
Common Multiprocessor Spin Lock
void mp_spinlock (volatile lock t *l) {

cli(); // prevent preemption

while (test and set(l)) ; // lock

}

void mp unlock (volatile lock t *l) {

*l = 0;

sti();

}

Only good for short critical sections

Does not scale for large number of processors

Relies on bus-arbitrator for fairness

Not appropriate for user-level

Used in practice in small SMP systems

Need a more systematic analysis

Thomas Anderson, “The Performance of Spin Lock Alternatives for
Shared-Memory Multiprocessors”, IEEE Transactions on Parallel and
Distributed Systems, Vol 1, No. 1, 1990

Compares Simple Spinlocks
Test and Set

void lock (volatile lock_t *l) {

while (test_and_set(l)) ;

}

Test and Test and Set

void lock (volatile lock_t *l) {

while (*l == BUSY || test_and_set(l)) ;

}

test_and_test_and_set LOCK

Avoid bus traffic contention caused by test_and_set until it is likely to succeed

Normal read spins in cache

Can starve in pathological cases

Benchmark

for i = 1 .. 1,000,000 {

lock(l)

crit_section()

unlock()

compute()

}

Compute chosen from uniform random distribution
of mean 5 times critical section

Measure elapsed time on Sequent Symmetry (20
CPU 30386, coherent write-back invalidate
caches)

Results

Test and set performs poorly once there is enough CPUs to
cause contention for lock

• Expected

Test and Test and Set performs better
• Performance less than expected

• Still significant contention on lock when CPUs notice release and all
attempt acquisition

Critical section performance degenerates
• Critical section requires bus traffic to modify shared structure

• Lock holder competes with CPU that missed as they test and set
– lock holder is slower

• Slower lock holder results in more contention

Idea

Can inserting delays reduce bus traffic and improve
performance

Explore 2 dimensions
• Location of delay

– Insert a delay after release prior to attempting acquire
– Insert a delay after each memory reference

• Delay is static or dynamic
– Static – assign delay “slots” to processors

» Issue: delay tuned for expected contention level
– Dynamic – use a back-off scheme to estimate contention

» Similar to ethernet
» Degrades to static case in worst case.

Examining Inserting Delays

Queue Based Locking

Each processor inserts itself into a waiting queue

• It waits for the lock to free by spinning on its own separate
cache line

• Lock holder frees the lock by “freeing” the next processors
cache line.

Results

Results

Static backoff has higher overhead when backoff is
inappropriate

Dynamic backoff has higher overheads when static
delay is appropriate

• as collisions are still required to tune the backoff time

Queue is better when contention occurs, but has
higher overhead when it does not.

• Issue: Preemption of queued CPU blocks rest of queue
(worse than simple spin locks)

John Mellor-Crummey and Michael Scott, “Algorithms for
Scalable Synchronisation on Shared-Memory
Multiprocessors”, ACM Transactions on Computer
Systems, Vol. 9, No. 1, 1991

MCS Locks
Each CPU enqueues its own private lock variable into a queue and spins

on it

• No contention

On lock release, the releaser unlocks the next lock in the queue

• Only have bus contention on actual unlock

• No livelock (order of lock acquisitions defined by the list)

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

MCS Lock

Requires

• compare_and_swap()

• exchange()

– Also called fetch_and_store()

Sample MCS code for ARM MPCore
void mcs_acquire(mcs_lock *L, mcs_qnode_ptr I)

{

I->next = NULL;

MEM_BARRIER;

mcs_qnode_ptr pred = (mcs_qnode*) SWAP_PTR(L, (void *)I);

if (pred == NULL)

{ /* lock was free */

MEM_BARRIER;

return;

}

I->waiting = 1; // word on which to spin

MEM_BARRIER;

pred->next = I; // make pred point to me

}

Selected Benchmark

Compared

• test and test and set

• Anderson’s array based queue

• test and set with exponential back-off

• MCS

Confirmed Trade-off

Queue locks scale well but have higher overhead

Spin Locks have low overhead but don’t scale well

What do we use?

Beng-Hong Lim and Anant Agarwal, “Reactive
Synchronization Algorithms for Multiprocessors”, ASPLOS
VI, 1994

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Idea

Can we dynamically switch locking methods to suit
the current contention level???

Issues

How do we determine which protocol to use?

• Must not add significant cost

How do we correctly and efficiently switch protocols?

How do we determine when to switch protocols?

Protocol Selection

Keep a “hint”

Ensure both TTS and MCS lock a never free at the same
time

• Only correct selection will get the lock

• Choosing the wrong lock with result in retry which can get it right next
time

• Assumption: Lock mode changes infrequently
– hint cached read-only

– infrequent protocol mismatch retries

Changing Protocol

Only lock holder can switch to avoid race conditions

• It chooses which lock to free, TTS or MCS.

When to change protocol

Use threshold scheme

• Repeated acquisition failures will switch mode to queue

• Repeated immediate acquisition will switch mode to TTS

Results

The multicore evolution and
operating systems

Frans Kaashoek

Joint work with: Silas Boyd-Wickizer, Austin T. Clements,
Yandong Mao, Aleksey Pesterev, Robert Morris, and Nickolai

Zeldovich

MIT

Non-scalable locks are dangerous.
Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. In the
Proceedings of the Linux Symposium, Ottawa, Canada, July 2012.

How well does Linux scale?

● Experiment:

● Linux 2.6.35-rc5 (relatively old, but problems are
representative of issues in recent kernels too)

● Select a few inherent parallel system applications

● Measure throughput on different # of cores

● Use tmpfs to avoid disk bottlenecks

● Insight 1: Short critical sections can lead to
sharp performance collapse

Off-the-shelf 48-core server (AMD)
DRAM DRAM DRAM DRAM

DRAM DRAM DRAM DRAM

● Cache-coherent and non-uniform access

● An approximation of a future 48-core chip

Poor scaling on stock Linux kernel

48

perfect scaling 44

40

36

32

28

24

20

16

12

8
terrible scaling

4

0
memcached PostgreSQL Psearchy

Exim Apache gmake Metis

Y-axis: (throughput with 48 cores) / (throughput with one core)

Exim on stock Linux: collapse
12000

Throughput

10000

8000

6000

4000

2000

0
1 4 8 12 16 20 24 28 32 36 40 44 48

Cores

Exim on stock Linux: collapse
12000

Throughput

10000

8000

6000

4000

2000

0
1 4 8 12 16 20 24 28 32 36 40 44 48

Cores

Exim on stock Linux: collapse
12000 15

Throughput
Kernel time

10000
12

8000

9

6000

6

4000

3
2000

0 0
1 4 8 12 16 20 24 28 32 36 40 44 48

Cores

Oprofile shows an obvious problem

40 cores:

10000 msg/sec

48 cores:
4000 msg/sec

samples % app name

2616 7.3522 vmlinux

2329 6.5456 vmlinux

2197 6.1746 vmlinux

1488 4.1820 vmlinux

1348 3.7885 vmlinux

1182 3.3220 vmlinux

966 2.7149 vmlinux

samples % app name

13515 34.8657 vmlinux

2002 5.1647 vmlinux

1661 4.2850 vmlinux

1497 3.8619 vmlinux

1026 2.6469 vmlinux

914 2.3579 vmlinux

896 2.3115 vmlinux

symbol name

radix_tree_lookup_slot

unmap_vmas

filemap_fault

__do_fault

copy_page_c

unlock_page

page_fault

symbol name

lookup_mnt

radix_tree_lookup_slot

filemap_fault

unmap_vmas

__do_fault

atomic_dec

unlock_page

Oprofile shows an obvious problem

40 cores:

10000 msg/sec

48 cores:
4000 msg/sec

samples % app name

2616 7.3522 vmlinux

2329 6.5456 vmlinux

2197 6.1746 vmlinux

1488 4.1820 vmlinux

1348 3.7885 vmlinux

1182 3.3220 vmlinux

966 2.7149 vmlinux

samples % app name

13515 34.8657 vmlinux

2002 5.1647 vmlinux

1661 4.2850 vmlinux

1497 3.8619 vmlinux

1026 2.6469 vmlinux

914 2.3579 vmlinux

896 2.3115 vmlinux

symbol name

radix_tree_lookup_slot

unmap_vmas

filemap_fault

__do_fault

copy_page_c

unlock_page

page_fault

symbol name

lookup_mnt

radix_tree_lookup_slot

filemap_fault

unmap_vmas

__do_fault

atomic_dec

unlock_page

Oprofile shows an obvious problem

samples % app name symbol name

2616 7.3522 vmlinux radix_tree_lookup_slot

2329 6.5456 vmlinux unmap_vmas

40 cores: 2197 6.1746 vmlinux filemap_fault

10000 msg/sec 1488 4.1820 vmlinux __do_fault

1348 3.7885 vmlinux copy_page_c

1182 3.3220 vmlinux unlock_page

966 2.7149 vmlinux page_fault

samples % app name symbol name

13515 34.8657 vmlinux lookup_mnt

48 cores:
4000 msg/sec

2002 5.1647 vmlinux

1661 4.2850 vmlinux

1497 3.8619 vmlinux

1026 2.6469 vmlinux

914 2.3579 vmlinux

896 2.3115 vmlinux

radix_tree_lookup_slot

filemap_fault

unmap_vmas

__do_fault

atomic_dec

unlock_page

Bottleneck: reading mount table

● Delivering an email calls sys_open

● sys_open calls

struct vfsmount *lookup_mnt(struct path *path)
{

struct vfsmount *mnt;
spin_lock(&vfsmount_lock);
mnt = hash_get(mnts, path);
spin_unlock(&vfsmount_lock);
return mnt;

}

Bottleneck: reading mount table

● sys_open calls:

struct vfsmount *lookup_mnt(struct path *path)
{

struct vfsmount *mnt;
spin_lock(&vfsmount_lock);
mnt = hash_get(mnts, path);
spin_unlock(&vfsmount_lock);
return mnt;

}

Bottleneck: reading mount table

● sys_open calls:

struct vfsmount *lookup_mnt(struct path *path)
{

struct vfsmount *mnt;
spin_lock(&vfsmount_lock);

mnt = hash_get(mnts, path);
spin_unlock(&vfsmount_lock);
return mnt;

}

Serial section is short. Why does
it cause a scalability bottleneck?

What causes the sharp
performance collapse?

● Linux uses ticket spin locks, which are non-
scalable

● So we should expect collapse [Anderson 90]

● But why so sudden, and so sharp, for a short
section?

● Is spin lock/unlock implemented incorrectly?

● Is hardware cache-coherence protocol at fault?

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

500 cycles

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

Previous lock holder notifies
next lock holder after

sending out N/2 replies

Why collapse with short sections?

● Arrival rate is proportional to # non-waiting cores

● Service time is proportional to # cores waiting (k)

● As k increases, waiting time goes up

● As waiting time goes up, k increases

● System gets stuck in states with many waiting cores

Short sections result in collapse

● Experiment: 2% of time spent in critical section

● Critical sections become “longer” with more cores

● Lesson: non-scalable locks fine for long sections

Avoiding lock collapse

● Unscalable locks are fine for long sections

● Unscalable locks collapse for short sections

● Sudden sharp collapse due to “snowball” effect

● Scalable locks avoid collapse altogether

● But requires interface change

Scalable lock scalability

● It doesn't matter much which one

● But all slower in terms of latency

Avoiding lock collapse
is not enough to scale

● “Scalable” locks don't make the kernel scalable

● Main benefit is avoiding collapse: total throughput
will not be lower with more cores

● But, usually want throughput to keep increasing with
more cores

