School of Computer Science & Engineering
N COMP9242 Advanced Operating Systems
UNSW | gz
SYDNEY niversity

2022 T2 Week 10 Part 2

selL4 in the Real World & o Inital process
selL4 Research at TS@UNSW RAMI lip
@GernotHeiser

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

 under the following conditions:

« Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UNSW

2

Today’s Lecture

* selL4 in the real world

« HACMS & incremental cyber-retrofit
 Usability: CAMKES & selL4 Core Platform

» seL4-related research at UNSW Trustworthy Systems
« sDDF: High-performance driver framework
« Pancake: Verifying device drivers
* Verifying the seL4CP
» Secure multi-server OS
 Time protection: Verified timing-channel prevention

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY
[eal
=

sel4 in the Real World

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY

D)

DARPA HACMS

Retrofit
existing
system!

=, Develop
\e technology

Off-the-shelf
Drone airframe

4 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UNSW

@=el4 ULB Architecture

Sensors

5 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & selL4 Research at TS

Motors

© Gernot Heiser 2019 — CC BY 4.0

YYYYYY

;:

6

Original Trusted

Mission N
ooy ission Manager

Trusted Crypto

Local NW GPS

Mission Manager

Crypto Camera Ground Stn Link

Local NW GPS -

Ground Stn Link

Virt-Mach Monitor

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

=)

Incremental Cyber Retrofit

Trusted GS Lk

Miss
\le]g

Crypto Cam-
PS era

Local
NW VMM

© Gernot Heiser 2019 — CC BY 4.0

Incremental Cyber Retrofit
Original |

Mission Trusted GS Lk
Computer

Miss
Trusted

GPS era Trusted era

N L =Y oo [wmission

: I Mngr
oca
VMM Sl GPS VMM

7 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & selL4 Research at TS

;:

Mission Manac

Crypto Ca

Linux

Local NW

Ground Stn Li

Local
NW

© Gernot Heiser 2019 — CC BY 4.0

Incremental Cyber Retrofit

Original [Klein et al, CACM, Oct’'18]
Mission Computer

Cyber-secure Mission
Computer
Mission Manager Cam-

Trusted era

Mission Linux
Mnqgr

Comms GPS VMM

Trusted

Crypto Camera

— Crypto
Local NW GPS o
W

Local
Ground Stn Link N

8 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0

9

World’s Most Secure Drone

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

< Tweet

DARPA &
@DARPA
We brought a hackable quadcopter with defenses built
on our HACMS program to @defcon
#AerospaceVillage. As program manager
@raymondrichards reports, many attempts to

breakthrough were made but none were successful.
Formal methods FTW!

© Gernot Heiser 2019 — CC BY 4.0 UNSW

HACMS Outcomes

« Demonstrated real-world suitability of seL4 and formal methods
« Reversal of bad vibes from over-promising and under-delivering
« Major re-think in US defence

* Dis-proved “security must be designed in from the start”
* Led to follow-on funding for seL4 and deployment in the field

10 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UNSW

vvvvvv
R

The selL4 Foundation

Premium Members Cyber

}(NN IE 4k
s it ¥ =

(o
Horizon Robotics h"qding “Li Auto ” NlO

Isl

A

P{P{:{sa’

- i

General — \fientiom (e N Ml cHosT Google | o
Members DORNERWORKS g thtlcex

S j % Raytheon [|]L
F <I=L29IJ10 LOTUS penten PI’OOfCFOf:(_—I ﬁ’& Technologies = XEH“hy E
in association with

"‘ National Cyber
Security Centre : y RISC) TI.ITI

12 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

Associate i~ KANSAS STATE
Mermbers ETHzurich 2ANSAS STATE

13

Usability

CAMKES and the selLL4 Core Platform

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

© Gernot Heiser 2019 — CC BY 4.0

VVVVVV

Issue: selL.4 Objects are Low-Level

Thread-ObjectA Thread-Objecty

=
- =
. 9
Ll L
[=
Z Z
o] O
O O]

>50 kernel objects
for trivial program!

14 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 - CCBY 4.0 ##) UNSW

Simple But Non-Trivial System

......

15 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

el

Recommended Framework: CAmMKES

Higher-level abstractions of

low-level selL4 constructs Interface
Comp A Comp B
Connector

Shared memory Semaphore

Comp C

&

16 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0

@seld CAMKES Framework

...... [Radio Driver] [Data Link] Good for
- assurance
g Bad for usability
) : Camera & functionality
Conditions [CAN Driver] Linux
apply

Architecture
specification

However: driver.c

« Forces use of kernel @ } W
build system Compiler/
Fully static & hard to \ Linker /
extend *
Significant overheads

17 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 E}! UmN§W
A

CapDL: Low-level access rights
A B

Thread
Sl CSpace
CNode

18

New Framework: selL4 Core Platform

Small OS for loT, cyber-physical and other embedded use
 Leverage selL4-enforced isolation for strong security/safety
» Retain selL4’s superior performance

« "Correct” use of seL4 mechanisms by default

« Ease development and deployment
« SDK, integrate with build system of your choice

« Retain near-minimal trusted computing base (TCB)
« Be amenable to formal verification of the TCB

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UNSW

selL4CP Abstractions

* Thin wrapper of
selL4 abstractions

» Encourage “correct”
use of selL 4

==

Protection
Domain (PD)

Memory Region (MR)

19 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & selL4 Research at TS

Protection
Domain (PD)

© Gernot Heiser 2019 — CC BY 4.0

vvvvvv

selL4CP Status

» Developed by Breakaway

« Used in products (Laot, AArch64-based)

* Virtualisation support in progress

 Platform and ISA ports in progress (x64, RV64)

« Dynamic features prototype:
« fault handlers

« start/stop protection domains wak H(o
* re-initialise protection domains K3
- empty protection domains PD - PD

(for late app loading)

Ivan Velickovic

20 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & selL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UM%W

21

selL4-Related Researchin TS

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0

/O Architecture F
Read Write

|P Driver IRQ
ﬁ stack
Write, |P Stack —IX—. Driver IRQ
3 Rg 3 ' Can we get
Read Rx this to

22 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 - CCBY 4.0 ##) UNSW

ssssss

Device Sharing (aka I/O Virtualisation)

Legacy support

VM Hﬁ requires device
Apps sharing

Control

Virtual
$
Client <> MUX <> Driver

A

: Can we get
- Virtual NW weg
this to
perform?
23 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UM%W

Advanced I/O Architecture

o rtunities: Enable
PPO unl €S- _ verification?
Challenge: * Re-think design

« Performance « Simplify driver model

« Simplify IP stack
* Reduce (avoid?) locking

Write, |P Stack — X MUX _—_TX_, Driver IRQ
3 “Rq 3 “Rq 3 D
Read Rx RX

Transport

9:clq

24 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UNSW

Driver Model

Driver model:
Single-threaded
Event-driven

« Simple!
Serye Niver
%
Can we get
Metadata this to
perform?
gata
25 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & selL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UM%W

Transport Layer

» Lock-free bounded queues
» Single producer, single consumer
» Similar to ring buffers used by NICs

Packets
to send

Mostly moves
pointers
between rings

Driver

Sole purpose:

Hardware
abstraction!

26 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 - CC BY 4.0 Elﬂ UNSW

YYYYYY

Transport Architecture Scales

« Components can be on separate cores
* Driver, MUX close to minimal critical sections
 Should scale well without locks!

P
.’E é e ’H ﬂ

&

27 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 - CC BY 4.0 E'ﬂ! UNSW

ssssss

Preliminary Evaluation: Setup

» Echo packets Read i !Write
P | Driver BEGNIa Load
) stack Generator

* Echo packets

« Extra copy to « Apply variable load
simulate Posix « Measure throughput
overhead

IP Stack X, Driver

Load
-3 Ry 3 <AL, Generator
Q:eld

28 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UNSW

29

Preliminary Evaluation: Performance

1.00E+9 & — « 100.00%
iy _r—9

2 A" ¥
g 750E+8 v - 75.00%
= - e
- . » o S
8 -~ - /’.’ =
£ & > g
D 50DE+8 -~ -~ 5000% 2
3 v o -
é -~ /’
o v &
2 250E48 2500% ©
i £
-~

0 0.00%

200 400 600 800 1,000
Requested throughput (MYS)
® :scl4 throughput Linuxthroughput 4 selL4 CPU util Linux CPU wtil

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

© Gernot Heiser 2019 — CC BY 4.0

sDDF: Next Steps

Safe re-use of
legacy drivers

Build &
evaluate Optionally Linux

driver in VM

Native web

server Cnri

Client <> |P « MUX <> Driver

@uuia é\m

Extend for

storage, USB

30 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0

selL4-Related Researchin TS

31 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY

D)

Remember: Verification Cost in Context

2 ¢)sel
Revolution! S4OO Green Hills
o INTEGRITY
% $1000
= Fast! '/
(/)]
7))
<
L4
Pistachio
S100-150
100 250 500 750 1000
Cost ($/SLOC)

32 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UNSW

el

Driver Dilemma

High sel4 verification
costs partially due to

C language
selL4 is one-off, L

justifies cost
Drivers are low-

Drivers are level, need C-like
commodity, language
must be cheap!

sDDF driver Idea:
model! 1. Simplify drivers

2. Design verification-friendly
systems language
Verified compiler 3. Automate (part of) verification

33 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & selL4 Research at TS

Better language
would reduce cost

e Well-defined semantics
* Memory-safe

ssssss

Values Languages Transformations

] [] []
.
S &> Parse concrete syntax
n > Infer types, exitif fail
Introdi lobals 3
s
replace constructor
g IF“!“-W‘Q 1f names with numbers
5 ;,:3:—1,‘,‘;9;‘;; o> Global dead code elim.
;‘ high-level Turn pattern matches into
= lang. features > ifthen-else decision trees
ﬁ > _Sv(\‘ti(ch(ﬁdeIBruijnm|
3 indexed local variables
3 Fuse function calls/:
E O it ag calvams
-] ClosLang: (= Track where closure values
ﬁ last language flow & inline small functions
ature tunctional language B | Mt | moaceconers
3 (has multi-arg calls wherever possible
3 EE2ue) > Remove deadcode
. E > Annotate closure creations
Large and active ecosystem of developers T T [otomaear on.
BVL: > Inline small functions
functional > Fold constants and
language shrink Lets
a n u S e rS without > Split over-sized functions
closures into many small functions
C ile global i
O Enamiodly resized amey.
/ L] L2 BVI: > Optimise Let-expressions
B one global i i
Code generation from abstract s pPeCS IRy
23 &> Switchtoi ive style
[%3 Datalang:) Reduce caller-saved vars
£& imperative > Combine adjacent
anaged = not suitable for systems code
) Remove data abstraction
> Simplify program
= g . " WordLang: | => Selecttarget instructions
v Used for verified application code | P,
machine words, | = Force two-reg code (if req.)
memory and
aGC primitive | > Remove deadcode
o> Allocate register names
w” &> Concretise stack
E > Introduce (raw) calls past
s StackLang: function preambles
3 imperative | > Implement GC primitive
s language Turn stack accesses into
E with array-like | > memory acceses
8 R Rename registers to match
Re-use framework for f| =25 s
2 o> Flatten code
§ > Delete no-ops (Tick, Skip)
E Encode program as
new systems
st
language: Pancake . g :
s
: https://cakeml.org ~ “we)
= = Silver CPU E.
Prond " as HOL functions =
Verilog generator <
34 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & selL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 INOV

35

Pancake: New Systems Language

CakeML;

CakeML

functional language
type & memory safe

managed (garbage collector) Pancake

Flatten structs <

Languages

CakeML syntax

FlatLang:

a language for
compiling away
high-level
lang. features

Transformations

Parse concrete syntax

Infer types, exit if fail

Introduce globals vars,
es &

eliminate modul
replace constructor
names with numbers

Gilobal dead code elim.

Turn pattern matches into
if-then-else decision trees

Switch to de Bruijn
indexed local variables

Fuse function calls/apps
into multi-arg calls/apps

Track where closure values
flow & inline small functions

Introduce C-style fast
calls wherever possible

Annotate closure creations
Perform closure conv.
Inline small functions

Split over-sized functions
into many small functions

Compile global vars into a

high-level, abstract machine

verified run time

verified compiler Approach:

mature system re-use lower part of

active ecosystem CakeML compiler stack

« pathway to verified
Pancake compiler

« Retain mature
framework/ecosystem

Replace loops
wﬁﬁ tail calls

In progress

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

program (

g

resized array
Optimise Let-expressions

Make some functions tail-
recursive using an acc.

Switch to imperative style
Reduce caller-saved vars

ClosLang:
last language
with closures
(has multi-arg
closties) Remove deadcode
Pancake AST
()
BVL:
CrepLang: functional Fold constants and
imperative language shrink Lets
language without
without structs closures
s BVI:
LoopLang: one _global
expressions variable
occur only on
RHS of
assignment Datalang:
statements imperative Combine adjacent
\), language

—

Hardware below this line

WordLang:
imperative
language with
machine words,
memory and
a GC primitive

StackLang:
imperative
language
with array-like
stack and
optional GC

Proof-producing
Verilog generator

AVIAVAVAVAVAVAVAVAVAVAVIRVAVERRVAVAV)

<

© Gernot Heiser 2019 — CC BY 4.0

memory allocations
Remove data abstraction
Simplify program

Select target instructions
Perform SSA-like renaming
Force two-reg code (if req.)
Remove deadcode
Allocate register names
Concretise stack

Introduce (raw) calls past
function preambles

Implement GC primitive

Turn stack accesses into
memory acceses

Rename registers to match
arch registers/conventions

Flatten code
Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

Implements

UNSW

SYDNEY

36

selL4-Related Researchin TS

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0

selL4CP Verification

In progress: verified
translation tool

A

selL4CP
implementatio

Thread
Ghject CSpace

CNode

Exploration — using automated

Done already techniques (SMT solvers)

37 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UNSW

vvvvvv

G

selL4-Related Researchin TS

38 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY

D)

access Reference
- Object
monitor

Enforces mandatory protection:

39

Recap: Secure Operating Systems

Secure OS: [Jaeger: OS Security]
Access enforcement satisfies the reference monitor concept

Reference Monitor
{subj,obj,acc}

Protection Labelling Transition
State State State

non-bypassable

Permission: relation over labels

tamperproof
verifiable

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 - CC BY 4.0 [#8s] UNSV

@ seld Secure, General-Purpose OS

Security Server

Policy Store

File Server

Policy
Enforce-

ment

Connection Server

Policy
Enforcement

©

Client

40 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

Requires:
mandatory policy
enforcement
policy diversity
minimal TCB
low-overhead
enforcement

© Gernot Heiser 2019 - CC BY 4.0 s UNSW
G

YYYYYY

selL4-Related Researchin TS

Time Protection: Verified Prevention of Microarchitectural Timing Channels

41 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UNSW

Refresh: Microarchitectural Timing Channels

resources affects execution speed,
leading to timing channels

High Low
Contention for shared hardware

Shared resources

42 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

OS Must Enforce Time Protection

High /f\

Shared hardware

Preventing interference is core duty of the OS!
» Memory protection is well established
« Time protection is completely absent

43 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UH%W

Time Protection: No Sharing of HW State

High Low Temporally High Low
partition
w

Spatially)
partition @ ®
E High Lo ?

44 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UNSW

YYYYYY

What are the OS
mechanisms?

Spatial Partitioning: Cache Colouring

Partitions restricted

to coloured
memory
System permanently
coloured
High Low

Initial process

45 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 {«: UNSW

vvvvvv

Spatial Partitioning: Cache Colouring

High Lo%\ Partitions get frame pools of disjoint colours
» sel4: userland supplies kernel memory
00 = colouring userland colours kernel memory

E Shared kernel image }

ez Tv
S E N BN SCW

VVVVVV

46 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 {«: UNSW

Channel Through Kernel Code

200 0.100000
@ 600 0.010000
Raw &
-g 500 0.001000
channel o 400 0.000100
= 300

0.000010

Channel matrix: Conditional probability
of observing output signal (time) given
input signal (system-call number)

47 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & selL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UM%W

Colouring the Kernel

Remaining shared kernel data:
Each partition has

* Scheduler queue array & bitmap :
own kernel image

 Few pointers to current thread state

Global Resource Manager

vvvvvv

48 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UNSW

Spatial Partitioning: Cache Colouring

 Partitions get frame pools of disjoint colours

» sel4: userland supplies kernel memory
= colouring userland colours kernel memory

« Per-partition kernel image to colour kernel

Must ensure deterministic
access to remaining shared
kernel state!

49 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UM&W

50

Channel Through Kernel Code

Raw
channel

Channel with
cloned kernel

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS

LLC misses

LLC misses

700 0.100000
600 0.010000
500 0.001000
ggg 0.000100
0.000010
0.100000
2300 0.010000
2280
9960 0.001000
2240 0.000100
2220 0.000010

0 1 2 3
selL4 system call

© Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

@ =214 Temporal Partitioning: Flush on Switch

D-Cache Channel

6500
6000
5500
5000
4500
4000

0.1

Raw

channel 001

0.001

Output (cycles)

0 10 20 30 40 50 60
Input (sets)

7900
7850
7800
7750
7700
7650

0.01

Channel with
flushing

0.001

Output (cycles)

0 10 20 30 40 50 60
Input (sets)

52 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0

@

4

Flush-Time Channel

A 6
2 3.227x10
> 6
S 3.226x10
Raw o 3.225x1 0° 0.01
6

= 3.224x10

channel 2 3.223x10°
= 0.001
© 0 200 400 600 800 1000

Input (sets)
53 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UNSW

Temporal Partitioning: Flush on Switch

Must remove any

history dependence! Ty = current_time()

Switch user context
Flush on-core state
Touch all shared data needed for return
while (Ty;+WCET < current_time()) ;
Reprogram timer

N o o s b=

return

54 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0

Flush-Time Channel

é 3.227x1 o
> 3.226x10°
Raw o 3.225x1 0°
= 3.224x10°
channel £ 3.223x10°
£ 0.001
© 1000
. Input (sets)
3
Ch | with S 3.302x 0 1
& 3.3015x1 0
annel wit o aa0m0e 0.1
inict 3.3005x10°
deterministic = Raaoe 0.01
. £ 3.2995x10 0.001
flushlng 5 3299x106 '
1000
Input (sets)
55 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0

UNSW

SYDNEY

@]

s
B

Performance Impact of Colouring
Splash-2 benchmarks on Arm A9

7% | | | | | | | | | | | |
o. . 50% colours base r--ooo0 51 D 4 .
g ; 50% colour Clone s Overhead mos_tly low
c o A | | + Not evaluated is cost of
S a b 1 not using super pages
% 00 | AR | [Geetal., EuroSys’19]
19 oo -
Oo/o _E_m-@.m_m.m-m_gléﬁ Z.@IEI_
-1% | | | | | | | | | | | | L4 L‘
SIS & ? & &F & XD«
> % A I R A SN clone | fork+exec
e 6{\0 O {b’b\ {bﬁ &(\%0‘ @\@»{OQ @

x86 79 us 257 pus

: >

Mean slowdown 3.4% 1.1%

Arm 608 us 4,300 ps

vvvvvv

56 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UNSW

57

A New HW/SW Contract

For all shared microarchitectural resources:

1.
2.
3.

o

alSA: augmented ISA

Resource must be spatially partitionable or flushable

Concurrently shared resources must be spatially partitioned

Resource accessed solely by virtual address -
must be flushed and not concurrently accessed

Mechanisms must be sufficiently specified for OS to partition or reset

Mechanisms must be constant time, or of specified, bounded latency

Desirable: OS should know if resettable state is derived from data,
instructions, data addresses or instruction addresses

[Ge et al., APSys’'18]

vvvvvv

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 {«: UNSW

@seld Time Protection: On-Going Work

Integrate with
temporal

Prove:
no leakage
Verify Make
efficacy complete
Time-protection Develop usable
rototype system model
- U Make usable v
Fix
hardware

Validated on ETH Zurich
RISC-V processor (Ariane)
[Wistoff, DAC’21]

integrity (MCS)

Include TP

mechanisms in
RISC-V ISA

58 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0

YYYYYY

59

Real-World Use
Courtesy Boeing, DARPA

COMP9242 2022 T2 W10 Part 2: seL4 Deployments & selL4 Research at TS

ssssss

Thank you!

To the dedicated AOS students for their interest and dedication

To the world-class Trustworthy Systems team for making all possible

Please remember to do the myExperience survey
There’ll also be a more detailed one we'll invite you to fill in

60 COMP9242 2022 T2 W10 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019 — CC BY 4.0 UM&W

