game. The main contribution at this
point was the simple file-system abstraction. And the key ingredients there
were firstly that the OS did not interpret file contents — an ordinary file is just
an array of bytes. Semantics are imposed by the user of the file. And sec-
ondly, a simple hierarchical naming system that hid details of disc layout and
disc volumes. The inode-based filesystem is the core of POSIX-like OSes; it
was sketched up over a lunchtime on a whiteboard by Denis Ritchie and Ken
Thompson.
Other people found UNIX interesting enough to want to port it to other sys-
tems, which led to the first major rewrite — from assembly to C. In some ways
UNIX was the first successfully portable OS.
After Ritchie & Thompson (1974) was published, AT&T became aware of a
growing market for UNIX. They wanted to discourage it: it was common for

Copyright © 2020 Linux, Locking and Lots of Processors 2-1

AT&T salesmen to say, ‘Here’s what you get: A whole lot of tapes, and an
invoice for $10 000’. Fortunately educational licences were (almost) free, and
universities around the world took up UNIX as the basis for teaching and
research.
John Lions and Ken Robinson here at UNSW read Ritchie & Thompson (1974),
and decided to try to use UNIX as a teaching tool. Ken sent off for the tapes,
the department put them on a PDP-11, and started exploring. The licence
that came with the tapes allowed disclosure of the source code for ‘Educa-
tion and Research’ — so John started his famous OS course, which involved
reading and commenting on the Edition 6 source code.
(It’s worth also looking at AUUGN 14(4)
https://minnie.tuhs.org/Archive/Documentation/AUUGN/AUUGN-V14.4

which was a special history issue and includes an interview from Greg Rose
who was involved in implementing the first UNIX system at UNSW, and an
article by Tony McGrath, who was involved in the first port of UNIX at the
University of Wollongong)
The University of California at Berkeley was another of those universities. In

Copyright © 2020 Linux, Locking and Lots of Processors 2-2

1977, Bill Joy (then a postgrad, later the co-founder of Sun Microsystems)
put together and released the first Berkeley Software Distribution — in this
instance, the main additions were a pascal compiler and Bill Joy’s ex editor
(which later became vi). Later BSDs contained contributed code from other
universities, including UNSW. The BSD tapes were freely shared between
source licensees of AT&T’s UNIX.
In 1979, AT&T changed their source licence (it’s conjectured, in response to
the popularity of the Lions book), and future AT&T licensees were not able to
use the book legally any more. UNSW obtained an exemption of some sort;
but the upshot was that the Lions book was copied and copied and studied
around the world, samizdat. However, the licence change also meant that an
alternative was needed for OS courses.
Many universities stopped teaching OS at any depth. One standout was Andy
Tanenbaum’s group in the Netherlands. He and his students wrote an OS
called ‘Minix’ which was (almost) system call compatible with Edition 7 UNIX,
and ran on readily available PC hardware. Minix gained popularity not only
as a teaching tool but as a hobbyist almost ‘open source’ OS.

Copyright © 2020 Linux, Locking and Lots of Processors 2-3

https://minnie.tuhs.org/Archive/Documentation/AUUGN/AUUGN-V14.4.pdf

In 1991, Linus Torvalds decided to write his own OS — after all, how hard
could it be? — to fix what he saw as some of the shortcomings of Minix. The
rest is history.

Copyright © 2020 Linux, Locking and Lots of Processors 2-4

Copyright © 2020 Linux, Locking and Lots of Processors 2-5

A little bit of history

• Basic concepts well established

– Process model

– File system model

– IPC

• Additions:

– Paged virtual memory (3BSD, 1979)

– TCP/IP Networking (BSD 4.1, 1983)

– Multiprocessing (Vendor Unices such as Sequent’s ‘Balance’,

1984)

Copyright © 2020 Linux, Locking and Lots of Processors 3

The UNIX core concepts have remained more-or-less the same since Ritchie
and Thompson published their CACM paper. The process model — a single
thread of control in an address space — and the file system model have
remained the same. The IPC model (the so called Sys V shared memory,
semaphores, and messages) (inherited from MERT, a different real-time OS
being developed in Bell Labs in the 70s) also is the same. However there
have been some significant additions.
The most important of these were Paged Virtual Memory (introduced when
UNIX was ported to the VAX), which also introduced the idea of Memory-
mapped files; TCP/IP networking, Graphical terminals, and multiprocessing,
in all variants: master-slave, SMP and NUMA. Most of these improvements
were from outside Bell Labs, and fed into AT&T’s product via open-source-like
patch-sharing.
Interestingly, most of these ideas were already in MULTICS. The difference is
that in MULTICS they were designed in from the start (and delivered late) as
opposed to delivering something that worked early, and adding features as
they became desirable.

Copyright © 2020 Linux, Locking and Lots of Processors 3-1

In the late 80s the core interfaces were standardised by the IEEE working
with USENIX, in the POSIX standards.

Copyright © 2020 Linux, Locking and Lots of Processors 3-2

Copyright © 2020 Linux, Locking and Lots of Processors 3-3

Abstractions

Processor Memory

DMA device

Processor Memory

DMA device

Processor Memory

DMA device

Processor Memory

DMA device

Interconnect

Linux Kernel

F
ile

s

T
h

re
ad

 o
f

C
o

n
tr

o
l

M
em

o
ry

 S
p

ac
e

Copyright © 2020 Linux, Locking and Lots of Processors 4

As in any POSIX operating system, the basic idea is to abstract away physical
memory, processors and I/O devices (all of which can be arranged in arbitrar-
ily complex topologies in a modern system), and provide threads, which are
gathered into processes (a process is a group of threads sharing an address
space and a few other resources), that access files (a file is something that
can be read from or written to. Thus the file abstraction incorporates most
devices). There are some other features provided: the OS tries to allocate
resources according to some system-defined policies. It enforces security
(processes in general cannot see each others’ address spaces, and files
have owners). Unlike in a microkernel, some default policy is embedded in
the kernel; but the general principle is to provide tools and mechanisms for
an arbitrary range of policies.
Abstraction also occurs inside the kernel, to improve portability. Linux runs
on 25 different architectures, with multiple variants of each.

Copyright © 2020 Linux, Locking and Lots of Processors 4-1

Process model

• Root process (init)

• fork() creates (almost) exact copy

– Much is shared with parent — Copy-On-Write avoids overmuch

copying

• exec() overwrites memory image from a file

• Allows a process to control what is shared

Copyright © 2020 Linux, Locking and Lots of Processors 5

The POSIX process model works by inheritance. At boot time, an initial pro-
cess (process 1) is hand-crafted and set running. It then sets up the rest of
the system in userspace.

Copyright © 2020 Linux, Locking and Lots of Processors 5-1

fork() and exec()

➜ A process can clone itself by calling fork().

➜ Most attributes copied :

➜ Address space (actually shared, marked copy-on-write)

➜ current directory, current root

➜ File descriptors

➜ permissions, etc.

➜ Some attributes shared :

➜ Memory segments marked MAP SHARED

➜ Open files

Copyright © 2020 Linux, Locking and Lots of Processors 6

First I want to review the UNIX process model. Processes clone themselves
by calling fork(). The only difference between the child and parent process
after a fork() is the return value from fork() — it is zero in the child,
and the value of the child’s process ID in the parent. Most properties of the
child are logical copies of the parent’s; but open files and shared memory
segments are shared between the child and the parent.
In particular, seek() operations by either parent or child will affect and be
seen by the other process.

Copyright © 2020 Linux, Locking and Lots of Processors 6-1

fork() and exec()

Files and Processes:

.

.

0

1

2

3

4

5

6

7

File descriptor table

Process B

fork()

dup()

Open file descriptor

Offset

In−kernel inode

.

.

0

1

2

3

4

5

6

7

File descriptor table

Process A

Copyright © 2020 Linux, Locking and Lots of Processors 7

Each process has a file descriptor table. Logically this is an array indexed by
a small integer. Each entry in the array contains a flag (the close-on-exec

flag) and a pointer to an entry in an open file table.
When a process calls open(), the file descriptor table is scanned from 0,
and the index of the next available entry is returned. (In 5th edition UNIX this
was a linear scan of a fixed-size array; later Unices improved both the data
structure (to allow unlimited FDs) and the scanning (to replace O(n) with a
faster algorithm).
The pointer is instantiated to point to an open file descriptor which in turn
points to an in-kernel representation of an index node — an inode — which
describes where on disc the bits of the file can be found, and where in the
buffer cache can in memory bits be found. (Remember, this is only a logical
view; the implementation is a lot more complex.)
A process can duplicate a file descriptor by calling dup() or dup2(). All
dup does is find the lowest-numbered empty slot in the file descriptor table,
and copy its target into it. All file descriptors that are dups share the open file
table entry, and so share the current position in the file for read and write.

Copyright © 2020 Linux, Locking and Lots of Processors 7-1

When a process fork()s, its file descriptor table is copied. Thus it too
shares its open file table entry with its parent, and its open files have the
same close-on-exec flags as those in its parent.
You can think of a file descriptor as a capability to an object. A file descriptor
can be created by any process that has the appropriate rights on an object,
and then can be passed around, either by inheritance, or through interpro-
cess communication (pipe() on System-V, UNIX-domain sockets on other
systems). The rights to the object can be dropped after creating the file de-
scriptor. Such capabilities cannot however be revoked.

Copyright © 2020 Linux, Locking and Lots of Processors 7-2

Copyright © 2020 Linux, Locking and Lots of Processors 7-3

fork() and exec()

switch (kidpid = fork()) {

case 0: /* child */

close(0); close(1); close(2);

dup(infd); dup(outfd); dup(outfd);

execve("path/to/prog", argv, envp);

_exit(EXIT_FAILURE);

case -1:

/* handle error */

default:

waitpid(kidpid, &status, 0);

}

Copyright © 2020 Linux, Locking and Lots of Processors 8

So a typical chunk of code to start a process looks something like this. fork()
returns 0 in the child, and the process id of the child in the parent. The child
process closes the three lowest-numbered file descriptors, then calls dup()
to populate them again from the file descriptors for input and output. It then
invokes execve(), one of a family of exec functions, to run prog. One could
alternatively use dup2(), which says which target file descriptor to use, and
closes it if it’s in use. Be careful of the calls to close and dup as order is
significant!
Some of the exec family functions do not pass the environment explicitly
(envp); these cause the child to inherit a copy of the parent’s environment.
Any file descriptors marked close on exec will be closed in the child after the
exec; any others will be shared.

Copyright © 2020 Linux, Locking and Lots of Processors 8-1

Other attributes of the process can also be changed (e.g., changing the owner
by setuid()). Most state-changing system calls operate on the current pro-
cess; the fork()/exec() model allows all these to be used without having
to either create a massively complex system call that specifies everything
about a new task (as VMS and systems derived from it do) or having the
locking complexity of being able to operate on a different process.

Copyright © 2020 Linux, Locking and Lots of Processors 8-2

Copyright © 2020 Linux, Locking and Lots of Processors 8-3

Standard File Descriptors

0 Standard Input

1 Standard Output

2 Standard Error

➜ Inherited from parent

➜ On login, all are set to controlling tty

Copyright © 2020 Linux, Locking and Lots of Processors 9

There are three file descriptors with conventional meanings. File descriptor 0
is the standard input file descriptor. Many command line utilities expect their
input on file descriptor 0.
File descriptor 1 is the standard output. Almost all command line utilities
output to file descriptor 1.
File descriptor 2 is the standard error output. Error messages are output on
this descriptor so that they don’t get mixed into the output stream. Almost all
command line utilities, and many graphical utilities, write error messages to
file descriptor 2.
As with all other file descriptors, these are inherited from the parent.
When you first log in, or when you start an X terminal, all three are set to point
to the controlling terminal for the login shell. When certain special characters
are typed (typically ˆC, ˆ\, and ˆZ), the controlling terminal’s driver generates
signals to the foreground process instead of passing through the character.

Copyright © 2020 Linux, Locking and Lots of Processors 9-1

The problem with fork()

• Almost perfect in original system

• But:

– Address spaces now bigger and managed with pages

* Slow to copy page tables

– Multi-threading breaks semantics

* Child no longer an exact copy — only one thread fork()ed

* Much more per-process state, not all inheritable

Copyright © 2020 Linux, Locking and Lots of Processors 10

In the first Unix systems, the MMU used sets of base limit registers to create
segements. Because the 16-bit address space was small, and main memory
was typically at most 256k, swapping of entire programs to secondary storage
was (for the time) fast, and common. The initial implementation of fork()
just caused a swapped copy to be made, adjusted the return value to 0 and
continued.
Originally, on 16-bit machines with 16-bit words, the entire address space was
copied. This took only a few hundreds of cycles. When 32-bit systems came
along, along with bloat from added layers of abstraction, shared libraries, etc.,
it started to take too long. Two competing mechanisms were implemented:
in UCB-derived kernels, vfork() was implemented, that copied the process
control information, but shared the address space. It was expected that the
only things a process would (usually) do between vfork() and calling either
exit() or exec() was fiddle around with file descriptors. The parent was
paused after vfork() until the child called exit() or exec()

Copyright © 2020 Linux, Locking and Lots of Processors 10-1

AT&T kernels instead implemented copy-on-write for the address spaces.
Only pagetable information was copied, a much smaller job than copying an
entire address spce. All pages in both parent and child were then set read-
only; the first time a write occurred, the page was cloned and made writeable.
But nowadays, proceses have grown huge. A significant amount of time is
spent copying page tables on fork(); for the common case where there are
a few system calls then exec() replaces them all this is mostly wasted work.
What’s more, as multicore systems are now common, so are multi-threaded
processes. Only one thread is copied into the child; but the states of all locks
are inherited because they’re just values in the (copied) address space.
In addition, modern POSIX proceses have many more attributes: memory
locks, SIGIO, containerisation state, sockets, message queues, timers, etc.,
etc. Some of these sometimes make sense to inherit, but many do not. So
the simple fork+exec model doesn’t work as well as it used to.

Copyright © 2020 Linux, Locking and Lots of Processors 10-2

Because of the constrained semantics of vfork() modern POSIX systems
use only the Copy-On-Write fork— if vfork() is provided, it is an alias for
fork(). However, even COW fork() on 64-bit systems is beginning to
be a bottleneck, so maybe vfork() will become popular again. And on
multithreaded programs, fork() itself has restrictions: only async-signal-
safe functions can be called between fork() and exec().
Recent Linux kernels (in the last ten years) have had a clone() system
call as well, that allows fairly fine grain control over what is inherited. In
particular, by inheriting (rather than marking as COW) the address space,
one can implement multiple threads in one process.
And there is a posix spawn() call nowadays for creating and initialising a
process. It is harder to use than fork(), in my opinion.
See Baumann et al. (2019) for a nice rant on fork().

Copyright © 2020 Linux, Locking and Lots of Processors 10-3

Permissions Model

• Based on logged-in-users

• UID, GID, Other — rwx

• Mainly for File access.

Copyright © 2020 Linux, Locking and Lots of Processors 11

The first use of UNIX was to play a video game, single user. It’s amazing
that any permission model at all was in the filesystem — MSDOS and similar
never had any. UNIX was very early on used at AT&T corporate for document
processing. The permissions model fits well for mostly cooperative work:
people who collaborate are in the same group, and so can read/write files
that’re marked group read/write.
Some things had to be done at an elevated privilege though. For example,
in the early UNIX, mkdir() was not a system call. A directory was just a
file (like any other) whose structure was understood by the kernel. So setting
the ’This is a directory’ bit in an inode was a privileged operation’ and writing
directories was privileged. A user-mode helper lived in /etc — but it had
to run at an elevated privilege. Enter the ’setuid’ permission bit: when an
executable in a file with ’setuid’ is execed, its UID is set to that of the owner of
the file. Of course, this only works if the code in that executable is trustworthy.
But the early setuid programs were very simple and easy to see they were
correct.

Copyright © 2020 Linux, Locking and Lots of Processors 11-1

The notion of groups has changed since the original. It used to be that a
process was only a member of one group at a time; the newgrp() system
call could be used to move to any group the UID was marked as member of.
The BSD UNIX variants introduced the idea that a process could be in a set
of groups at once, and apply group permission to files in accordance with any
of the groups a process is in.

Copyright © 2020 Linux, Locking and Lots of Processors 11-2

File model

• Separation of names from content.

• ‘regular’ files ‘just bytes’ → structure/meaning supplied by

userspace

• Devices represented by files.

• Directories map names to index node indices (inums)

• Simple permissions model based on who you are.

Copyright © 2020 Linux, Locking and Lots of Processors 12

The file model is very simple. In operating systems before UNIX, the OS
was expected to understand the structure of all kinds of files: typically files
were organised as fixed (or variable) length records with one or more indices
into them. One very common organisation was essentially an image of a
punched-card deck! By contrast, UNIX regular files are just a collection of
bytes, indexed from zero.
Originally in UNIX directories were also just files, albeit with a structure un-
derstood by the kernel. To give more flexibility, they are now opaque to
userspace, and managed by each individual filesystem. The added flexi-
bility makes directory operations more expensive, but allows Linux to deal
with over thirty different filesystems, with varying naming models and on-disk
structures.

Copyright © 2020 Linux, Locking and Lots of Processors 12-1

Copyright © 2020 Linux, Locking and Lots of Processors 12-2

File model

.

..

bash

sh
ls

which
rnano

busybox

setserial

bzcmp

367

368

402
401

265

/ bin / ls

.

..

boot

sbin

bin

dev

var

vmlinux

etc

usr

inode 324

2
300
300

301

324
3
4

5

7
6

2

2
324

8

125

Copyright © 2020 Linux, Locking and Lots of Processors 13

The diagram shows how the kernel finds a file.
If it gets a file name that starts with a slash (/), it starts at the root of the direc-
tory hierarchy for the current process (otherwise it starts at the current pro-
cess’s current directory). The first link in the pathname is extracted ("bin")
by calling into the filesystem code, and searched for in that root directory.
That yields an inode number, that can be used to find the contents of the
directory. The next pathname component is then extracted from the name and
looked up. In this case, that’s the end, and inode 301 contains the metadata
for "/bin/ls".
Every process has a ‘current root directory’ — the privileged chroot() sys-
tem call allows a process to change its root directory to any directory it can
see. This is a necessary feature to provide containers, as it provides names-
pace isolation for files.

Copyright © 2020 Linux, Locking and Lots of Processors 13-1

namei

➜ translate name → inode

➜ abstracted per filesystem in VFS layer

➜ Can be slow: extensive use of caches to speed it up dentry cache —

becomes SMP bottleneck

➜ hide filesystem and device boundaries

➜ walks pathname, translating symbolic links

Copyright © 2020 Linux, Locking and Lots of Processors 14

Linux has many different filesystem types. Each has its own directory layout.
Pathname lookup is abstracted in the Virtual FileSystem (VFS) layer. Tradi-
tionally, looking up the name to inode (namei) mapping has been slow (done
naively, it involves reading a block from the disk for each pathname compo-
nent); Linux currently uses a cache to speed up lookup. This cache in turn
has become a scalability bottleneck for large SMP systems.
At any point in the hierarchy a new filesystem can be grafted in using mount;
namei() hides these boundaries from the rest of the system.
Symbolic links haven’t been mentioned yet. A symbolic link is a special file
that holds the name of another file. When the kernel encounters one in a
search, it replaces the name it’s parsing with the contents of the symbolic
link. Some filesystems encode the symbolic name into the directory entry,
rather than having a separate file.
Also, because of changes in the way that pathname lookups happen, there
is no longer a function called namei(); however the files containing the path
lookup are still called namei.[ch].

Copyright © 2020 Linux, Locking and Lots of Processors 14-1

Evolution

KISS:

➜ Simplest possible algorithm used at first

➜ Easy to show correctness

➜ Fast to implement

➜ As drawbacks and bottlenecks are found, replace with faster/more

scalable alternatives

Copyright © 2020 Linux, Locking and Lots of Processors 15

This leads to a general principle: start with KISS. Many of the utilities that
are common on UNIX started out as much simpler programs wrapped in shell
scripts; as people elaborated the scripts to provide more functionality, they
became less maintainable or too slow, and eventually were refactored into a
compiled language.
(Multics used the opposite approach, with around 3000 pages of complex
design documents developed and reviewed before a line of code was writ-
ten. Many of the early design decisions had to be reversed when hardware
became available and implementation started).

Copyright © 2020 Linux, Locking and Lots of Processors 15-1

Linux C Dialect

• Extra keywords:

– Section IDs: init, exit, percpu etc

– Info Taint annotation user, rcu, kernel, iomem

– Locking annotations acquires(X), releases(x)

– extra typechecking (endian portability) bitwise

Copyright © 2020 Linux, Locking and Lots of Processors 16

The kernel is written in C, but with a few extras. Code and data marked
init is used only during initialisation, either at boot time, or at module

insertion time. After it has finished, it can be (and is) freed.
Code and data marked exit is used only at module removal time. If it’s for
a built-in section, it can be discarded at link time. The build system checks for
cross-section pointers and warns about them.
percpu data is either unique to each processor, or replicated.

The kernel build system can do some fairly rudimentary static analysis to
ensure that pointers passed from userspace are always checked before use,
and that pointers into kernel space are not passed to user space. This relies
on such pointers being declared with user or kernel. It can also check
that variables that are intended as fixed shape bitwise entities are always
used that way—useful for bi-endian architectures like ARM, and for ensuring
that appropriate conversions happen between on-disk, or on-the-wire, and
host endianness.

Copyright © 2020 Linux, Locking and Lots of Processors 16-1

Linux C Dialect

• Extra iterators

– type name foreach()

• Extra O-O accessors

– container of()

• Macros to register Object initialisers

Copyright © 2020 Linux, Locking and Lots of Processors 17

Object-oriented techniques are used throughout the kernel, but implemented
in C.
Almost every aggregate data structure, from lists through trees to page tables
has a defined type-safe iterator.
And there’s a new built-in, container of that, given a type and a member,
returns a typed pointer to its enclosing object.
In addition there is a family of macros to register initialisation functions. These
are ordered (early, console, devices, then general), and will run in parallel
across all available processors within each class.

Copyright © 2020 Linux, Locking and Lots of Processors 17-1

Linux C Dialect

• Massive use of inline functions

• Quite a big use of CPP macros

• Little #ifdef use in code: rely on optimiser to elide dead code.

Copyright © 2020 Linux, Locking and Lots of Processors 18

The kernel is written in a style that attempts not to use #ifdef in C files.
Instead, feature test constants are defined that evaluate to zero if the feature
is not desired; the GCC optimiser will then eliminate any resulting dead code.
Because the kernel is huge, but not all files are included in every build, there
has to be a way to register initialisation functions for the various components.
The Linux kernel is quite object-oriented internally; but because it runs on
the bare metal, functions that would usually be provided by language support
have to be provided by the OS, or open coded. The container of() macro
is a way to access inheritance; and the xxx initcall() macros are a way
to handle initialisation. Obviously, initialisation has to be ordered carefully;
but after interrupts are set up, all the processors are on line, and the system
has a console, the remaining device initialisers are run; then all the general
initialisers.

Copyright © 2020 Linux, Locking and Lots of Processors 18-1

Internal Abstractions

➜ MMU

➜ Memory consistency model

➜ Device model

Copyright © 2020 Linux, Locking and Lots of Processors 19

Linux has many internal abstractions for portability. The two biggest are the
MMU, where differences in page table layout are largely hidden from most of
the code, using per-architecture macros to walk and update them; and the
memory consistency model that the Linux kernel provides.
The Linux kernel runs on architectures with very different underlying con-
sistency models, the weakest being DEC Alpha, the strongest X86. Code
that runs on all of these is expected to include memory barriers, and ac-
quire/release instructions, that allow it to work correctly on all architectures.
Linux thus provides its own memory consistency model. It’s worth taking a
look in tools/memory-model in the kernel source, to see an executable
version of the model, that allows one to check if any particular outcome can
occur, given a sequence of loads, stores, and memory-consistency-affecting
operations (such as atomic operations, fences, barriers, aquire/release macros,
etc).
For more detail on memory models, see McKenney (2010).

Copyright © 2020 Linux, Locking and Lots of Processors 19-1

I’ll cover the device model later. Essentially, it treats all devices as being
available via a run-time bus enumeration even where the underlying buses

are not enumerable.

Copyright © 2020 Linux, Locking and Lots of Processors 19-2

Copyright © 2020 Linux, Locking and Lots of Processors 19-3

Scheduling

Goals:

• dispatch O(1) in number of runnable processes, number of

processors

– good uniprocessor performance

• ‘fair’

• Good interactive response

• topology-aware

• O(log n) for scheduling in number of runnable processes.

Copyright © 2020 Linux, Locking and Lots of Processors 20

Because Linux runs on machines with up to 4096 processors, any scheduler
must be scalable, and preferably O(1) in the number of runnable processes.
It should also be ‘fair’ — by which I mean that processes with similar priority
should get similar amounts of time, and no process should be starved. In
addition, it should not load excessively a low-powered system with only a
single processor (for example, in your wireless access point); and, at a higher
level, applications should not be able to get more CPU by spawning more
threads/processes.
Because Linux is used by many for desktop/laptop use, it should give good
interactivity, and respond ‘snappily’ to mouse/keyboard even if that compro-
mises absolute throughput.
And finally, the scheduler should be aware of the caching, packaging, and
memory topology of the system, so it when it migrates tasks, it can keep them
close to the memory they use, and also attempt to save power by keeping
whole packages idle where possible.

Copyright © 2020 Linux, Locking and Lots of Processors 20-1

Scheduling

Implementation:

• Changes from time to time.

• Currently ‘CFS’ by Ingo Molnar.

Copyright © 2020 Linux, Locking and Lots of Processors 21

Linux has had several different schedulers since it was first released. The
first was a very simple scheduler similar to the MINIX scheduler. As Linux
was deployed to larger, shared, systems it was found to have poor fairness,
so a very simple dual-entitlement scheduler was created.

Copyright © 2020 Linux, Locking and Lots of Processors 21-1

Scheduling

Dual Entitlement Scheduler

0.5 0.7 0.1

0 0

Expired

Running

Copyright © 2020 Linux, Locking and Lots of Processors 22

The idea here was that there were two queues: a deserving queue, and an
undeserving queue. New and freshly woken processes were given a timeslice
based on their ‘nice’ value. When a process’s timeslice was all used up, it was
moved to the ‘undeserving’ queue. When the ‘deserving’ queue was empty,
a new timeslice was given to each runnable process, and the queues were
swapped. (A very similar scheduler, but using a weight tree to distribute time
slice, was used in Irix 6)
The main problem with this approach was that it was O(n) in the number
of runnable and running processes—and on the big iron with 1024 or more
processors, that was too slow. So it was replaced in the early 2.6 kernels with
an O(1) scheduler, that was replaced in turn (when it gave poor interactive
performance on small machines) with the current so-called ‘Completely Fair
Scheduler’

Copyright © 2020 Linux, Locking and Lots of Processors 22-1

Scheduling

CFS:

1. Keep tasks ordered by effective CPU runtime weighted by nice in

red-black tree

2. Always run left-most task.

Devil’s in the details:

• Avoiding overflow

• Keeping recent history

• multiprocessor locality

• handling too-many threads

• Sleeping tasks

• Group hierarchy

Copyright © 2020 Linux, Locking and Lots of Processors 23

The scheduler works by keeping track of run time for each task. Assuming
all tasks are cpu bound and have equal priority, then all should run at the
same rate. On a sufficiently parallel machine, they would always have equal
runtime.
The scheduler keeps a period during which all runnable tasks should get
a go on the processor — this period is by default 6ms scaled by the log

2

of the number of available processors. Within a period, each task gets a
time quantum (the period divided by the number of tasks) weighted by its
nice. However there is a minimum quantum; if the machine is overloaded, the
period is stretched so that the minimum quantum is 0.75ms.
To avoid overflow, the scheduler tracks ‘virtual runtime’ (vruntime) instead
of actual; virtual runtime is normalised to the number of running tasks. It
is also adjusted regularly to avoid overflow (this adjustment means the al-
gorithm isn’t totally fair: CPU-bound processes end up being penalised with
respect to I/O-bound processes, but this is probably what is wanted for good
interactivity)

Copyright © 2020 Linux, Locking and Lots of Processors 23-1

Tasks are kept in vruntime order in a red-black tree. The leftmost node
then has the least vruntime so far; newly activated entities also go towards
the left — short sleeps (less than one period) don’t affect vruntime; but
after awaking from a long sleep, the vruntime is set to the current minimum
vruntime if that is greater than the task’s current vruntime. Depending on
how the scheduler has been configured, the new task will be scheduled either
very soon, or at the end of the current period.
In any case, the scheduler forces child processes to run before their parents
immediately after a fork(), to minimise the amount of page duplication for
copy-on-write.

Copyright © 2020 Linux, Locking and Lots of Processors 23-2

Copyright © 2020 Linux, Locking and Lots of Processors 23-3

Scheduling

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

RAM

RAM

RAM

NUMA Node

Copyright © 2020 Linux, Locking and Lots of Processors 24

Your typical system has hardware threads as its bottom layer. These share
functional units, and all cache levels. Hardware threads share a core, and
there can be more than one core in a package or socket. Depending on the
architecture, cores within a socket may share memory directly, or may be con-
nected via separate memory buses to different regions of physical memory.
Typically, separate sockets will connect to different regions of memory.

Copyright © 2020 Linux, Locking and Lots of Processors 24-1

Scheduling

Locality Issues:

• Best to reschedule on same processor (don’t move cache

footprint, keep memory close)

– Otherwise schedule on a ‘nearby’ processor

• Try to keep whole sockets idle (can power them off)

• Somehow identify cooperating threads, co-schedule ‘close by’?

Copyright © 2020 Linux, Locking and Lots of Processors 25

The rest of the complications in the scheduler are for hierarchical group-
scheduling, and for coping with non-uniform processor topology.
I’m not going to go into group scheduling here (even though it’s pretty neat),
but its aim is to allow schedulable entities (at the lowest level, tasks or threads)
to be gathered together into higher level entities according to credentials, or
cgroup, or whatever, and then schedule those entities against each other.
Locality, however, is really important. You’ll recall that in a NUMA system,
physical memory is spread so that some is local to any particular processor,
and other memory can be a long way off (in terms of access time). To get
good performance, you want as much as possible of a process’s working set
in local memory. Similarly, even in an SMP situation, if a process’s working set
is still (partly) in-cache it should be run on a processor that shares that cache.
It turns out from some recent work (Lepers et al. (2015)) that bandwidth be-
tween nodes should also be taken into account for optimal performance, but
this hasn’t yet made it into the Linux kernel.

Copyright © 2020 Linux, Locking and Lots of Processors 25-1

Linux currently uses a ‘first touch’ policy: the first processor to write to a page
causes the frame for the page to be allocated from that processor’s nearest
memory. On fork(), the new process’s memory is allocated from the same
node as its parent, and it runs on the same node (although not necessarily
on the same core). exec() doesn’t change this (although there is an API
to allow a process to migrate before calling exec(). So how do processors
other than the boot processor ever get to run anything?
The answer is in runqueue balancing.

Copyright © 2020 Linux, Locking and Lots of Processors 25-2

Copyright © 2020 Linux, Locking and Lots of Processors 25-3

Scheduling

• One queue per processor (or hyperthread)

• Processors in hierarchical ‘domains’

• Load balancing per-domain, bottom up

• Aims to keep whole domains idle if possible (power savings)

Copyright © 2020 Linux, Locking and Lots of Processors 26

There is one runqueue for each lowest schedulable entity (hyperthread or
processor). These are grouped into ‘domains’. Each domain has its ‘load’ up-
dated at regular intervals (where load is essentially (sum of vruntime)/number
of processors).
One of the idle processors is nominated the ‘idle load balancer’. When a pro-
cessor notices that rebalancing is needed (for example, because it is over-
loaded), it kicks the idle load balancer. The idle load balancer finds the bus-
iest domains, and tries to move tasks around to fill up idle processors near
the busiest domain. It needs more imbalance to move a task to a completely
idle node than to a partly idle node.
Solving this problem perfectly is NP-hard — it’s equivalent to the bin-packing
problem — but the heuristic approach seems to work well enough most of the
time.

Copyright © 2020 Linux, Locking and Lots of Processors 26-1

Memory Management

Memory in zones

Highmem

Normal

DMA

Normal

Physical address 0

16M

900M

DMA

3GLinux kernel

User VM

VirtualPhysical

Id
en

ti
ty

 M
ap

p
ed

 w
it

h
 o

ff
se

t

Copyright © 2020 Linux, Locking and Lots of Processors 27

Some of Linux’s memory handling is to account for peculiarities in the PC ar-
chitecture. To make things simple, as much memory as possible is mapped
at a fixed offset, at least on X86-derived processors. Because of legacy de-
vices that could only do DMA to the lowest 16M or memory, the lowest 16M
are handled specially as ZONE DMA — drivers for devices that need memory
in that range can request it. (Some architectures have no physical memory in
that range; either they have IOMMUs or they do not support such devices).
The Linux kernel maps itself in, and has access to all of user virtual memory.
In addition, as much physical memory as possible is mapped in with a simple
offset. This allows easy access for in-kernel use of physical memory (e.g., for
page tables or DMA buffers).
Any physical memory that cannot be mapped (e.g., because there is more
than 4G of RAM on a 32-bit machine) is termed ‘Highmem’ and is mapped
in on an ad-hoc basis. It is possible to compile the kernel with no ‘Normal’
memory, to allow all of the 4G 32-bit virtual address space to be allocated to
userspace, but this comes with a performance hit.

Copyright © 2020 Linux, Locking and Lots of Processors 27-1

The boundary between user and kernel can be set at configuration time; for
64-bit x86 64 systems it’s at 263 – i.e., all addresses with the highest bit set
are for the kernel.

Copyright © 2020 Linux, Locking and Lots of Processors 27-2

Copyright © 2020 Linux, Locking and Lots of Processors 27-3

Memory Management

• Direct mapped pages become logical addresses

– pa() and va() convert physical to virtual for these

• small memory systems have all memory as logical

• More memory → ∆ kernel refer to memory by struct page

Copyright © 2020 Linux, Locking and Lots of Processors 28

Direct mapped pages can be referred to by logical addresses; there are a
simple pair of macros for converting between physical and logical addresses
for these. Anything not mapped must be referred to by a struct page and
an offset within the page. There is a struct page for every physical page
(and for some things that aren’t memory, such as MMIO regions). A struct

page is less than 10 words (where a word is 64 bits on 64-bit architectures,
and 32 bits on 32-bit architectures).

Copyright © 2020 Linux, Locking and Lots of Processors 28-1

Memory Management

struct page:

• Every frame has a struct page (up to 10 words)

• Track:

– flags

– backing address space

– offset within mapping or freelist pointer

– Reference counts

– Kernel virtual address (if mapped)

Copyright © 2020 Linux, Locking and Lots of Processors 29

A struct page lives on one of several lists, and is in an array from which
the physical address of the frame can be calculated.
Because there has to be a struct page for every frame, there’s consider-
able effort put into keeping them small. Without debugging options, for most
architectures they will be 6 words long; with 4k pages and 64bit words that’s
a little over 1% of physical memory in this table.
A frame can be on a free list. If it is not, it will be in an active list, which is
meant to give an approximation to LRU for the frames. The same pointers
are overloaded for keeping track of compound frames (for huge pages). Free
lists are organised per memory domain on NUMA machines, using a buddy
algorithm to merge pages into superpages as necessary.

Copyright © 2020 Linux, Locking and Lots of Processors 29-1

Memory Management

File
(or swap)

struct

address_space

struct

vm_area_struct
struct

vm_area_struct
struct

vm_area_struct

struct mm_struct

In virtual address order....

struct task_struct

P
ag

e
T

ab
le

(h
ar

d
w

ar
e

d
ef

in
ed

)

owner

Copyright © 2020 Linux, Locking and Lots of Processors 30

Some of the structures for managing memory are shown in the slide. What’s
not visible here are the structure for managing swapping out, NUMA locality,
huge pages, and transparent superpages.
There is one task struct for each thread of control. Each points to an
mm struct that describes the address space the thread runs in. Processes
can be multi-threaded; one, the first to have been created, is the thread group

leader, and is pointed to by the mm struct. The struct mm struct also
has a pointer to the page table for this process (the shape of which is carefully
abstracted out so that access to it is almost architecture-independent, but it
always has to be a tree to use the standard abstractions), a set of mappings
held both in a red-black tree (for rapid access to the mapping for any address)
and in a double linked list (for traversing the space).

Copyright © 2020 Linux, Locking and Lots of Processors 30-1

Each VMA (virtual memory area, or struct vm area struct) describes
a contiguous mapped area of virtual memory, where each page within that
area is backed (again contiguously) by the same object, and has the same
permissions and flags. You could think of each mmap() call creating a new
VMA. Any munmap() calls that split a mapping, or mprotect() calls that
change part of a mapping can also create new VMAs.

Copyright © 2020 Linux, Locking and Lots of Processors 30-2

Copyright © 2020 Linux, Locking and Lots of Processors 30-3

Memory Management

Address Space:

• Misnamed: means collection of pages mapped from the same

object

• Tracks inode mapped from, radix tree of pages in mapping

• Has ops (from file system or swap manager) to:

dirty mark a page as dirty

readpages populate frames from backing store

writepages Clean pages — make backing store the same as

in-memory copy

migratepage Move pages between NUMA nodes

Others. . . And other housekeeping
Copyright © 2020 Linux, Locking and Lots of Processors 31

Each VMA points into a struct address space which represents a map-
pable object. An address space also tracks which pages in the page cache
belong to this object.
Most pages will either be backed by a file, or will be anonymous memory.
Anonymous memory is either unbacked, or is backed by one of a number of
swap areas.

Copyright © 2020 Linux, Locking and Lots of Processors 31-1

Page fault time

• Special case in-kernel faults

• Find the VMA for the address

– segfault if not found (unmapped area)

• If it’s a stack, extend it.

• Otherwise:

1. Check permissions, SIG SEGV if bad

2. Call handle mm fault():

– walk page table to find entry (populate higher levels if nec.

until leaf found)

– call handle pte fault()

Copyright © 2020 Linux, Locking and Lots of Processors 32

When a fault happens, the kernel has to work out whether this is a normal
fault (where the page table entry just isn’t instantiated yet) or is a userspace
problem. Kernel faults are rare: they should occur only in a few special cases,
and when accessing user virtual memory. They are handled specially.
The kernel first looks up the VMA in the red-black tree. If there’s no VMA,
then this is an unmapped area, and should generate a segmentation violation,
unless it’s next to a stack segment, and the faulting address is at or near the
current stack pointer, in which case the stack needs to be extended.
If it finds the VMA, then it checks that the attempted operation is allowed —
for example, writes to a read-only operation will cause a Segmentation Viola-
tion at this stage. If everything’s OK, the code invokes handle mm fault()

which walks the page table in an architecture-agnostic way, populating ‘mid-
dle’ directories on the way to the leaf. Transparent SuperPages are also
handled on the way down.
Finally handle pte fault() is called to handle the fault, now it’s estab-
lished that there really is a fault to handle.

Copyright © 2020 Linux, Locking and Lots of Processors 32-1

Page fault time

handle pte fault(): Depending on PTE status, can

• provide an anonymous page

• do copy-on-write processing

• reinstantiate PTE from page cache

• initiate a read from backing store.

and if necessary flushes the TLB.

Copyright © 2020 Linux, Locking and Lots of Processors 33

There are a number of different states the pte can be in. Each PTE holds
flags that describe the state.
The simplest case is if the PTE is zero — it has only just been instantiated. In
that case if the VMA has a fault handler, it is called via do linear fault()

to instantiate the PTE. Otherwise an anonymous page is assigned to the PTE.
If this is an attempted write to a frame marked copy-on-write, a new anony-
mous page is allocated and copied to.
If the page is already present in the page cache, the PTE can just be rein-
stantiated – a ‘minor’ fault. Otherwise the VMA-specific fault handler reads
the page first — a ‘major’ fault.
If this is the first write to an otherwise clean page, its corresponding struct

page is marked dirty, and a call is made into the writeback system — Linux
tries to have no dirty page older than 30 seconds (tunable) in the cache.

Copyright © 2020 Linux, Locking and Lots of Processors 33-1

Driver Interface

Three kinds of device:

1. Platform device

2. enumerable-bus device

3. Non-enumerable-bus device

Copyright © 2020 Linux, Locking and Lots of Processors 34

There are essentially three kinds of devices that can be attached to a com-
puter system:

1. platform devices exist at known locations in the system’s IO and mem-
ory address space, with well known interrupts. An example are the
COM1 and COM2 ports on a PC.

2. Devices on a bus such as PCI or USB have unique identifiers that can
be used at run-time to hook up a driver to the device. It is possible to
enumerate all devices on the bus, and find out what’s attached.

3. Devices on a bus such as i2c or ISA have no standard way to query
what they are. The operating system needs to be told what’s available.

Copyright © 2020 Linux, Locking and Lots of Processors 34-1

Driver Interface

Enumerable buses:

static DEFINE PCI DEVICE TABLE(cp pci tbl) = {

{ PCI DEVICE(PCI VENDOR ID REALTEK,

PCI DEVICE ID REALTEK 8139), },

{ PCI DEVICE(PCI VENDOR ID TTTECH,

PCI DEVICE ID TTTECH MC322), },

{ },

};

MODULE DEVICE TABLE(pci, cp pci tbl);

Copyright © 2020 Linux, Locking and Lots of Processors 35

Each driver for a bus that identifies devices by some kind of ID declares a
table of IDs of devices it can driver. You can also specify device IDs to bind
against as a module parameter.

Copyright © 2020 Linux, Locking and Lots of Processors 35-1

Driver Interface

Driver interface:

init called to register driver

exit called to deregister driver, at module unload time

probe() called when bus-id matches; returns 0 if driver claims device

open, close, etc as necessary for driver class

Copyright © 2020 Linux, Locking and Lots of Processors 36

All drivers have an initialisation function, that, even if it does nothing else,
calls a bus register driver() function to tell the bus subsystem which
devices this driver can manage, and to provide a vector of functions.
Most drivers also have an exit() function, that deregisters the driver.
When the bus is scanned (either at boot time, or in response to a hot-plug
event), these tables are looked up, and the ‘probe’ routine for each driver that
has registered interest is called.
The first whose probe is successful is bound to the device. You can see the
bindings in /sys

Copyright © 2020 Linux, Locking and Lots of Processors 36-1

Driver Interface

Platform Devices (old way):

static struct platform_device nslu2_uart = {

.name = "serial8250",

.id = PLAT8250_DEV_PLATFORM,

.dev.platform_data = nslu2_uart_data,

.num_resources = 2,

.resource = nslu2_uart_resources,

};

Copyright © 2020 Linux, Locking and Lots of Processors 37

Platform devices are made to look like bus devices. Because there is no
unique ID, the platform-specific initialisation code registers platform devices
in a large table.
Here’s an example, from the SLUG. Each platform device is described by a
struct platform device that contains at the least a name for the de-
vice, the number of ‘resources’ (IO or MMIO regions) and an array of those
resources. The initialisation code calls platform device register() on
each platform device. This registers against a dummy ‘platform bus’ using
the name and ID.
The 8250 driver eventually calls serial8250 probe() which scans the
platform bus claiming anything with the name ‘serial8250’.
Most platforms have moved away from using these platform devices in favour
of using a Device Tree (see later),

Copyright © 2020 Linux, Locking and Lots of Processors 37-1

Driver Interface

non-enumerable buses: Treat like platform devices

Copyright © 2020 Linux, Locking and Lots of Processors 38

At present, devices on non-enumerable buses are treated a bit like platform
devices: at system initialisation time a table of the addresses where devices
are expected to be is created; when the driver for the adapter for the bus is
initialised, the bus addresses are probed.

Copyright © 2020 Linux, Locking and Lots of Processors 38-1

Device Tree

• Describe board+peripherals

– replaces ACPI on embedded systems

• Names in device tree trigger driver instantiation

Copyright © 2020 Linux, Locking and Lots of Processors 39

Current kernels have moved away from putting platform devices into C code,
in favour of using a flattened device tree, which describes the topology of
buses, devices, clocks and regulators, so a single kernel can run on more
than one board.
Each node in a device tree (which you can find in arch/arm/boot/fts/*
for ARM processors) contains a ‘compatible’ field that says which driver to
invoke, and other (node-specific) entries that give the addresses, interrupts,
clocks, etc., necessary to configure and use the device the node represents.

Copyright © 2020 Linux, Locking and Lots of Processors 39-1

Device Tree

uart_A: serial@84c0 {

compatible = "amlogic,meson6-uart", "amlogic,meson-uart";

reg = <0x84c0 0x18>;

interrupts = <GIC_SPI 26 IRQ_TYPE_EDGE_RISING>;

status = "ok";

};

Copyright © 2020 Linux, Locking and Lots of Processors 40

This example from the Odroid C2’s device tree shows the main bits. The
compatible line both triggers the probe routine for drivers that register for
it, and is searched for by drivers to find the rest of the information. The reg

line gives the address and size of the registers for the UART. And so on.

Copyright © 2020 Linux, Locking and Lots of Processors 40-1

Containers

• Namespace isolation

• Plus Memory and CPU isolation

• Plus other resources

In hierarchy of control groups

Used to implement, e.g., Docker

Copyright © 2020 Linux, Locking and Lots of Processors 41

chroot, which has been present in UNIX kernels since edition 7, and in every
Linux release, provides filesystem namespace isolation. Work derived from
UNSW and USyd’s fair share scheduler and Limits system was sold to Sun in
2000, and was developed to provide ‘zones’. Each zone could be assigned
a proportion of the CPU and memory, and a part of the process ID and user
ID namespaces, in a way that was mostly transparent to processes running
in the zone.
In Linux kernel 3.8, the same kind of thing was implemented (the actual im-
plementation was independent), to provide Linux Containers.
Controllers can be configured separately for various resources, including but
not limited to, CPU, memory, user ID, socket namespace, and chroot used
for filesystem namespace. These have control files mounted in a hierarchy
under /sys/fs/cgroup, which can be manipulated directly; but it is gener-
ally better to use either lxc, libvirt, or Docker as middleware to manipu-
late more than one controller at a time.

Copyright © 2020 Linux, Locking and Lots of Processors 41-1

On a single socket system with a small NUMA factor, Linux containers provide
reasonable isolation at low overhead. Where there is significant asymmetry
in the NUMA topology, or where the NUMA factor is large, containers can
fail to isolate because of contention on communications channels it doesn’t
control (see Lepers et al. (2015) for details).

Copyright © 2020 Linux, Locking and Lots of Processors 41-2

Copyright © 2020 Linux, Locking and Lots of Processors 41-3

Summary

• I’ve told you status today

– Next week it may be different

• I’ve simplified a lot. There are many hairy details

Copyright © 2020 Linux, Locking and Lots of Processors 42

The linux kernel keeps changing really fast. However, core abstractions like
the ones mentioned have been reasonably stable for the last few years: churn
is mostly in new drivers, and new features (like containerisation and RISC-V
support)

Copyright © 2020 Linux, Locking and Lots of Processors 42-1

Scalability

The Multiprocessor Effect:

• Some fraction of the system’s cycles are not available for

application work:

– Operating System Code Paths

– Inter-Cache Coherency traffic

– Memory Bus contention

– Lock synchronisation

– I/O serialisation

Copyright © 2020 Linux, Locking and Lots of Processors 43

We’ve seen that because of locking and other issues, some portion of the
multiprocessor’s cycles are not available for useful work. In addition, some
part of any workload is usually unavoidably serial.

Copyright © 2020 Linux, Locking and Lots of Processors 43-1

Scalability

Amdahl’s law:

If a process can be split such that σ

of the running time cannot be sped

up, but the rest is sped up by

running on p processors, then

overall speedup is

p

1 + σ(p− 1)

T(1−σ) Tσ

Tσ

T(1−σ)

T(1−σ)

T(1−σ)

Copyright © 2020 Linux, Locking and Lots of Processors 44

It’s fairly easy to derive Amdahl’s law: perfect speedup for p processors would
be p (running on two processors is twice as fast, takes half the time, than
running on one processor).
The time taken for the workload to run on p processors if it took 1 unit of time
on 1 processor is σ + (1 − σ)/p. Speedup is then 1/(σ + (1 − σ)/p) which,
multiplying by p/p gives p/(pσ + 1− σ), or p/(1 + σ(p− 1))

Copyright © 2020 Linux, Locking and Lots of Processors 44-1

Scalability

1 processor

Throughput

Applied load

2 processors

3 processors

Copyright © 2020 Linux, Locking and Lots of Processors 45

The general scalability curve looks something like the one in this slide. The
Y-axis is throughput, the X-axis, applied load. Under low loads, where there
is no bottleneck, throughput is determined solely by the load—each job is
processed as it arrives, and the server is idle for some of the time. Latency
for each job is the time to do the job.
As the load increases, the line starts to curve. At this point, some jobs are
arriving before the previous one is finished: there is queueing in the system.
Latency for each job is the time spent queued, plus the time to do the job.
When the system becomes overloaded, the curve flattens out. At this point,
throughput is determined by the capacity of the system; average latency be-
comes infinite (because jobs cannot be processed as fast as they arrive, so
the queue grows longer and longer), and the bottleneck resource is 100%
utilised.
When you add more resources, you want the throughput to go up. Unfortu-
nately, because of various effects we’ll talk about later that doesn’t always
happen...

Copyright © 2020 Linux, Locking and Lots of Processors 45-1

Scalability

3 processors

2 processors

Applied load

Throughput

Latency

Throughput

Copyright © 2020 Linux, Locking and Lots of Processors 46

This graph shows the latency ‘hockey-stick’ curve. Latency is determined by
service time in the left-hand flat part of the curve, and by service+queueing
time in the upward sloping right-hand side.
When the system is totally overloaded, the average latency is infinite.

Copyright © 2020 Linux, Locking and Lots of Processors 46-1

Scalability

Gunther’s law:

C(N) =
N

1 + α(N − 1) + βN(N − 1)

where:

N is demand

α is the amount of serialisation: represents Amdahl’s law

β is the coherency delay in the system.

C is Capacity or Throughput

Copyright © 2020 Linux, Locking and Lots of Processors 47

Neil Gunther (2002) captured this in his ‘Universal Scalability Law’, which is
a closed-form solution to the machine-shop-repairman queueing problem.
It has two parameters, α which is the amount of non-scalable work, and beta
which is to account for the degradation often seen in system-performance
graphs, because of cross-system communication (‘coherency’ or ‘contention’,
depending on the system).
The independent variable N can represent applied load, or number of logic-
units (if the work per logic-unit is kept constant).

Copyright © 2020 Linux, Locking and Lots of Processors 47-1

Scalability

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

T
hr

ou
gh

pu
t

Load

USL with alpha=0,beta=0

α = 0, β = 0

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000

T
hr

ou
gh

pu
t

Load

USL with alpha=0.015,beta=0

α > 0, β = 0

 0

 100

 200

 300

 400

 500

 600

 700

 0 2000 4000 6000 8000 10000

T
hr

ou
gh

pu
t

Load

USL with alpha=0.001,beta=0.0000001

α > 0, β > 0

Copyright © 2020 Linux, Locking and Lots of Processors 48

Here are some examples. If α and β are both zero, the system scales
perfectly—throughput is proportional to load (or to processors in the system).
If α is slightly positive it indicates that part of the workload is not scalable.
Hence the curve plateaus to the right. Another way of thinking about this is
that some (shared) resource is approaching 100% utilisation.
If in addition β is slightly positive, it implies that some resource is contended:
for example, preliminary processing of new jobs steals time from the main
task that finishes the jobs.

Copyright © 2020 Linux, Locking and Lots of Processors 48-1

Scalability

Queueing Models:

ServerQueue

Poisson

arrivals

Poisson

service times

ServerQueue

Poisson

service times

Same Server

High Priority

Normal Priority

Sink

Copyright © 2020 Linux, Locking and Lots of Processors 49

You can think of the system as in these diagrams. The second diagram has
an additional input queue; the same servers service both queues, so time
spent serving the input queue is stolen from time servicing the main queue.

Copyright © 2020 Linux, Locking and Lots of Processors 49-1

Scalability

Real examples:

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t

Load

Postgres TPC throughput

Copyright © 2020 Linux, Locking and Lots of Processors 50

These graphs are courtesy of Etienne Le Sueur, Adrian Danis, and the Rapi-
log team. This is a throughput graph for TPC-C on an 8-way multiprocessor
using the ext3 filesystem with a single disk spindle. As you can see, β > 0,
indicating coherency delay as a major performance issue.

Copyright © 2020 Linux, Locking and Lots of Processors 50-1

Scalability

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t

Load

USL with alpha=0.342101,beta=0.017430
Postgres TPC throughput

Copyright © 2020 Linux, Locking and Lots of Processors 51

Using R to fit the scalability curve, we get β = 0.017, α = 0.342 — you can
see the fit isn’t perfect, so fixing the obvious coherency issue isn’t going to fix
the scalability entirely.

Copyright © 2020 Linux, Locking and Lots of Processors 51-1

Scalability

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t

Load

Postgres TPC throughput, separate log disc

Copyright © 2020 Linux, Locking and Lots of Processors 52

Moving the database log to a separate filesystem shows a much higher peak,
but still shows a β > 0. There is still coherency delay in the system, probably
the file-system log. From other work I’ve done, I know that ext3’s log becomes
a serialisation bottleneck on a busy filesystem with more than a few cores —
switching to XFS (which scales better) or ext2 (which has no log) would be
the next step to try.

Copyright © 2020 Linux, Locking and Lots of Processors 52-1

Scalability

Another example:

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 10 20 30 40 50

Jo
bs

 p
er

 M
in

ut
e

Number of Clients

01-way
02-way
04-way
08-way
12-way

Copyright © 2020 Linux, Locking and Lots of Processors 53

This shows the reaim-7 benchmark running on various numbers of cores on
an HP 12-way Itanium system. As you can see, the 12-way line falls below
the 8-way line — α must be greater than zero. So we need to look for queuing
in the system somewhere.

Copyright © 2020 Linux, Locking and Lots of Processors 53-1

Scalability

SPINLOCKS HOLD WAIT

UTIL CON MEAN(MAX) MEAN(MAX)(% CPU) TOTAL NOWAIT SPIN RJECT NAME

72.3% 13.1% 0.5us(9.5us) 29us(20ms)(42.5%) 50542055 86.9% 13.1% 0% find lock page+0x30

0.01% 85.3% 1.7us(6.2us) 46us(4016us)(0.01%) 1113 14.7% 85.3% 0% find lock page+0x130

Copyright © 2020 Linux, Locking and Lots of Processors 54

Lockmetering shows that a single spinlock in find lock page() is the problem:

Copyright © 2020 Linux, Locking and Lots of Processors 54-1

Scalability

struct page *find lock page(struct address space *mapping,

unsigned long offset)

{

struct page *page;

spin lock irq(&mapping->tree lock);

repeat:

page = radix tree lookup(&mapping>page tree, offset);

if (page) {

page cache get(page);

if (TestSetPageLocked(page)) {

spin unlock irq(&mapping->tree lock);

lock page(page);

spin lock irq(&mapping->tree lock);

. . .

Copyright © 2020 Linux, Locking and Lots of Processors 55

So replace the spinlock with a rwlock, and bingo:

Copyright © 2020 Linux, Locking and Lots of Processors 55-1

Scalability

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 10 20 30 40 50

Jo
bs

 p
er

 M
in

ut
e

Number of Clients

01-way
02-way
04-way
08-way
12-way
16-way

Copyright © 2020 Linux, Locking and Lots of Processors 56

The scalability is much much better. Not only can we now extend to 16 pro-
cessors, the raw performance is an order-of-magnitude better even on single
core.

Copyright © 2020 Linux, Locking and Lots of Processors 56-1

Tackling scalability problems

• Find the bottleneck

• fix or work around it

• check performance doesn’t suffer too much on the low end.

• Experiment with different algorithms, parameters

Copyright © 2020 Linux, Locking and Lots of Processors 57

Fixing a performance problem for your system can break someone else’s
system. In particular, algorithms that have good worst-case performance on
large systems may have poorer performance on small systems than algo-
rithms that do not scale. The holy grail is to find ways that work well for two
processor and two thousand processor systems.

Copyright © 2020 Linux, Locking and Lots of Processors 57-1

Tackling scalability problems

• Each solved problem

uncovers another

• Fixing performance for one

workload can worsen another

• Performance problems can

make you cry

Copyright © 2020 Linux, Locking and Lots of Processors 58

Performance and scalability work is like peeling an onion. Solving one bottle-
neck just moves the overall problem to another bottleneck. Sometimes, the
new bottleneck can be worse than the one fixed.
Just like an onion, performance problems can make you cry.

Copyright © 2020 Linux, Locking and Lots of Processors 58-1

Doing without locks

Avoiding Serialisation:

• Lock-free algorithms

• Allow safe concurrent access without excessive serialisation

• Many techniques. We cover:

– Sequence locks

– Read-Copy-Update (RCU)

Copyright © 2020 Linux, Locking and Lots of Processors 59

If you can reduce serialisation you can generally improve performance on
multiprocessors. Two techniques are presented here.

Copyright © 2020 Linux, Locking and Lots of Processors 59-1

Doing without locks

Sequence locks:

• Readers don’t lock

• Writers serialised.

Copyright © 2020 Linux, Locking and Lots of Processors 60

If you have a data structure that is read-mostly, then a sequence lock may be
of advantage. The idea here is to speculate that a race doesn’t occur, detect
it, and retry if it does.

Copyright © 2020 Linux, Locking and Lots of Processors 60-1

Doing without locks

Reader:

volatile seq;

do {

do {

lastseq = seq;

} while (lastseq & 1);

rmb();

reader body

} while (lastseq != seq);

Writer:

spinlock(&lck);

seq++; wmb()

writer body ...

wmb(); seq++;

spinunlock(&lck);

Copyright © 2020 Linux, Locking and Lots of Processors 61

The idea is to keep a sequence number that is updated (twice) every time a
set of variables is updated, once at the start, and once after the variables are
consistent again. While a writer is active (and the data may be inconsistent)
the sequence number is odd; while the data is consistent the sequence is
even.
The reader grabs a copy of the sequence at the start of its section, spinning
if the result is odd. At the end of the section, it rereads the sequence, if it is
different from the first read value, the section is repeated.
This is in effect an optimistic multi-reader lock. Writers need to protect against
each other, but if there is a single writer (which is often the case) then the
spinlocks can be omitted. A writer can delay a reader; readers do not delay
writers – there’s no need as in a standard multi-reader lock for writers to delay
until all readers are finished.
This is used amongst other places in Linux for protecting the variables con-
taining the current time-of-day.

Copyright © 2020 Linux, Locking and Lots of Processors 61-1

Doing without locks

RCU: McKenney (2004), McKenney et al. (2002)

1. 2.

3. 4.

Copyright © 2020 Linux, Locking and Lots of Processors 62

Another way is so called read-copy-update. The idea here is that if you have
a data structure (such as a linked list), that is very very busy with concurrent
readers, and you want to remove an item in the middle, you can do it by
updating the previous item’s next pointer, but you cannot then free the item
just unlinked until you’re sure that there is no thread accessing it.
If you prevent preëmption while walking the list, then a sufficient condition is
that every processor is either in user-space or has done a context switch. At
this point, there will be no threads accessing the unlinked item(s), and they
can be freed.
Inserting an item without locking is left as an exercise for the reader.
Updating an item then becomes an unlink, copy, update, and insert the copy;

Copyright © 2020 Linux, Locking and Lots of Processors 62-1

leaving the old unlinked item to be freed at the next quiescent point.

References

Baumann, A., Appavoo, J., Krieger, O. & Roscoe, T. (2019), ‘A fork() in the
road’, Workshop on Hot Topics in Operating Systems (HotOs ’19) .

Lepers, B., Quema, V. & Fedorova, A. (2015), Thread and memory place-
ment on NUMA systems: Asymmetry matters, in ‘2015 USENIX Annual
Technical Conference (USENIX ATC 15)’, USENIX Association, Santa
Clara, CA, pp. 277–289.
URL: https://www.usenix.org/conference/atc15/technical-sessio

McKenney, P. E. (2004), Exploiting Deferred Destruction: An Analysis of
Read-Copy-Update Techniques in Operating System Kernels, PhD thesis,
OGI School of Science and Engineering at Oregon Health and Sciences

Copyright © 2020 Linux, Locking and Lots of Processors 62-2

University.
URL: http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.20

McKenney, P. E. (2010), ‘Memory barriers: A hardware view for software
hackers’, Online article, retrieved July 2019.
URL: http://www.rdrop.com/users/paulmck/scalability/paper/whym

McKenney, P. E., Sarma, D., Arcangelli, A., Kleen, A., Krieger, O. & Russell,
R. (2002), Read copy update, in ‘Ottawa Linux Symp.’.
URL: http://www.rdrop.com/users/paulmck/rclock/rcu.2002.07.08.

Ritchie, D. M. (1984), ‘The evolution of the UNIX time-sharing system’, AT&T

Bell Laboratories Technical Journal 63(8), 1577–1593.
URL: ftp://cm.bell-labs.com/who/dmr/hist.html

Ritchie, D. M. & Thompson, K. (1974), ‘The UNIX time-sharing system’,
CACM 17(7), 365–375.

Copyright © 2020 Linux, Locking and Lots of Processors 62-3

https://www.usenix.org/conference/atc15/technical-session/presentation/lepers
http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/whymb.2010.06.07c.pdf
http://www.rdrop.com/users/paulmck/rclock/rcu.2002.07.08.pdf
ftp://cm.bell-labs.com/who/dmr/hist.html

Doing without locks

References

Baumann, A., Appavoo, J., Krieger, O. & Roscoe, T. (2019), ‘A fork()

in the road’, Workshop on Hot Topics in Operating Systems (HotOs

’19) .

Lepers, B., Quema, V. & Fedorova, A. (2015), Thread and memory

placement on NUMA systems: Asymmetry matters, in ‘2015

USENIX Annual Technical Conference (USENIX ATC 15)’, USENIX

Association, Santa Clara, CA, pp. 277–289.

URL:

https://www.usenix.org/conference/atc15/technical-session/

McKenney, P. E. (2004), Exploiting Deferred Destruction: An Analysis

of Read-Copy-Update Techniques in Operating System Kernels,
Copyright © 2020 Linux, Locking and Lots of Processors 63

Doing without locks

PhD thesis, OGI School of Science and Engineering at Oregon

Health and Sciences University.

URL:

http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf

McKenney, P. E. (2010), ‘Memory barriers: A hardware view for

software hackers’, Online article, retrieved July 2019.

URL:

http://www.rdrop.com/users/paulmck/scalability/paper/

McKenney, P. E., Sarma, D., Arcangelli, A., Kleen, A., Krieger, O. &

Russell, R. (2002), Read copy update, in ‘Ottawa Linux Symp.’.

URL:

http://www.rdrop.com/users/paulmck/rclock/rcu.2002.07.08.pdf

Ritchie, D. M. (1984), ‘The evolution of the UNIX time-sharing system’,
Copyright © 2020 Linux, Locking and Lots of Processors 64

https://www.usenix.org/conference/atc15/technical-session/presentation/lepers
http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/whymb.2010.06.07c.pdf
http://www.rdrop.com/users/paulmck/rclock/rcu.2002.07.08.pdf

Doing without locks

AT&T Bell Laboratories Technical Journal 63(8), 1577–1593.

URL: ftp://cm.bell-labs.com/who/dmr/hist.html

Ritchie, D. M. & Thompson, K. (1974), ‘The UNIX time-sharing

system’, CACM 17(7), 365–375.

Copyright © 2020 Linux, Locking and Lots of Processors 65

ftp://cm.bell-labs.com/who/dmr/hist.html

