
Why Events Are A Bad Idea
(for high-concurrency servers)

Rob von Behren, Jeremy Condit and Eric Brewer
University of California at Berkeley

{jrvb,jcondit,brewer}@cs.berkeley.edu
http://capriccio.cs.berkeley.edu

A Talk HotOS 2003

The Stage
 Highly concurrent applications

 Internet servers (Flash, Ninja, SEDA)
 Transaction processing databases

 Workload
 Operate “near the knee”
 Avoid thrashing!

 What makes concurrency hard?
 Race conditions
 Scalability (no O(n) operations)
 Scheduling & resource sensitivity
 Inevitable overload
 Code complexity

Ideal

Peak: some
resource at max

Overload: some
resource thrashing

Load (concurrent tasks)

Pe
rf

or
m

an
ce

The Debate
 Performance vs. Programmability

 Current threads pick one
 Events somewhat better

 Questions
 Threads vs. Events?
 How do we get performance and

programmability?

Performance

Ea
se

 o
f

Pr
og

ra
m

m
in

g

Current
Threads

Current Threads

Current Events

Ideal

Our Position
 Thread-event duality still holds
 But threads are better anyway

 More natural to program
 Better fit with tools and hardware

 Compiler-runtime integration is key

The Duality Argument
 General assumption: follow “good practices”
 Observations

 Major concepts are analogous
 Program structure is similar
 Performance should be similar

 Given good implementations!

EventsThreads
 Event handler & queue
 Events accepted
 Send message / await reply
 Wait for new messages

 Monitors
 Exported functions
 Call/return and fork/join
 Wait on condition variable

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

The Duality Argument
 General assumption: follow “good practices”
 Observations

 Major concepts are analogous
 Program structure is similar
 Performance should be similar

 Given good implementations!

EventsThreads
 Event handler & queue
 Events accepted
 Send message / await reply
 Wait for new messages

 Monitors
 Exported functions
 Call/return and fork/join
 Wait on condition variable

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

The Duality Argument
 General assumption: follow “good practices”
 Observations

 Major concepts are analogous
 Program structure is similar
 Performance should be similar

 Given good implementations!

EventsThreads
 Event handler & queue
 Events accepted
 Send message / await reply
 Wait for new messages

 Monitors
 Exported functions
 Call/return and fork/join
 Wait on condition variable

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

“But Events Are Better!”
 Recent arguments for events

 Lower runtime overhead
 Better live state management
 Inexpensive synchronization
 More flexible control flow
 Better scheduling and locality

 All true but…
 No inherent problem with threads!
 Thread implementations can be improved

Runtime Overhead
 Criticism: Threads don’t perform

well for high concurrency
 Response

 Avoid O(n) operations
 Minimize context switch overhead

 Simple scalability test
 Slightly modified GNU Pth
 Thread-per-task vs.

single thread
 Same performance!

R
eq

ue
st

s
/ S

ec
on

d
Concurrent Tasks

Event-Based Server

Threaded Server

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 1 10 100 1000 10000 100000 1e+06

Live State Management
 Criticism: Stacks are bad for live state
 Response

 Fix with compiler help
 Stack overflow vs. wasted space

 Dynamically link stack frames

 Retain dead state
 Static lifetime analysis
 Plan arrangement of stack
 Put some data on heap
 Pop stack before tail calls

 Encourage inefficiency
 Warn about inefficiency

Live

Live

Dead

Unused

Thread State (stack)

Event State (heap)

Synchronization
 Criticism: Thread synchronization is heavyweight
 Response

 Cooperative multitasking works for threads, too!
 Also presents same problems

 Starvation & fairness
 Multiprocessors
 Unexpected blocking (page faults, etc.)

 Compiler support helps

Control Flow
 Criticism: Threads have restricted

control flow
 Response

 Programmers use simple patterns
 Call / return
 Parallel calls
 Pipelines

 Complicated patterns are unnatural
 Hard to understand
 Likely to cause bugs

Scheduling

Task

Pr
og

ra
m

 L
oc

at
io

n

 Criticism: Thread schedulers are too generic
 Can’t use application-specific information

 Response
 2D scheduling: task & program location

 Threads schedule based on task only
 Events schedule by location (e.g. SEDA)

 Allows batching
 Allows prediction for SRCT

 Threads can use 2D, too!
 Runtime system tracks current location
 Call graph allows prediction

Scheduling

Task

Pr
og

ra
m

 L
oc

at
io

n

Threads

 Criticism: Thread schedulers are too generic
 Can’t use application-specific information

 Response
 2D scheduling: task & program location

 Threads schedule based on task only
 Events schedule by location (e.g. SEDA)

 Allows batching
 Allows prediction for SRCT

 Threads can use 2D, too!
 Runtime system tracks current location
 Call graph allows prediction

Scheduling
 Criticism: Thread schedulers are too generic

 Can’t use application-specific information

 Response
 2D scheduling: task & program location

 Threads schedule based on task only
 Events schedule by location (e.g. SEDA)

 Allows batching
 Allows prediction for SRCT

 Threads can use 2D, too!
 Runtime system tracks current location
 Call graph allows prediction

Task

Pr
og

ra
m

 L
oc

at
io

n

Threads

Events

The Proof’s in the Pudding
 User-level threads package

 Subset of pthreads
 Intercept blocking system calls
 No O(n) operations
 Support > 100K threads
 5000 lines of C code

 Simple web server: Knot
 700 lines of C code

 Similar performance
 Linear increase, then steady
 Drop-off due to poll() overhead

0

100

200

300

400

500

600

700

800

900

1 4 16 64 256 1024 4096 16384

KnotC (Favor Connections)
KnotA (Favor Accept)

Haboob

Concurrent Clients

M
bi

ts
 /

 s
ec

on
d

Our Big But…
 More natural programming model

 Control flow is more apparent
 Exception handling is easier
 State management is automatic

 Better fit with current tools & hardware
 Better existing infrastructure
 Allows better performance?

Control Flow
 Events obscure control flow

 For programmers and tools

EventsThreads
AcceptHandler(event e) {

struct session *s = new_session(e);
RequestHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; CacheHandler.enqueue(s);
}
CacheHandler(struct session *s) {

pin(s);
if(!in_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
. . .
ExitHandlerr(struct session *s) {

…; unpin(&s); free_session(s); }

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
read_request(&s);
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if(!in_cache(&s))

read_file(&s);
}

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

Control Flow

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

EventsThreads
CacheHandler(struct session *s) {

pin(s);
if(!in_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; CacheHandler.enqueue(s);
}
. . .
ExitHandlerr(struct session *s) {

…; unpin(&s); free_session(s);
}
AcceptHandler(event e) {

struct session *s = new_session(e);
RequestHandler.enqueue(s); }

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
read_request(&s);
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if(!in_cache(&s))

read_file(&s);
}

 Events obscure control flow
 For programmers and tools

Exceptions
 Exceptions complicate control flow

 Harder to understand program flow
 Cause bugs in cleanup code Accept

Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

EventsThreads
CacheHandler(struct session *s) {

pin(s);
if(!in_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; if(error) return; CacheHandler.enqueue(s);
}
. . .
ExitHandlerr(struct session *s) {

…; unpin(&s); free_session(s);
}
AcceptHandler(event e) {

struct session *s = new_session(e);
RequestHandler.enqueue(s); }

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
if(!read_request(&s))

return;
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if(!in_cache(&s))

read_file(&s);
}

State Management

EventsThreads
CacheHandler(struct session *s) {

pin(s);
if(!in_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
RequestHandler(struct session *s) {

…; if(error) return; CacheHandler.enqueue(s);
}
. . .
ExitHandlerr(struct session *s) {

…; unpin(&s); free_session(s);
}
AcceptHandler(event e) {

struct session *s = new_session(e);
RequestHandler.enqueue(s); }

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
if(!read_request(&s))

return;
pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if(!in_cache(&s))

read_file(&s);
}

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

 Events require manual state management
 Hard to know when to free

 Use GC or risk bugs

Existing Infrastructure
 Lots of infrastructure for threads

 Debuggers
 Languages & compilers

 Consequences
 More amenable to analysis
 Less effort to get working systems

Better Performance?
 Function pointers & dynamic dispatch

 Limit compiler optimizations
 Hurt branch prediction & I-cache locality

 More context switches with events?
 Example: Haboob does 6x more than Knot
 Natural result of queues

 More investigation needed!

The Future:
Compiler-Runtime Integration

 Insight
 Automate things event programmers do by hand
 Additional analysis for other things

 Specific targets
 Dynamic stack growth*
 Live state management
 Synchronization
 Scheduling*

 Improve performance and decrease complexity

* Working prototype in threads package

Conclusion
 Threads Events

 Performance
 Expressiveness

 Threads > Events
 Complexity / Manageability

 Performance and Ease of use?
 Compiler-runtime integration is key

Performance

Ea
se

 o
f

Pr
og

ra
m

m
in

g

Current
Threads

Current Threads

Current Events

New Threads?

