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Today’s Lecture
• seL4 in the real world

• HACMS & incremental cyber-retrofit
• Usability: CAmkES & seL4 Core Platform

• seL4-related research at UNSW Trustworthy Systems
• sDDF: High-performance driver framework
• Pancake: Verifying device drivers
• Verifying the seL4CP
• Secure multi-server OS
• Time protection: Verified timing-channel prevention
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seL4 in the Real World
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DARPA HACMS
Retrofit 
existing 
system!

Retrofit 
existing 
system!

Develop 
technology

Unmanned Little Bird (ULB)

Autonomous trucks

GVR-BotOff-the-shelf
Drone airframe
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ULB Architecture

Mission
Computer

Flight
Computer

N
et

w
or

k

Ground 
Station Link

Sensors

GPS

Camera

Motors

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS5



© Gernot Heiser 2019 – CC BY 4.0

Incremental Cyber Retrofit
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Incremental Cyber Retrofit
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COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS8



© Gernot Heiser 2019 – CC BY 4.0

World’s Most Secure Drone
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HACMS Outcomes
• Demonstrated real-world suitability of seL4 and formal methods

• Reversal of bad vibes from over-promising and under-delivering
• Major re-think in US defence

• Dis-proved “security must be designed in from the start”
• Led to follow-on funding for seL4 and deployment in the field
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Premium Members

Associate
Members

The seL4 Foundation
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Usability
CAmkES and the seL4 Core Platform
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Issue: seL4 Objects are Low-Level
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Simple But Non-Trivial System
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Recommended Framework: CAmkES
Higher-level abstractions of 
low-level seL4 constructs

Comp A

Comp C

Comp B

Shared memory

RPC

Interface

Component

Connector

Semaphore
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CAmkES Framework
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Architecture 
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However:
• Forces use of kernel 

build system
• Fully static & hard to 

extend
• Significant overheads

• Good for 
assurance

• Bad for usability 
& functionality
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New Framework: seL4 Core Platform
Small OS for IoT, cyber-physical and other embedded use

• Leverage seL4-enforced isolation for strong security/safety
• Retain seL4’s superior performance
• ”Correct” use of seL4 mechanisms by default
• Ease development and deployment

• SDK, integrate with build system of your choice
• Retain near-minimal trusted computing base (TCB)
• Be amenable to formal verification of the TCB
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seL4CP Abstractions
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Memory Region (MR)

Protection 
Domain (PD)

Communication
Channel (CC)

Notification

f(){
…

}
f(..);

Protected Procedure 
Call (PPC)

Protection 
Domain (PD)

• Thin wrapper of 
seL4 abstractions

• Encourage “correct” 
use of seL4 
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seL4CP Status
• Developed by Breakaway
• Used in products (Laot, AArch64-based)
• Virtualisation support in progress
• Platform and ISA ports in progress (x64, RV64)
• Dynamic features prototype:

• fault handlers
• start/stop protection domains
• re-initialise protection domains
• empty protection domains

(for late app loading)

20 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

MR

f(){
…

}
f(..);

PDPD

Ivan Velickovic
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seL4-Related Research in TS
High-Performance I/O and I/O Virtualisation
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I/O Architecture
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DriverTxWrite IP StackClient

RxRead

IRQ

Transport 

Rq

Write

Client

Read

DriverIP 
stack

IRQ

Transport 

• 1 syscall per I/O
• no fault containment

• many syscalls per I/O
• good fault containment

Can we get 
this to 

perform?
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Device Sharing (aka I/O Virtualisation)
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MUX Driver

Control

VM

OS
Virtual
Driver

AppsAppsApps

Virtual NW

Client

Device

Legacy support 
requires device 

sharing

Can we get 
this to 

perform?
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Advanced I/O Architecture

24 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

Write IP StackClient

Read

Transport 

DriverTx

Rx

IRQ
Rq

MUXTx

Rx
Rq

Challenge: 
• Performance

Opportunities: 
• Re-think design
• Simplify driver model
• Simplify IP stack
• Reduce (avoid?) locking

Enable 
verification?
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Driver Model
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Device

Control Metadata

DriverServer

Data

Driver model: 
• Single-threaded
• Event-driven
• Simple!

Can we get 
this to 

perform?
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Transport Layer
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Control region (Tx part) DriverServer

Data region

TxAhead tail TxF tailhead

3 33 1 12 2 4 4

Mostly moves 
pointers 
between rings

• Lock-free bounded queues
• Single producer, single consumer
• Similar to ring buffers used by NICs

Sole purpose: 
Hardware 
abstraction!

Packets 
to send

Buffers 
to reuse
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Transport Architecture Scales
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Data 

DriverMUX NIC

IPClient

IPClient

• Components can be on separate cores
• Driver, MUX close to minimal critical sections
• Should scale well without locks!
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Preliminary Evaluation: Setup
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DriverTxIP Stack
Client

Rx

Write
Client

Read

DriverIP 
stack

Load
GeneratorNW

Load
GeneratorNW

• Apply variable load
• Measure throughput
• Apply variable load
• Measure throughput

• Echo packets

• Echo packets
• Extra copy to 

simulate Posix
overhead
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Preliminary Evaluation: Performance
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sDDF: Next Steps
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Build & 
evaluate

Native web 
server

MUX Driver

Cntrl

Client

Device

IP

Optionally Linux 
driver in VM

Verify?

Extend for 
storage, USB

Safe re-use of 
legacy drivers
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seL4-Related Research in TS
Verifying Device Drivers?
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Remember: Verification Cost in Context
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Driver Dilemma
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seL4 is one-off, 
justifies cost

Drivers are 
commodity, 

must be cheap!

Drivers are low-
level, need C-like 

language

High seL4 verification 
costs partially due to 

C language

Better language 
would reduce cost

Idea:
1. Simplify drivers
2. Design verification-friendly 

systems language
3. Automate (part of) verification

sDDF driver 
model!

• Well-defined semantics
• Memory-safe

Verified compiler
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CakeML: Verified Implementation of ML
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üMature functional language
üLarge and active ecosystem of developers 

and users
üCode generation from abstract specs
qManaged ⇒ not suitable for systems code
üUsed for verified application code

Re-use framework for 
new systems 

language: Pancake https://cakeml.org
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Pancake: New Systems Language

35 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

CakeML:
• functional language
• type & memory safe
• managed (garbage collector)
• high-level, abstract machine
• verified run time
• verified compiler
• mature system
• active ecosystem

CakeML

Pancake

Approach:
• re-use lower part of 

CakeML compiler stack
• pathway to verified 

Pancake compiler
• Retain mature 

framework/ecosystem
In progress
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seL4-Related Research in TS
Verifying the seL4 Core Platform
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seL4CP Verification
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seL4-Related Research in TS
Secure Multi-Server OS

38 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS



© Gernot Heiser 2019 – CC BY 4.0

Recap: Secure Operating Systems
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Secure OS: [Jaeger: OS Security] 
Access enforcement satisfies the reference monitor concept

access
Subject

Reference 
monitor Object

Enforces mandatory protection:
• non-bypassable
• tamperproof
• verifiable

Reference Monitor

Policy Store

Protection
State

Labelling
State

Transition
State

Authorisation Module
{subj,obj,acc}

Permission: relation over labels
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Secure, General-Purpose OS
Aim: General-purpose OS 
that provably enforces a 
security policy

Security Server

Policy Store

Security State

Connection Server
Policy 
Enforcement

CO CO

File Server
Policy 
Enforce-
ment

File File

Client

File
Ref

Requires: 
• mandatory policy 

enforcement
• policy diversity
• minimal TCB
• low-overhead 

enforcement
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seL4-Related Research in TS
Time Protection: Verified Prevention of Microarchitectural Timing Channels
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Refresh: Microarchitectural Timing Channels
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Shared resources

High Low
Contention for shared hardware 
resources affects execution speed, 
leading to timing channels
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OS Must Enforce Time Protection

High Low

Shared hardware

Preventing interference is core duty of the OS!
• Memory protection is well established 
• Time protection is completely absent
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Time Protection: No Sharing of HW State
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High Low

Cache

High Low

CacheFlush

Temporally 
partition

Spatially 
partition

High Low

Cache

What are the OS 
mechanisms?
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Spatial Partitioning: Cache Colouring

Initial process

RAM
I+D

Init
I+D

High

SD
I+D

Low

SD
I+D

Partitions restricted 
to coloured 

memory
System permanently 
coloured
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Spatial Partitioning: Cache Colouring

Cache

RAM

• Partitions get frame pools of disjoint colours
• seL4: userland supplies kernel memory
⇒ colouring userland colours kernel memory

High Low

TCB PT PTTCB

Shared kernel image
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Channel Through Kernel Code
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Channel matrix: Conditional probability 
of observing output signal (time) given 
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Colouring the Kernel

Global Resource Manager

RAM
I+D

Init
I+D

Resource Manager

RM
I+D

Resource Manager

RM
I+D

Each partition has 
own kernel image

Kernel 
clone!

I+DI+D

Remaining shared kernel data:
• Scheduler queue array & bitmap
• Few pointers to current thread state
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• Partitions get frame pools of disjoint colours
• seL4: userland supplies kernel memory
⇒ colouring userland colours kernel memory

Spatial Partitioning: Cache Colouring

Cache

RAM

High Low

TCB PT PTTCB

• Partitions get frame pools of disjoint colours
• seL4: userland supplies kernel memory
⇒ colouring userland colours kernel memory

• Per-partition kernel image to colour kernel

Must ensure deterministic 
access to remaining shared 

kernel state!
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Channel Through Kernel Code
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Must remove any 
history dependence!

Temporal Partitioning: Flush on Switch

1.

2. Switch user context

3. Flush on-core state

4.

5.

6. Reprogram timer

7. return
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D-Cache Channel
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Flush-Time Channel
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Must remove any 
history dependence!

Temporal Partitioning: Flush on Switch

1. T0 = current_time()

2. Switch user context

3. Flush on-core state

4. Touch all shared data needed for return

5. while (T0+WCET < current_time()) ;

6. Reprogram timer

7. return

Latency depends
on prior execution!

Time padding 
to remove

dependency

Ensure 
deterministic 

execution
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Flush-Time Channel
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Performance Impact of Colouring
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Splash-2 benchmarks on Arm A9

Architecture x86 Arm

Mean slowdown 3.4% 1.1%

Arch seL4
clone

Linux 
fork+exec

x86 79 µs 257 µs

Arm 608 µs 4,300 µs

• Overhead mostly low
• Not evaluated is cost of 

not using super pages
[Ge et al., EuroSys’19]
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A New HW/SW Contract

For all shared microarchitectural resources:
1. Resource must be spatially partitionable or flushable
2. Concurrently shared resources must be spatially partitioned
3. Resource accessed solely by virtual address 

must be flushed and not concurrently accessed
4. Mechanisms must be sufficiently specified for OS to partition or reset
5. Mechanisms must be constant time, or of specified, bounded latency
6. Desirable: OS should know if resettable state is derived from data, 

instructions, data addresses or instruction addresses

Cannot share HW threads 
across security domains!

aISA: augmented ISA

[Ge et al., APSys’18]
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Time Protection: On-Going Work

Time-protection 
prototype

Assumes sane 
(non-existent) 

hardware

Prove:
no leakage

Develop usable 
system model

Include TP 
mechanisms in 
RISC-V ISA

Integrate with
temporal 
integrity (MCS)

Fix 
hardware

Verify
efficacy

Make usable

Make
complete

Validated on ETH Zurich 
RISC-V processor (Ariane)
[Wistoff, DAC’21]
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Real-World Use
Courtesy Boeing, DARPA

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS



© Gernot Heiser 2019 – CC BY 4.0

Thank you!
To the dedicated AOS students for their interest and dedication

To the world-class Trustworthy Systems team for making all possible

Please remember to do the myExperience survey
There’ll also be a more detailed one we’ll invite you to fill in
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