
School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

2022 T2 Week 10 Part 2

seL4 in the Real World &
seL4 Research at TS@UNSW
@GernotHeiser

Initial process

RAM
I+D

Init
I+D

High

SD
I+D

Low

SD
I+D

© Gernot Heiser 2019 – CC BY 4.0

Copyright Notice
These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License
• You are free:

• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

1 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

© Gernot Heiser 2019 – CC BY 4.0

Today’s Lecture
• seL4 in the real world

• HACMS & incremental cyber-retrofit
• Usability: CAmkES & seL4 Core Platform

• seL4-related research at UNSW Trustworthy Systems
• sDDF: High-performance driver framework
• Pancake: Verifying device drivers
• Verifying the seL4CP
• Secure multi-server OS
• Time protection: Verified timing-channel prevention

2 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

© Gernot Heiser 2019 – CC BY 4.0

seL4 in the Real World

3 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

© Gernot Heiser 2019 – CC BY 4.0

DARPA HACMS
Retrofit
existing
system!

Retrofit
existing
system!

Develop
technology

Unmanned Little Bird (ULB)

Autonomous trucks

GVR-BotOff-the-shelf
Drone airframe

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS4

© Gernot Heiser 2019 – CC BY 4.0

ULB Architecture

Mission
Computer

Flight
Computer

N
et

w
or

k

Ground
Station Link

Sensors

GPS

Camera

Motors

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS5

© Gernot Heiser 2019 – CC BY 4.0

Incremental Cyber Retrofit

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto

Virt-Mach Monitor

Trusted

Miss
Mgr

GS Lk

Cam-
eraGPS

Local
NW

Crypto

Linux

VMM

Linux

VMM

Original
Mission

Computer

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS6

© Gernot Heiser 2019 – CC BY 4.0

Original
Mission

Computer

Incremental Cyber Retrofit

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto

Trusted

Miss
Mgr

GS Lk

Cam-
eraGPS

Local
NW

Crypto

Linux

VMM

Linux

VMM

Trusted

Mission
Mngr

Comms GPS
Local
NW

Crypto

Cam-
era

Linux

VMM

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS7

© Gernot Heiser 2019 – CC BY 4.0

Incremental Cyber Retrofit

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto Trusted

Mission
Mngr

Comms GPS
Local
NW

Crypto

Cam-
era

Linux

VMM

[Klein et al, CACM, Oct’18]Original
Mission Computer

Cyber-secure Mission
Computer

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS8

© Gernot Heiser 2019 – CC BY 4.0

World’s Most Secure Drone

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS9

© Gernot Heiser 2019 – CC BY 4.0

HACMS Outcomes
• Demonstrated real-world suitability of seL4 and formal methods

• Reversal of bad vibes from over-promising and under-delivering
• Major re-think in US defence

• Dis-proved “security must be designed in from the start”
• Led to follow-on funding for seL4 and deployment in the field

10 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

© Gernot Heiser 2019 – CC BY 4.0

Premium Members

Associate
Members

The seL4 Foundation

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS12

General
Members

© Gernot Heiser 2019 – CC BY 4.0

Usability
CAmkES and the seL4 Core Platform

13 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

© Gernot Heiser 2019 – CC BY 4.0

Issue: seL4 Objects are Low-Level

Thread-ObjectA CNodeA1 EP Thread-ObjectBCNodeB1
CNodeA2

VSpace

VSpace

CSpace CSpace

Se
nd

Re
ce
ive

PDAPTA1
FRAME

FRAME

...

...

... ...

...

...CO
N
TE

XT

CO
N
TE

XT

A B

>50 kernel objects
for trivial program!

Se
nd

R
ec

ei
ve

A B

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS14

© Gernot Heiser 2019 – CC BY 4.0

Simple But Non-Trivial System

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS15

© Gernot Heiser 2019 – CC BY 4.0

Recommended Framework: CAmkES
Higher-level abstractions of
low-level seL4 constructs

Comp A

Comp C

Comp B

Shared memory

RPC

Interface

Component

Connector

Semaphore

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS16

© Gernot Heiser 2019 – CC BY 4.017

CAmkES Framework

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

Architecture
specification

A

CNode EP CNode
CSpace CSpace

Se
nd

Re
ce
ive

... ...

CO
N
TE

XT

CO
N
TE

XT

VSpace

component
code+

CAmkES

capDL
glue
code

+ proof

initialised system + proof

+ proof
Thread
Object

Thread
Object

VSpace

A B

B

CapDL: Low-level access rights

driver.c VMM.cglue.c

Compiler/
Linker

binary
init.c

Conditions
apply

Radio Driver

CAN Driver

Data Link

Crypto

Uncritical/
untrusted,
contained

Linux

Camera

Wifi

However:
• Forces use of kernel

build system
• Fully static & hard to

extend
• Significant overheads

• Good for
assurance

• Bad for usability
& functionality

© Gernot Heiser 2019 – CC BY 4.0

New Framework: seL4 Core Platform
Small OS for IoT, cyber-physical and other embedded use

• Leverage seL4-enforced isolation for strong security/safety
• Retain seL4’s superior performance
• ”Correct” use of seL4 mechanisms by default
• Ease development and deployment

• SDK, integrate with build system of your choice
• Retain near-minimal trusted computing base (TCB)
• Be amenable to formal verification of the TCB

18 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

© Gernot Heiser 2019 – CC BY 4.0

seL4CP Abstractions

19 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

Memory Region (MR)

Protection
Domain (PD)

Communication
Channel (CC)

Notification

f(){
…

}
f(..);

Protected Procedure
Call (PPC)

Protection
Domain (PD)

• Thin wrapper of
seL4 abstractions

• Encourage “correct”
use of seL4

© Gernot Heiser 2019 – CC BY 4.0

seL4CP Status
• Developed by Breakaway
• Used in products (Laot, AArch64-based)
• Virtualisation support in progress
• Platform and ISA ports in progress (x64, RV64)
• Dynamic features prototype:

• fault handlers
• start/stop protection domains
• re-initialise protection domains
• empty protection domains

(for late app loading)

20 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

MR

f(){
…

}
f(..);

PDPD

Ivan Velickovic

© Gernot Heiser 2019 – CC BY 4.0

seL4-Related Research in TS
High-Performance I/O and I/O Virtualisation

21 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

© Gernot Heiser 2019 – CC BY 4.0

I/O Architecture

22 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

DriverTxWrite IP StackClient

RxRead

IRQ

Transport

Rq

Write

Client

Read

DriverIP
stack

IRQ

Transport

• 1 syscall per I/O
• no fault containment

• many syscalls per I/O
• good fault containment

Can we get
this to

perform?

© Gernot Heiser 2019 – CC BY 4.0

Device Sharing (aka I/O Virtualisation)

23 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

MUX Driver

Control

VM

OS
Virtual
Driver

AppsAppsApps

Virtual NW

Client

Device

Legacy support
requires device

sharing

Can we get
this to

perform?

© Gernot Heiser 2019 – CC BY 4.0

Advanced I/O Architecture

24 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

Write IP StackClient

Read

Transport

DriverTx

Rx

IRQ
Rq

MUXTx

Rx
Rq

Challenge:
• Performance

Opportunities:
• Re-think design
• Simplify driver model
• Simplify IP stack
• Reduce (avoid?) locking

Enable
verification?

© Gernot Heiser 2019 – CC BY 4.0

Driver Model

25 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

Device

Control Metadata

DriverServer

Data

Driver model:
• Single-threaded
• Event-driven
• Simple!

Can we get
this to

perform?

© Gernot Heiser 2019 – CC BY 4.0

Transport Layer

26 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

Control region (Tx part) DriverServer

Data region

TxAhead tail TxF tailhead

3 33 1 12 2 4 4

Mostly moves
pointers
between rings

• Lock-free bounded queues
• Single producer, single consumer
• Similar to ring buffers used by NICs

Sole purpose:
Hardware
abstraction!

Packets
to send

Buffers
to reuse

© Gernot Heiser 2019 – CC BY 4.0

Transport Architecture Scales

27 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

Data

DriverMUX NIC

IPClient

IPClient

• Components can be on separate cores
• Driver, MUX close to minimal critical sections
• Should scale well without locks!

© Gernot Heiser 2019 – CC BY 4.0

Preliminary Evaluation: Setup

28 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

DriverTxIP Stack
Client

Rx

Write
Client

Read

DriverIP
stack

Load
GeneratorNW

Load
GeneratorNW

• Apply variable load
• Measure throughput
• Apply variable load
• Measure throughput

• Echo packets

• Echo packets
• Extra copy to

simulate Posix
overhead

© Gernot Heiser 2019 – CC BY 4.0

Preliminary Evaluation: Performance

29 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

© Gernot Heiser 2019 – CC BY 4.0

sDDF: Next Steps

30 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

Build &
evaluate

Native web
server

MUX Driver

Cntrl

Client

Device

IP

Optionally Linux
driver in VM

Verify?

Extend for
storage, USB

Safe re-use of
legacy drivers

© Gernot Heiser 2019 – CC BY 4.0

seL4-Related Research in TS
Verifying Device Drivers?

31 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

© Gernot Heiser 2019 – CC BY 4.0

Remember: Verification Cost in Context

32 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

L4
Pistachio
$100–150

$400 Green Hills
INTEGRITY

$1000

A
ss

ur
an

ce

Cost ($/SLOC)
1000750500250100

Slow!
Fast!Fast!

?
Revolution!

© Gernot Heiser 2019 – CC BY 4.0

Driver Dilemma

33 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

seL4 is one-off,
justifies cost

Drivers are
commodity,

must be cheap!

Drivers are low-
level, need C-like

language

High seL4 verification
costs partially due to

C language

Better language
would reduce cost

Idea:
1. Simplify drivers
2. Design verification-friendly

systems language
3. Automate (part of) verification

sDDF driver
model!

• Well-defined semantics
• Memory-safe

Verified compiler

© Gernot Heiser 2019 – CC BY 4.0

CakeML: Verified Implementation of ML

34 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

üMature functional language
üLarge and active ecosystem of developers

and users
üCode generation from abstract specs
qManaged ⇒ not suitable for systems code
üUsed for verified application code

Re-use framework for
new systems

language: Pancake https://cakeml.org

© Gernot Heiser 2019 – CC BY 4.0

Pancake: New Systems Language

35 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

CakeML:
• functional language
• type & memory safe
• managed (garbage collector)
• high-level, abstract machine
• verified run time
• verified compiler
• mature system
• active ecosystem

CakeML

Pancake

Approach:
• re-use lower part of

CakeML compiler stack
• pathway to verified

Pancake compiler
• Retain mature

framework/ecosystem
In progress

© Gernot Heiser 2019 – CC BY 4.0

seL4-Related Research in TS
Verifying the seL4 Core Platform

36 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

© Gernot Heiser 2019 – CC BY 4.037

seL4CP Verification

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

A

CNode EP CNode
CSpace CSpace

Se
nd

Re
ce
ive

... ...

CO
N
TE

XT

CO
N
TE

XT

VSpace

component
code+

CAmkES

capDL
glue
code

+ proof

initialised system + proof

+ proof
Thread
Object

Thread
Object

VSpace

A B

B

CapDL

init.c

MR

f(){
…

}
f(..);

PDPD

Done already

In progress: verified
translation tool

seL4CP
implementation

Exploration – using automated
techniques (SMT solvers)

© Gernot Heiser 2019 – CC BY 4.0

seL4-Related Research in TS
Secure Multi-Server OS

38 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

© Gernot Heiser 2019 – CC BY 4.0

Recap: Secure Operating Systems

39 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

Secure OS: [Jaeger: OS Security]
Access enforcement satisfies the reference monitor concept

access
Subject

Reference
monitor Object

Enforces mandatory protection:
• non-bypassable
• tamperproof
• verifiable

Reference Monitor

Policy Store

Protection
State

Labelling
State

Transition
State

Authorisation Module
{subj,obj,acc}

Permission: relation over labels

© Gernot Heiser 2019 – CC BY 4.0

Secure, General-Purpose OS
Aim: General-purpose OS
that provably enforces a
security policy

Security Server

Policy Store

Security State

Connection Server
Policy
Enforcement

CO CO

File Server
Policy
Enforce-
ment

File File

Client

File
Ref

Requires:
• mandatory policy

enforcement
• policy diversity
• minimal TCB
• low-overhead

enforcement

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS40

© Gernot Heiser 2019 – CC BY 4.0

seL4-Related Research in TS
Time Protection: Verified Prevention of Microarchitectural Timing Channels

41 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

© Gernot Heiser 2019 – CC BY 4.0

Refresh: Microarchitectural Timing Channels

42 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

Shared resources

High Low
Contention for shared hardware
resources affects execution speed,
leading to timing channels

© Gernot Heiser 2019 – CC BY 4.0

OS Must Enforce Time Protection

High Low

Shared hardware

Preventing interference is core duty of the OS!
• Memory protection is well established
• Time protection is completely absent

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS43

© Gernot Heiser 2019 – CC BY 4.0

Time Protection: No Sharing of HW State

44 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

High Low

Cache

High Low

CacheFlush

Temporally
partition

Spatially
partition

High Low

Cache

What are the OS
mechanisms?

© Gernot Heiser 2019 – CC BY 4.0

Spatial Partitioning: Cache Colouring

Initial process

RAM
I+D

Init
I+D

High

SD
I+D

Low

SD
I+D

Partitions restricted
to coloured

memory
System permanently
coloured

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS45

© Gernot Heiser 2019 – CC BY 4.0

Spatial Partitioning: Cache Colouring

Cache

RAM

• Partitions get frame pools of disjoint colours
• seL4: userland supplies kernel memory
⇒ colouring userland colours kernel memory

High Low

TCB PT PTTCB

Shared kernel image

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS46

© Gernot Heiser 2019 – CC BY 4.0

Channel Through Kernel Code

 300

 400

 500

 600

 700

 0 1 2 3

L
L

C
 m

is
se

s�
�� datafile using 1:2:3

0.000010

0.000100

0.001000

0.010000

0.100000

Raw
channel

Channel matrix: Conditional probability
of observing output signal (time) given
input signal (system-call number)

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS47

© Gernot Heiser 2019 – CC BY 4.0

Colouring the Kernel

Global Resource Manager

RAM
I+D

Init
I+D

Resource Manager

RM
I+D

Resource Manager

RM
I+D

Each partition has
own kernel image

Kernel
clone!

I+DI+D

Remaining shared kernel data:
• Scheduler queue array & bitmap
• Few pointers to current thread state

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS48

© Gernot Heiser 2019 – CC BY 4.0

• Partitions get frame pools of disjoint colours
• seL4: userland supplies kernel memory
⇒ colouring userland colours kernel memory

Spatial Partitioning: Cache Colouring

Cache

RAM

High Low

TCB PT PTTCB

• Partitions get frame pools of disjoint colours
• seL4: userland supplies kernel memory
⇒ colouring userland colours kernel memory

• Per-partition kernel image to colour kernel

Must ensure deterministic
access to remaining shared

kernel state!

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS49

© Gernot Heiser 2019 – CC BY 4.0

Channel Through Kernel Code

 300

 400

 500

 600

 700

 0 1 2 3

L
L

C
 m

is
se

s�
�� datafile using 1:2:3

0.000010

0.000100

0.001000

0.010000

0.100000

 2220

 2240

 2260

 2280

 2300

 0 1 2 3

L
L
C

 m
is

se
s�

��

seL4 system call���

datafile using 1:2:3

0.000010

0.000100

0.001000

0.010000

0.100000

Raw
channel

Channel with
cloned kernel

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS50

© Gernot Heiser 2019 – CC BY 4.0

Must remove any
history dependence!

Temporal Partitioning: Flush on Switch

1.

2. Switch user context

3. Flush on-core state

4.

5.

6. Reprogram timer

7. return

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS51

© Gernot Heiser 2019 – CC BY 4.0

D-Cache Channel

 4000
 4500
 5000
 5500
 6000
 6500

 0 10 20 30 40 50 60
O

u
tp

u
t
(c

yc
le

s)
Input (sets)

datafile using 1:2:3

 0.001

 0.01

 0.1

 7650
 7700
 7750
 7800
 7850
 7900

 0 10 20 30 40 50 60

O
u
tp

u
t
(c

yc
le

s)

Input (sets)

datafile using 1:2:3

 0.001

 0.01

Raw
channel

Channel with
flushing

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS52

© Gernot Heiser 2019 – CC BY 4.0

Flush-Time Channel

 3.223x106
 3.224x106
 3.225x106
 3.226x106
 3.227x106

 0 200 400 600 800 1000O
ff
lin

e
 t
im

e
 (

cy
cl

e
s)

Input (sets)

datafile using 1:2:3

 0.001

 0.01Raw
channel

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS53

© Gernot Heiser 2019 – CC BY 4.0

Must remove any
history dependence!

Temporal Partitioning: Flush on Switch

1. T0 = current_time()

2. Switch user context

3. Flush on-core state

4. Touch all shared data needed for return

5. while (T0+WCET < current_time()) ;

6. Reprogram timer

7. return

Latency depends
on prior execution!

Time padding
to remove

dependency

Ensure
deterministic

execution

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS54

© Gernot Heiser 2019 – CC BY 4.0

Flush-Time Channel

 3.223x106
 3.224x106
 3.225x106
 3.226x106
 3.227x106

 0 200 400 600 800 1000O
ff
lin

e
 t
im

e
 (

cy
cl

e
s)

Input (sets)

datafile using 1:2:3

 0.001

 0.01

 3.299x106
 3.2995x106

 3.3x106
 3.3005x106
 3.301x106

 3.3015x106
 3.302x106

 0 200 400 600 800 1000O
ff
lin

e
 t
im

e
 (

cy
cl

e
s)

Input (sets)

datafile using 1:2:3

 0.001

 0.01

 0.1

 1

Raw
channel

Channel with
deterministic

flushing

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS55

© Gernot Heiser 2019 – CC BY 4.056

Performance Impact of Colouring

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

-1%

0%

1%

2%

3%

4%

5%

6%

7%

ba
rn

es

ch
ol
es

ky fft
fm

m lu

oc
ea

n

ra
di
os

ity
ra

di
x

ra
yt
ra

ce

w
at

er
ns

qu
ar

ed

w
at

er
sp

at
ia
l

M
EAN

S
lo

w
d

o
w

n

50% colours base
50% colour clone

Splash-2 benchmarks on Arm A9

Architecture x86 Arm

Mean slowdown 3.4% 1.1%

Arch seL4
clone

Linux
fork+exec

x86 79 µs 257 µs

Arm 608 µs 4,300 µs

• Overhead mostly low
• Not evaluated is cost of

not using super pages
[Ge et al., EuroSys’19]

© Gernot Heiser 2019 – CC BY 4.0

A New HW/SW Contract

For all shared microarchitectural resources:
1. Resource must be spatially partitionable or flushable
2. Concurrently shared resources must be spatially partitioned
3. Resource accessed solely by virtual address

must be flushed and not concurrently accessed
4. Mechanisms must be sufficiently specified for OS to partition or reset
5. Mechanisms must be constant time, or of specified, bounded latency
6. Desirable: OS should know if resettable state is derived from data,

instructions, data addresses or instruction addresses

Cannot share HW threads
across security domains!

aISA: augmented ISA

[Ge et al., APSys’18]

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS57

© Gernot Heiser 2019 – CC BY 4.0

Time Protection: On-Going Work

Time-protection
prototype

Assumes sane
(non-existent)

hardware

Prove:
no leakage

Develop usable
system model

Include TP
mechanisms in
RISC-V ISA

Integrate with
temporal
integrity (MCS)

Fix
hardware

Verify
efficacy

Make usable

Make
complete

Validated on ETH Zurich
RISC-V processor (Ariane)
[Wistoff, DAC’21]

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS58

© Gernot Heiser 2019 – CC BY 4.059

Real-World Use
Courtesy Boeing, DARPA

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

© Gernot Heiser 2019 – CC BY 4.0

Thank you!
To the dedicated AOS students for their interest and dedication

To the world-class Trustworthy Systems team for making all possible

Please remember to do the myExperience survey
There’ll also be a more detailed one we’ll invite you to fill in

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS60

