School of Computer Science & Engineering
N COMP9242 Advanced Operating Systems
UNSW | gz
SYDNEY niversity

Confidentiality Integrity Availability

2022 T2 Week 10 Part 1

Formal Verification and selL4

@GernotHeiser E

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

 under the following conditions:

« Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

COMP9242 2022 T2 W10 Part 1: Verification and seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

Today’s Lecture

 Assurance and verification
« Common Ciriteria
 Formal verification

* selL4
* Functional correctness
* Translation correctness
« Security enforcement
 Verification limitations
« WCET analysis
» Cost of verification

« Security impact of OS design

COMP9242 2022 T2 W10 Part 1: Verification and selL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

ssssss

3

Assurance and Verification

COMP9242 2022 T2 W10 Part 1: Verification and selL4 © Gernot Heiser 2019 — CC BY 4.0

UNSW

4

Refresher: Assurance and Formal Verification

« Assurance:
 systematic evaluation and testing
 essentially an intensive and onerous form of quality assurance

* Formal verification: Assurance and formal verification
* mathematical proof aim to establish correctness of
* mechanism design
* mechanism implementation

* Certification: independent examination
« confirming that the assurance or verification was done right

COMP9242 2022 T2 W10 Part 1: Verification and selL4

VVVVVV

5

Assurance: Substantiating Trust

Informal (English)

* Specification or formal (maths)

« Unambiguous description of desired behaviour

Compelling argument

* System design or formal proof

« Justification that it meets specification

* Implementation Code inspection,
« Justification that it implements the design Mot tefsting,
proo

 Maintenance

« Justifies that system use meets assumptions

VVVVVV

COMP9242 2022 T2 W10 Part 1: Verification and selL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

Common Criteria

« Common Ciriteria for IT Security Evaluation [ISO/IEC 15408, 99]

* |ISO standard, for general use
« Evaluates QA used to ensure systems meet their requirements

 Developed out of the famous US DOD “Orange Book™:
Trusted Computer System Evaluation Criteria [1985]

* Terminology:
 Target of evaluation (TOE): Evaluated system
« Security target (ST): Defines requirements
* Protection profile (PP): Standardised ST template

 Evaluation assurance level (EAL). Defines thoroughness of evaluation
* PPs have maximum EAL they can be used for

COMP9242 2022 T2 W10 Part 1: Verification and seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

vvvvvv

7

CC: Evaluation Assurance Levels

- Level [Requirements |Specification Design Implementation
g EAL1 |not evaluated Informal not eval not evaluated
g EAL2 |not evaluated Informal Informal not evaluated
_qé EAL3 |not evaluated Informal Informal not evaluated
8’ EAL4 [not evaluated Informal Informal not evaluated
E EALS5 |notevaluated Semi-Formal Semi-Formal Informal
= EAL6 |Formal Semi-Formal Semi-Formal Informal

EAL7 |Formal Formal Formal Informal

COMP9242 2022 T2 W10 Part 1: Verification and selL4

© Gernot Heiser 2019 — CC BY 4.0 UNSW

vvvvvv

8

Common Criteria: Protection Profiles (PPs)

» Controlled Access PP (CAPP)
 standard OS security, up to EAL3

 Single Level Operating System PP
« superset of CAPP, up to EAL4+

- Labelled Security PP (LSPP)
« MAC for COTS OSes

» Multi-Level Operating System PP
 superset of CAPP, LSPP, up to EAL4+

» Separation Kernel Protection Profile (SKPP)
« strict partitioning, for EAL6-7

COMP9242 2022 T2 W10 Part 1: Verification and seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

g

COTS OS Certifications

 EALS:
« 2010 Mac OS X (10.6)

 EAL4:
» 2003: Windows 2000 Get regularly
« 2005: SUSE Enterprise Linux hacked!

* 2006: Solaris 10 (EAL4+)
« against CAPP (an EAL3 PP!)
« 2007: Red Hat Linux (EAL4+)

* EALG:

« 2008: Green Hills INTEGRITY-178B (EALG+)
« against SKPP, relatively simple PPC-based hardware platform in TOE

* EALY:
« 2019: Prove & Run PROVENCORE

COMP9242 2022 T2 W10 Part 1: Verification and seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

=7

SKPP on Commodity Hardware

« SKPP: OS provides only separation

* One Box One Wire (OB1) Project

« Use INTEGRITY-178B to isolate VMs on commodity desktop hardware
 Leverage existing INTEGRITY certification

* by “porting” it to commodity platform

NSA subsequently dis-endorsed SKPP,

discontinued certifying 2EAL5
Conclusion [NSA, March 2010]:

e SKPP validation for commodity hardware platforms
infeasible due to their complexity
e SKPP has limited relevance for these platforms

10 COMP9242 2022 T2 W10 Part 1: Verification and selL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

=
& SYDNEY

Common Criteria Limitations _— |
ectively dead in

- Eyes def
* Very expensive >-Eyes defence

* rule of thumb: EAL6+ costs $1K/LOC [Green Hills]
design-implementation-evaluation-certification

» Too much focus on development process
« rather than the product that was delivered

» Lower EALs of little practical use for OSes
« c.f. COTS OS EALA4 certifications

« Commercial Licensed Evaluation Facilities licenses rarely
revoked
 Leads to potential “race to the bottom” [Anderson & Fuloria, 2009]

11 COMP9242 2022 T2 W10 Part 1: Verification and seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

12

Formal Verification

* Prove properties about a mathematical model of a system

Recent work automatically proved functional
correctness of simple systems using SMT solvers
[Hyperkernel, SOSP’17]

COMP9242 2022 T2 W10 Part 1: Verification and selL.4 © Gernot Heiser 2019 — CC BY 4.0

ssssss

13

Theorem Proving

“Forward simulation”:
Prove state correspondence
of abstract and concrete levels

COMP9242 2022 T2 W10 Part 1: Verification and selL4

operation ,
abstract Qg = =—=—=—=> (O

>

A

prove!

state relation

P
<

\ 4

concrete’ § = = = = = g’

VVVVVV

Model Checking and Linux: A Sad Story

« Static analysis of Linux source [Chou & al, 2001]
« Found high density of bugs, especially in device drivers

* Re-analysis 10 years later [Palix & al, 2011] Disappointing rate of
improvement for bugs that

are automatically detectable!

Fault rate by directory [Palix’11]
| | | |

---- Average
—&— Staging
—o— Drivers

—e— Sound
Arch

FS

Net
—N— QOther

% of faulty notes

0.0 | | | | | |

14 COMP9242 2022 T2 W10 Part 1: Verification and seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

And the Result?

QD TECHNICA & s o s s cvmcao

RISK ASSESSMENT —

Unsafe at any clock speed:
Linux kernel security needs a
rethink

Ars reports from the Linux Security Summit—and finds much work
that needs to be done.

J-M. PORUP (UK) - 9/27/2016, 10:57 PM B I u e B 0 rn e

A The | iniy karnal tndav farac an iinnraradanted cafatv rricic Miich like when

15 COMP9242 2022 T2 W10 Part 1: Verification and selL4 © Gernot Heiser 2019 — CC BY 4.0 {«: UNSW

VVVVVV

Au g u St 2 O O 9 A NICTA bejelentette a vilag elsd, formalis médszerekkel igazolt,

New Scientist
Saturday 29/8/2009
p| Stories Recent Popular Searc : Page: 21
““l= Section: General News
LESE Region: National

Slashdot is powered by your subm Type: Magazines Science / Technology

&P ™= Size: 196.31 sq.cms.

+ = Technology: World's Firs S — Published: -----S-

Posted by Soulskill on Thursday Aug
from the wait-for-it dept.

An anonymous reader writes The UItimate Way to keep your
"Operating systems usually hav¢ Computer Safe fme harm

and so forth are known by almos

to prove that a particular OS ker FLAWS in the code, or “kernel”, that just mathematics, and you can
. . sits at the heart of modern computers reason about them mathematically,”
formally verified, and as such it «
leave them prone to occasional says Klein.
researchers used an executable malfunction and vulnerable to attack His team formulated a model with
the Isabelle theorem prover to ge by worms and viruses. So the more than 200,000 logical steps
matches the executable and the development of a secure general- which allowed them to prove that the

. . purpose pave program would always behave
ms It mn LanX? "welre Dleased to SDCAY LIMGL I UUG:’?‘?:“GSQI‘J!??‘:!“V llﬂvqm: ’Iﬂlﬂ" nwuanaocu ver .sits

[P AIOSSIET S eregmenyeKkeppen peaig egy olyan megpiZnatosagotr Kapnak a szortvertdl, amely e
|

17 COMP9242 2022 T2 W10 Part 1: Verification and selL4 © Gernot Heiser 2019 — CC BY 4.0

SYDNEY

MIT
Technology

Review

a LISTS | INNOVATORSUNDER35 = DISRUPTIVE COMPANIES BREAKTHROUGH TECHNOLOGIES

|0 BREAKTHROUGH
TECHNOLOGIES

Crash-Proof Code

Making critical software safer

7 comments
WILLIAM BULKELEY

VVVVVV

18 COMP9242 2022 T2 W10 Part 1: Verification and selL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW
A

Proving Security and Safety (Armvo/7)

Confidentiality Integrity
Isolation properties
[ITP'11, S&P’13]
Abstract
Functional correctness Moce
[SOSP’09]
2019 ACM SIGOPS
Hall-of-Fame Award C Imple-
, mentation
Translation correctness
[PLDI'13]
Worst-case execution time Binary
[RTSS’11, RTAS 16] code
19 COMP9242 2022 T2 W10 Part 1: Verification and selL4

Availability

Still most compre-
hensive verification

Still only verified
capability-based OS

Exclusions (at present, Armv7):

* Kernel initialisation not yet verified

* MMU & caches modelled abstractly

* Multicore not yet verified

* Covert timing channels not precluded

ssssss

Security Is No Excuse For Bad Performance!

Latency (in cycles) of a round-trip cross-address-space IPC on x64

Wgrld S fastelzst Mi et al, 2019 986 2717 8157
microkernel! seL4.systems, Jul'22 763 N/A N/A

Within 10% of
hardware limit!

Sources:

» Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, Haibo Chen: “SkyBridge: Fast and Secure Inter-Process Communication
for Microkernels”, EuroSys, April 2020

» sel4 Performance, https://sel4.systems/About/Performance/, accessed 2022-07-31

20 SYSTOR Keynote, June'22 © Gernot Heiser 2019 — CC BY 4.0 UNSW

ssssss

https://sel4.systems/About/Performance/

Functional Correctness

21 COMP9242 2022 T2 W10 Part 1: Verification and selL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY

@:el4 Proving Functional Correctness

117,000 lop

Refinement: all possible
Implementation implementation behaviours
5.7 kLOC Haskell are captured by the model

50,000 lop

Cparser
=

Formal
C Semantics

Implementation
8.7 kLOCC

2 COMP9242 2022 T2 W10 Part 1: Verification and seL4 © Gernot Heiser 2019 - CCBY 4.0 ##) UNSW

ssssss

Functional Correctness Summary

Can prove further
Kinds of properties proved properties on

|
Behaviour of C code is fully captured by abstract model abstract level!

Behaviour of C code is fully captured by executable model

Kernel never fails, behaviour is always well-defined

: : Bugs found:
e assertions never fail

* 16 in (shallow) testing

» will never de-reference null pointer e 460 in verification
* will never access array out of bounds « 150 in spec,
« cannot be subverted by misformed input « 150 in design,

« 160inC

All syscalls terminate, reclaiming memory is safe, ...

Well typed references, aligned objects, kernel always mapped...
Access control is decidable

23 COMP9242 2022 T2 W10 Part 1: Verification and seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

Translation Correctness

24 COMP9242 2022 T2 W10 Part 1: Verification and seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

Binary Verification: Translation Validation

1| f‘ Target of functional
O correctness proof
‘{IVI."
C Source — Formalised C
Formal
C Semantics Rewrite
Rules
Compiler LaGn?up;;e m Lai?upahge
SMT Solver

©
v o .
|’ Symbol Tables ~ compiler
Binary Code s, Formalised
Binary

Formal ISA Spec

25 COMP9242 2022 T2 W10 Part 1: Verification and seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

Security Enforcement

26 COMP9242 2022 T2 W10 Part 1: Verification and selL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY

|solation Goes Deep

Kernel data
partitioned
like user data

27 COMP9242 2022 T2 W10 Part 1: Verification and selL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

Integrity: Control Write Access

Event-based kernel always
operates on be-half of
well-defined user:

* Prove kernel only

To prove: | - _ _ modifies data if
Low has no write capabilities to High objects presented write cap

= no action of Low will modify High state
Specifically, kernel does not modify on Low’s behalf!

28 COMP9242 2022 T2 W10 Part 1: Verification and seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

Availability: Ensuring Resource Access

Nothing to do, implied
by other properties!

Strict separation of kernel resources
= Low cannot deny High access to resources

29 COMP9242 2022 T2 W10 Part 1: Verification and selL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

Confidentiality: Control Information Flow

Violation not
observable by
High!

Non-interference proof:
* Evolution of Low does not depend on High state
* Also shows absence of covert storage channels

To prove:
Low has no read capabilities to High objects
= no action will reveal High state to Low

30 COMP9242 2022 T2 W10 Part 1: Verification and selL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

Confidentiality Proof Challenge

Spec Implementation
bool a(); Idiotic but valid refinement bool a() {
return !secret;
}

Non-determinism
breaks confidentiality
Solution: under refinement!
 Remove non-determinism where it
affects confidentiality
* Eg: scheduler strictly round-robin Infoflow is very strong
property, requiring
restrictions rarely met
in real world

31 COMP9242 2022 T2 W10 Part 1: Verification and selL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

32

Limitations

COMP9242 2022 T2 W10 Part 1: Verification and selL4

© Gernot Heiser 2019 — CC BY 4.0

(]

«

33

Verification Assumptions

1. Hardware behaves as expected

* Formalised hardware-software contract (ISA)
« Hardware implementation free of bugs, Trojans, ...

2. Spec matches expectations

« Can only prove “security” if specify what “security” means
« Spec may not be what we think it is

3. Proof checker is correct
* Isabel/HOL checking core that validates proofs against logic

With binary verification do
not need to trust C compiler!

COMP9242 2022 T2 W10 Part 1: Verification and selL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

34

Present Verification Limitations

* Not verified boot code
« Assume it leaves kernel in safe state

« Caches/MMU presently modeled at high level / axiomised

MMU model finished
by recent PhD
* Not proved any temporal properties

» Presently not proved scheduler observes priorities,
properties needed for RT

« WCET analysis applies only to dated ARM11/A8 cores

« No proofs about timing channels (yet) Present research!

COMP9242 2022 T2 W10 Part 1: Verification and selL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

35

64b x86

=3

Int%ity]

Availab.]

COMP9242 2022 T2 W10 Part 1: Verification and selL.4

64b RISC-V
| conte, | | e,

© Gernot Heiser 2019 — CC BY 4.0

Common Criteria?

Level |Requirements |Specification Design Implementation
EAL1 [not evaluated Informal not eval not evaluated

EAL2 [not evaluated Informal Informal not evaluated

EAL3 [not evaluated Informal Informal not evaluated

EAL4 [not evaluated Informal Informal not evaluated

EAL5 [not evaluated Semi-Formal Semi-Formal Informal

EAL6 [Formal Semi-Formal Semi-Formal Informal

EAL7 [Formal Formal Formal Informal

Formal Formal Formal Formal
36 COMP9242 2022 T2 W10 Part 1: Verification and selL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

vvvvvv

37

WCET Analysis

COMP9242 2022 T2 W10 Part 1: Verification and selL4

© Gernot Heiser 2019 — CC BY 4.0

@

«

@=eld WCET Analysis

Program Control-flow
binary graph

Accurate & sound
model of pipeline,
caches

Micro- Integer
architecture linear
model equations

Challenge: minimise Loop Infeas-ible Scalability!
pessimism — establish bounds path info

tight bounds/models

Pessimism!

38 COMP9242 2022 T2 W10 Part 1: Verification and selL4 © Gernot Heiser 2019 — CC BY 4.0

Loop Bounds & Infeasible Paths

Tight loop bounds and Idea:

infeasible path refutations - prove on C level

infeasible to obtain from « transfer to binary using

binary — lack of semantic translation-validation toolchain

information, especially
pointer aliasing analysis.

Program Control-

binary flow graph

Loop

Micro- ; Integer
architecture % linear
C Implementation equations

Loop Infeasible
bounds path info

Binary code Result: High-assurance & tight bounds!

bounds

Infeasible 9(00ﬁ
path info

91eI0UUY

39 COMP9242 2022 T2 W10 Part 1: Verification and seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

@seld WCET Analysis on ARM11

Pessimism mostly due to

Likely worst case under-specified hardware

w Observed
378 w Computed

99.5

0 100 200 300 S

</

Problem: Latency RISC-\V/°
information no longer

published by Arm!

40 COMP9242 2022 T2 W10 Part 1: Verification and seL4 © Gemnot Heiser 2019 - CC BY 4.0 [##5

Cost of Verification

41 COMP9242 2022 T2 W10 Part 1: Verification and selL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY

Verification Cost Breakdown

Haskell design 2 py
C implementation 0.15 py
Verification Debugging/Testing 0.15 py
Abstract spec refinement 8 py
Executable spec refinement 3 py
Fastpath verification 0.4 py
Formal frameworks 9 py
Total 24 py
Reusable! Non-reusable verification 11.5 py
Traditional engineering 4-6 py
42 COMP9242 2022 T2 W10 Part 1: Verification and selL4

Abstract
Spec

Proof

Executable
Spec

Proof

C Imple-
mentation

© Gernot Heiser 2019 — CC BY 4.0

VVVVVV

Why So Hard for 9,000 LOC?

sel4 call
graph

43 COMP9242 2022 T2 W10 Part 1: Verification and seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

el

@sela Verification Cost

Confidentiality Integrity

C Imple-
mentation

Binary code

44 COMP9242 2022 T2 W10 Part 1: Verification and selL.4

Availability

11.5 py, 4.5 years

Design + implementation +
verification = $400/LOC

© Gernot Heiser 2019 — CC BY 4.0

ssssss

Microkernel Life-Cycle Cost in Context

2 ¢)sel
Revolution! S4OO Green Hills
o INTEGRITY
% $1000
= Fast! '/
(/)]
7))
<
L4
Pistachio
S100-150
100 250 500 750 1000
Cost ($/SLOC)

45 COMP9242 2022 T2 W10 Part 1: Verification and seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

=

Security Impact of OS Design

46 COMP9242 2022 T2 W10 Part 1: Verification and seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

47

Quantifying OS-Design Security Impact

Approach:
« Examine all critical Linux CVEs (vulnerabilities & exploits database)

* easy to exploit 115 critical
* high impact _ Linux CVEs to
* no defence available Nov’17

« confirmed

 For each establish how microkernel-based design would change impact

COMP9242 2022 T2 W10 Part 1: Verification and selL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

Hypothetical selL4-based OS

OS structured in isolated components, minimal
inter-component dependencies, /east privilege

Functionality
comparable
to Linux

Operating system

Device
Driver

0=:l4

Hardware

vvvvvv

48 COMP9242 2022 T2 W10 Part 1: Verification and selL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

@ =214 Hypothetical Security-Critical App

App requires:

_ * |IP networking
Operating system - File storage

' ﬂ - ' o

49 COMP9242 2022 T2 W10 Part 1: Verification and seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW
=2

@sela Al Critical Linux CVEs to 2017

Still full system
compromise:
No effect

in TCB:
Attack defeated

Only crash essential
service (availability):
Strongly mitigated

50 COMP9242 2022 T2 W10 Part 1: Verification and seL4 © Gernot Heiser 2019 - CCBY 4.0 ##) UNSW

ssssss

Conclusion: OS Structure Matters

» Microkernels definitely improve security

- Microkernel verification improves further %

* Monolithic OS design is fundamentally %
flawed from security point of view At

[Biggs et al., APSys’18]

Use of a monolithic OS in N
security- or safety-critical
scenarios is professional
malpractice!

51 COMP9242 2022 T2 W10 Part 1: Verification and seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

