
Common Multiprocessor Spin Lock
void mp_spinlock (volatile lock t *l) {

cli(); // prevent preemption

while (test and set(l)) ; // lock

}

void mp unlock (volatile lock t *l) {

*l = 0;

sti();

}

Only good for short critical sections

Does not scale for large number of processors

Relies on bus-arbitrator for fairness

Not appropriate for user-level

Used in practice in small SMP systems



Need a more systematic analysis

Thomas Anderson, “The Performance of Spin Lock Alternatives for 
Shared-Memory Multiprocessors”, IEEE Transactions on Parallel and 
Distributed Systems, Vol 1, No. 1, 1990



Compares Simple Spinlocks
Test and Set

void lock (volatile lock_t *l) {

while (test_and_set(l)) ;

}

Test and Test and Set

void lock (volatile lock_t *l) {

while (*l == BUSY || test_and_set(l)) ;

}



test_and_test_and_set LOCK

Avoid bus traffic contention caused by test_and_set until it is likely to succeed 

Normal read spins in cache

Can starve in pathological cases



Benchmark

for i = 1 .. 1,000,000 {

lock(l)

crit_section()

unlock()

compute()

}

Compute chosen from uniform random distribution 
of mean 5 times critical section

Measure elapsed time on Sequent Symmetry (20 
CPU 30386, coherent write-back invalidate 
caches)





Results

Test and set performs poorly once there is enough CPUs to 
cause contention for lock

• Expected

Test and Test and Set performs better
• Performance less than expected

• Still significant contention on lock when CPUs notice release and all 
attempt acquisition

Critical section performance degenerates
• Critical section requires bus traffic to modify shared structure

• Lock holder competes with CPU that missed as they test and set
– lock holder is slower

• Slower lock holder results in more contention



Idea

Can inserting delays reduce bus traffic and improve 
performance

Explore 2 dimensions
• Location of delay

– Insert a delay after release prior to attempting acquire
– Insert a delay after each memory reference

• Delay is static or dynamic
– Static – assign delay “slots” to processors

» Issue: delay tuned for expected contention level
– Dynamic – use a back-off scheme to estimate contention

» Similar to ethernet
» Degrades to static case in worst case.



Examining Inserting Delays



Queue Based Locking

Each processor inserts itself into a waiting queue

• It waits for the lock to free by spinning on its own separate 
cache line

• Lock holder frees the lock by “freeing” the next processors 
cache line.



Results



Results

Static backoff has higher overhead when backoff is 
inappropriate

Dynamic backoff has higher overheads when static 
delay is appropriate

• as collisions are still required to tune the backoff time

Queue is better when contention occurs, but has 
higher overhead when it does not.

• Issue: Preemption of queued CPU blocks rest of queue 
(worse than simple spin locks)



John Mellor-Crummey and Michael Scott, “Algorithms for 
Scalable Synchronisation on Shared-Memory 
Multiprocessors”, ACM Transactions on Computer 
Systems, Vol. 9, No. 1, 1991



MCS Locks
Each CPU enqueues its own private lock variable into a queue and spins 

on it

• No contention

On lock release, the releaser unlocks the next lock in the queue

• Only have bus contention on actual unlock

• No livelock (order of lock acquisitions defined by the list)

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License



MCS Lock

Requires 

• compare_and_swap() 

• exchange() 

– Also called fetch_and_store()







Sample MCS code for ARM MPCore
void mcs_acquire(mcs_lock *L, mcs_qnode_ptr I) 

{

I->next = NULL;

MEM_BARRIER;

mcs_qnode_ptr pred = (mcs_qnode*) SWAP_PTR( L, (void *)I);

if (pred == NULL) 

{ /* lock was free */

MEM_BARRIER;

return;

}

I->waiting = 1; // word on which to spin

MEM_BARRIER;

pred->next = I; // make pred point to me

}



Selected Benchmark

Compared

• test and test and set

• Anderson’s array based queue

• test and set with exponential back-off

• MCS





Confirmed Trade-off

Queue locks scale well but have higher overhead 

Spin Locks have low overhead but don’t scale well

What do we use?



Beng-Hong Lim and Anant Agarwal, “Reactive 
Synchronization Algorithms for Multiprocessors”, ASPLOS 
VI, 1994

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License







Idea

Can we dynamically switch locking methods to suit 
the current contention level???



Issues

How do we determine which protocol to use?

• Must not add significant cost

How do we correctly and efficiently switch protocols?

How do we determine when to switch protocols?



Protocol Selection

Keep a “hint”

Ensure both TTS and MCS lock a never free at the same 
time

• Only correct selection will get the lock

• Choosing the wrong lock with result in retry which can get it right next 
time

• Assumption: Lock mode changes infrequently 
– hint cached read-only

– infrequent protocol mismatch retries



Changing Protocol

Only lock holder can switch to avoid race conditions

• It chooses which lock to free, TTS or MCS.



When to change protocol

Use threshold scheme

• Repeated acquisition failures will switch mode to queue

• Repeated immediate acquisition will switch mode to TTS  



Results



The multicore evolution and 
operating systems 

Frans Kaashoek 

Joint work with: Silas Boyd-Wickizer, Austin T. Clements, 
Yandong Mao, Aleksey Pesterev,  Robert Morris, and Nickolai 

Zeldovich 

MIT 



Non-scalable locks are dangerous.
Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. In the 
Proceedings of the Linux Symposium, Ottawa, Canada, July 2012.



How well does Linux scale? 

● Experiment: 

● Linux 2.6.35-rc5 (relatively old, but problems are 
representative of issues in recent kernels too) 

● Select a few inherent parallel system applications 

● Measure throughput on different # of cores 

● Use tmpfs to avoid disk bottlenecks 

● Insight 1: Short critical sections can lead to 
sharp performance collapse 



Off-the-shelf 48-core server (AMD) 
DRAM DRAM DRAM DRAM

DRAM DRAM DRAM DRAM

● Cache-coherent and non-uniform access 

● An approximation of a future 48-core chip 



Poor scaling on stock Linux kernel 
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Exim on stock Linux: collapse 
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Exim on stock Linux: collapse 
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Oprofile shows an obvious problem 

40 cores: 

10000 msg/sec 

48 cores: 
4000 msg/sec 

samples % app name 

2616 7.3522  vmlinux 

2329 6.5456  vmlinux 

2197 6.1746  vmlinux 

1488 4.1820  vmlinux 

1348 3.7885  vmlinux 

1182 3.3220  vmlinux 

966 2.7149  vmlinux 

samples % app name 

13515 34.8657  vmlinux 

2002 5.1647  vmlinux 

1661 4.2850  vmlinux 

1497 3.8619  vmlinux 

1026 2.6469  vmlinux 

914 2.3579  vmlinux 

896 2.3115  vmlinux 

symbol name 

radix_tree_lookup_slot 

unmap_vmas 

filemap_fault 

__do_fault 

copy_page_c 

unlock_page 

page_fault 

symbol name 

lookup_mnt 

radix_tree_lookup_slot 

filemap_fault 

unmap_vmas 

__do_fault 

atomic_dec 

unlock_page 



Oprofile shows an obvious problem 

40 cores: 

10000 msg/sec 

48 cores: 
4000 msg/sec 

samples % app name 

2616 7.3522 vmlinux 

2329 6.5456 vmlinux 

2197 6.1746 vmlinux 

1488 4.1820 vmlinux 

1348 3.7885 vmlinux 

1182 3.3220 vmlinux 

966 2.7149 vmlinux 

samples % app name 

13515 34.8657 vmlinux 

2002 5.1647 vmlinux 

1661 4.2850 vmlinux 

1497 3.8619 vmlinux 

1026 2.6469 vmlinux 

914 2.3579 vmlinux 

896 2.3115 vmlinux 

symbol name 

radix_tree_lookup_slot 

unmap_vmas 

filemap_fault 

__do_fault 

copy_page_c 

unlock_page 

page_fault 

symbol name 

lookup_mnt 

radix_tree_lookup_slot 

filemap_fault 

unmap_vmas 

__do_fault 

atomic_dec 

unlock_page 



Oprofile shows an obvious problem 

samples % app name symbol name

2616 7.3522 vmlinux radix_tree_lookup_slot

2329 6.5456 vmlinux unmap_vmas

40 cores: 2197 6.1746 vmlinux filemap_fault

10000 msg/sec 1488 4.1820 vmlinux __do_fault

1348 3.7885 vmlinux copy_page_c

1182 3.3220 vmlinux unlock_page

966 2.7149 vmlinux page_fault

samples % app name symbol name

13515 34.8657 vmlinux lookup_mnt

48 cores: 
4000 msg/sec 

2002 5.1647 vmlinux 

1661 4.2850 vmlinux 

1497 3.8619 vmlinux 

1026 2.6469 vmlinux 

914 2.3579 vmlinux 

896 2.3115 vmlinux 

radix_tree_lookup_slot 

filemap_fault 

unmap_vmas 

__do_fault 

atomic_dec 

unlock_page 



Bottleneck: reading mount table 

● Delivering an email calls sys_open 

● sys_open calls 

struct vfsmount *lookup_mnt(struct path *path) 
{ 

struct vfsmount *mnt; 
spin_lock(&vfsmount_lock); 
mnt = hash_get(mnts, path); 
spin_unlock(&vfsmount_lock); 
return mnt; 

} 
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Bottleneck: reading mount table 

● sys_open calls: 

struct vfsmount *lookup_mnt(struct path *path) 
{ 

struct vfsmount *mnt; 
spin_lock(&vfsmount_lock); 

mnt = hash_get(mnts, path); 
spin_unlock(&vfsmount_lock); 
return mnt; 

} 

Serial section is short.  Why does 
it cause a scalability bottleneck? 



What causes the sharp 
performance collapse? 

● Linux uses ticket spin locks, which are non-
scalable 

● So we should expect collapse [Anderson 90] 

● But why so sudden, and so sharp, for a short 
section? 

● Is spin lock/unlock implemented incorrectly? 

● Is hardware cache-coherence protocol at fault? 



Scalability collapse caused by 
non-scalable locks [Anderson 90] 

void spin_lock(spinlock_t *lock) 
{ 

t = atomic_inc(lock->next_ticket); 
while (t != lock->current_ticket) 

; /* Spin */ 
} 

void spin_unlock(spinlock_t *lock) 
{ 

lock->current_ticket++; 
} 

struct spinlock_t { 
int current_ticket; 
int next_ticket; 

} 
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Scalability collapse caused by 
non-scalable locks [Anderson 90] 

void spin_lock(spinlock_t *lock) 
{ 

t = atomic_inc(lock->next_ticket); 
while (t != lock->current_ticket) 

; /* Spin */ 
} 

500 cycles 

void spin_unlock(spinlock_t *lock) 
{ 

lock->current_ticket++; 
} 

struct spinlock_t { 
int current_ticket; 
int next_ticket; 
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Scalability collapse caused by 
non-scalable locks [Anderson 90] 

void spin_lock(spinlock_t *lock) 
{ 

t = atomic_inc(lock->next_ticket); 
while (t != lock->current_ticket) 

; /* Spin */ 
} 

void spin_unlock(spinlock_t *lock) 
{ 

lock->current_ticket++; 
} 

struct spinlock_t { 
int current_ticket; 
int next_ticket; 

} 

Previous lock holder notifies 
next lock holder after 

sending out N/2 replies 



Why collapse with short sections? 

● Arrival rate is proportional to # non-waiting cores 

● Service time is proportional to # cores waiting (k) 

● As k increases, waiting time goes up 

● As waiting time goes up, k increases 

● System gets stuck in states with many waiting cores 



Short sections result in collapse 

● Experiment: 2% of time spent in critical section 

● Critical sections become “longer” with more cores 

● Lesson: non-scalable locks fine for long sections 



Avoiding lock collapse 

● Unscalable locks are fine for long sections 

● Unscalable locks collapse for short sections 

● Sudden sharp collapse due to “snowball” effect 

● Scalable locks avoid collapse altogether 

● But requires interface change 



Scalable lock scalability 

● It doesn't matter much which one 

● But all slower in terms of latency 



Avoiding lock collapse 
is not enough to scale 

● “Scalable” locks don't make the kernel scalable 

● Main benefit is avoiding collapse: total throughput 
will not be lower with more cores 

● But, usually want throughput to keep increasing with 
more cores 


