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Copyright Notice
These slides are distributed under the 
Creative Commons Attribution 4.0 International (CC BY 4.0) License
• You are free:

• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that 

suggests that the author endorses you or your use of the work) as 
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at 
http://creativecommons.org/licenses/by/4.0/legalcode
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Today’s Lecture
• Real-time systems (RTS) basics

• Types or RTS
• Basic concepts & facts

• Resource sharing in RTS
• Scheduling overloaded RTS
• Mixed-criticality systems (MCS)
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Presented by Dr Anna Lyons
Work
• 2022-23, secure kernel team @ Apple
• 2019-22, platform team @ Ghost
• 2010-18 Research Engineer @ Trustworthy Systems
• 2007-2018 Tutor - OS, AOS, COMP19**
• 2010 summer intern @ Microsoft - Bing
• 2008-10 Part-time @ Atlassian
• 2007 summer ToR @ NICTA 2007-08

Education
• 2012-2018 PhD w/ Gernot
• 2006-11 B Sci (Computer Science) / BA (Philosophy)
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Presented by Dr Anna Lyons
Work at Trustworthy Systems
• Initial port of AOS to seL4 w/ 

Adrian Danis, then aarch64 + 
pico tcp + nfsv3

• Shepherd AOS from nslu2 to 
imx6 then odroid c2

• PhD: MCS kernel extensions
• I did AOS on the slug —> w/ 

OKL4
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Real-Time Basics
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Real-Time Systems

7



© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

What’s a Real-Time System?

8

A real-time system is a system that is required to react to stimuli from the 
environment (including passage of physical time) within time intervals dictated by 
the environment. 

[Randell et al., Predictably Dependable Computing Systems, 1995]

Real-time systems have timing constraints, where the correctness of the 
system is dependent not only on the results of computations, but on the time 
at which those results arrive. [Stankovic, IEEE Computer, 1988]

Issues:
• Correctness: What are the temporal requirements?
• Criticality: What are the consequences of failure?

Aka. events
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Real Time → time isn’t fungible

9

Fungible: replaceable by another identical item

Fungible Not fungible

Chocolate chip cookies Human Beings

Memory (e.g RAM) The seconds after you 
hit the brake

https://www.google.com/search?client=safari&sca_esv=575682614&rls=en&sxsrf=AM9HkKkm68K9oR3C_xqg6KTo5yPpzCYclQ:1698031567277&q=replaceable&si=ALGXSlYpmWhtmlIZKYHTCPXiYmMErKWJ3NFoN4QAM8b9KWiL2CEjW40pjPAEhA4SLyhcPPvkydf0Q2mzcRoColS3Yihprwgq_5xb1ILcQtQu5qSJULJx7d4%3D&expnd=1
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Real-time = Real confusion

10

❌ Real-time Applications

Real-time apps are those that react to changes anywhere in a connected application’s system
❌ Real-time Processing

They actually mean “not batch processed”



© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Strictness of Temporal Requirements
• Hard real-time systems
• Weakly-hard real-time systems
• Firm real-time systems
• Soft real-time systems
• Best-effort systems
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Real-Time Tasks

12

void main(void) {

    init(); // initialise system

    while (1) {
        wait();  // timer, device interrupt, signal
        doJob();
    }
}

T1
T2

TimeT0
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Real-time tasks have deadlines
• Usually stated relative to release time
• Frequently implicit: next release time

Period
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Real Time ≠ Real Fast

13

System Deadline Single Miss Conseq Ultimate Conseq.

Combustion engine ignition 2.5 ms Catastrophic Engine damage

Industrial robot 5 ms Recoverable? Machinery damage

Air bag 20 ms Catastrophic Injury or death

Aircraft control 50 ms Recoverable Crash

Industrial process 100 ms Recoverable Lost production, plant/
environment damage

Pacemaker 100 ms Recoverable Death

Criticality
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Example: Industrial Control

14
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Hard Real-Time Systems

15

Deadline

Triggering
Event

Cost

Time

≈ ≈

• Deadline miss is catastrophic
• Steep and real cost function

• Safety-critical: Failure ⇒ death, serious injury
• Mission-critical: Failure ⇒ massive financial damage
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Challenge: Execution-Time Variance

16

WCET/BCET 
may be orders 
of magnitude! • Data-dependent execution paths

• Microarchitecture (caches)
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Weakly-Hard Real-Time Systems

17

Tolerate small fraction 
of deadline misses

• Most feedback control systems (incl life-support!)
• Control compensates for occasional miss
• Becomes unstable if too many misses

• Typically integrated with fault tolerance for HW issues

Time

Triggering
Event

Deadline
Cost

In practice, certifiers  treat 
critical avionics as hard RT
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Firm Real-Time Systems

18

Result obsolete if deadline 
missed (loss of revenue)

• Forecast systems
• Trading systems

Time

Triggering
Event

DeadlineGain
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Soft Real-Time Systems

19

Deadline miss undesirable 
but tolerable, affects QoS

TimeTriggering
Event

DeadlineCost

Time

DeadlineCost

Tardiness

Bounded
Tardiness

• Media players
• Web services
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Best-Effort Systems

20

No deadline

In practice, duration is 
rarely totally irrelevant 

Time

Triggering
Event

Cost
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Real-Time Operating System (RTOS)
• Designed to support real-time operation

• Fast context switches, fast interrupt handling
• More importantly, predictable response time

• Main duty is scheduling tasks to meet their deadline

21

Requires analysis of 
worst-case execution 
time (WCET)

Traditional RTOS is very primitive
• single-mode execution
• no memory protection
• inherently cooperative
• all code is trusted

RT vs OS terminology:
• “task” = thread
• “job” = execution of thread 

   resulting from 
event



© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Real-Time Scheduling
• Ensuring all deadlines are met is harder than bin-packing
• Reason: time is not fungible

22

Time

A: needs 1 
slot every 3

B: needs 3 
slots every 9

Deadline
missed!
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Real-Time Scheduling
• Ensuring all deadlines are met is harder than bin-packing
• Time is not fungible

23

Terminology:
• A set of tasks is feasible if there is a known algorithm that 

will schedule them (i.e. all deadlines will be met).
• A scheduling algorithm is optimal if it can schedule all 

feasible task sets.
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Cyclic Executives
• Very simple, completely static, scheduler is just table
• Deadline analysis done off-line
• Fully deterministic

24

t
1

t2 t
1

t1 t4 t
1

t2 t
1

t1 t4

Hyper-period (inverse base rate)

while (true) {
 wait_tick();
 job_1();
 wait_tick();
 job_2();
 wait_tick();
 job_1();
 wait_tick();
 job_3();
 wait_tick();
 job_4();
}

Drawback: Latency of event handling is hyper-period 
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Are Cyclic Executives Optimal?
• Theoretically yes if can slice (interleave) tasks
• Practically there are limitations:

• Might require very fine-grained slicing
• May introduce significant overhead

25

t
1

t2 t
1

t1 t4 t
1

t2 t
1

t1 t4

Hyper-period (inverse base rate)

while (true) {
 wait_tick();
 job_1();
 wait_tick();
 job_2();
 wait_tick();
 job_1();
 wait_tick();
 job_3();
 wait_tick();
 job_4();
}
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On-Line RT Scheduling
• Scheduler is part of the OS, performs scheduling decision on-demand
• Execution order not pre-determined
• Can be preemptive or non-preemptive
• Priorities can be

• fixed: assigned at admission time
• scheduler doesn’t change prios
• system may support dynamic adjustment of prios

• dynamic: prios potentially different at each scheduler run

26
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Fixed-Priority Scheduling (FPS)
• Classic L4 scheduling is a typical example:

• always picks highest-prio runnable thread
• round-robin within prio level
• will preempt if higher-prio thread is unblocked or time slice depleted

27

prio0 255

In general may or may not:
• preempt running threads
• require unique prios

FPS is not optimal, i.e. cannot schedule some feasible sets
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Rate Monotonic Priority Assignment (RMPA)
• Higher rate ⇒ higher priority:

• Ti<Tj ⇒ Pi>Pj

• Schedulability test: Can schedule task set with periods {T1…Tn} if

   U ≡ ∑ Ci/Ti ≤ n(21/n-1)

28

T:     period
1/T:  rate
P:    priority
U:    utilisation

Assumes “implicit” 
deadlines: release 
time of next job

n 1 2 3 4 5 10 ∞
U [%] 100 82.8 78.0 75.7 74.3 71.8 log(2) = 69.3

RMPA is optimal for FPS
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Rate-Monotonic Scheduling Example

29

Task T P C U [%]

t3 20 3 10 50

t2 40 2 10 25

t1 80 1 20 25

100
blocked 1 preempted 1

2 2

33 3 3

WCET

RMPA schedulability bound is 
sufficient but not necessary

C/T



© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Another RMPA Example

30

P C T D U [%] release

t3 3 5 20 20 25 5

t2 2 8 30 20 27 12

t1 1 15 50 50 30 0

82

t3

t2

t1

Deadline

Release
Preemption

Deadline
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Dynamic Prio: Earliest Deadline First (EDF)
• Job with closest deadline executes

• priority assigned at job level, not task (i.e. thread) level
• deadline-sorted release queue

• Schedulability test: Can schedule task set with periods {T1…Tn} if

   U ≡ ∑ Ci/Ti ≤ 1

31

Preemptive EDF is optimal
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FPS vs EDF

32

RMPA

EDF

t3

t2

t1

t3

t2

t1
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Task P C T D U [%] release

t3 3 5 20 20 25 5

t2 2 8 30 20 27 12

t1 1 15 50 50 30 0

82

FPS vs EDF

33

RMPA t3

t2

t1

Task P C T D U [%] release

t3 3 5 20 20 25 5

t2 2 8 30 20 27 12

t1 1 15 40 40 37.5 0

89.5

Misses 
deadline!
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FPS vs EDF

34

RMPA t3

t2

t1

Misses 
deadline!

EDF 
schedules

EDF t3

t2

t1
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Resource Sharing

35
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Challenge: Sharing

36

Vehicle control must 
see consistent state Updates

Vehicle
Control

Shared Data 
(waypoints etc) Navigation

Ground
Comms

Sharing 
introduces 

dependencies
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Critical Sections: Locking vs Delegation

37

Client2

Client1

Shared
Buffer

Lock()
Unlock()

Server

Buffer

Send()

Lock()
Unlock()

Send()

RT terminology:
Resource 
Server

Receive()
or Poll()

Receive()
or Poll()
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Implementing Delegation

Server2

Client2

Client1

Server1

serv_remote() {
   …
    while (1) {
 Wait(not_rq);
 /* critical section */
 Signal(not_ry);
 }
}

serv_local() {
   …
    Wait(ep);
    while (1) {
        /* critical section */
        ReplyWait(ep);
 }
}

client() {
    while (1) {
          …
 Call(ep);
 …
 Signal(not_ry);
 …
 Wait(not_rq);
 }
}

Hoare-style monitor
Suitable intra-core

Semaphore synchronisation
Suitable inter-core
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Problem: Priority Inversion

39

• High-priority job is blocked by low-prio for a long time
• Long wait chain: t4→t1→t3→t2
• Worst-case blocking time of t4 bounded by total WCET: C1+C2+C3

t4

t3

t2

t1 1 Q Q 1

2

33 V V

4 4VQQ

Preempted

Blocked!Critical
Section
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Solution 1: Priority Inheritance (“Helping”)

40

t4
t3

t2

t1 1 Q Q 1

2

33 V V

4 4VQ

t4
t3

t2

t1 1 Q 4 1

2

33 V V

4 4VQ
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Solution 1: Priority Inheritance (“Helping”)

41

t4
t3

t2

t1 1 Q 4 1

2

33 V V

4 4VQ

If t1 blocks on a resource held by t2, and P1>P2, then
– t2 is temporarily given priority P1

– when tt releases the resource, its priority reverts to P2
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Solution 1: Priority Inheritance (“Helping”)

42

t5
t4

t3

t2

t1 1 Q 4 15

2

33

4 4Q

If t1 blocks on a resource held by t2, and P1>P2, then
– t2 is temporarily given priority P1

– when tt releases the resource, its priority reverts to P2

2 V 5 5 5

5 5V

Transitive
Inheritance

Long blocking 
chains!
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If t1 blocks on a resource held by t2, and P1>P2, then
– t2 is temporarily given priority P1

– when tt releases the resource, its priority reverts to P2

Solution 1: Priority Inheritance (“Helping”)

43

t5
t4

t3

t2

t1 1 Q 4 15

2

33

4 4Q

2 V 5 5 5

Deadlock!

?

Priority Inheritance:
• Easy to use
• Potential deadlocks
• Complex to implement
• Bad worst-case blocking times

5 5V
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Solution 2: Priority Ceiling Protocol (PCP)
• Aim: Block at most once, avoid deadlocks
• Idea: Associate ceiling priority with each resource

• Ceiling = Highest prio of jobs that may access the resource
• On access, bump prio of job to ceiling

44

t4
t3

t2

t1 1 4 1

2

33 V

4 4VQ

IPCP

Immediate prio ceiling 
protocol (IPCP)
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IPCP vs PIP

45

t4
t3

t2

t1 1 4 1

2

33 V

4 4VQ

IPCP

t4
t3

t2

t1 1 Q 4 1

2

33 V V

4 4VQ

PIP
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ICPC Implementation With Delegation

Client2
P2

Client1
P1Server

prio Ps

PS = max (P1, P2) + 1

Each task must declare all resources at admission time
• System must maintain list of tasks using resource
• Defines ceiling priority

Easy to enforce 
with caps

Immediate Priority Ceiling:
• Requires correct prio config
• Deadlock-free
• Easy to implement
• Good worst-case blocking 

timesEDF: Floor 
of deadlines
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Comparison of Locking Protocols

Priority Inversion Bound

Im
pl

em
en

ta
tio

n 
Co

m
pl

ex
ity Original Priority-

Ceiling Protocol

Immediate Priority-
Ceiling Protocol

Priority-Inheritance 
Protocol

Non-Preemptible 
Critical Sections
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Scheduling Overloaded
RT Systems

48
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Naïve Assumption: Everything is Schedulable
Standard assumptions of classical RT systems:
• All WCETs known
• All jobs complete within WCET
• Everything is trusted

More realistic: Overloaded system:

• Total utilisation exceeds schedulability bound
• Cannot trust everything to obey declared WCET

49

Which job 
will miss its 
deadline?
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Overload: FPS

50

t3

t2

t1

Task P C T D U [%]

t1 1 5 20 20 25

t2 2 8 30 20 27

t3 3 15 50 50 30

82

Task P C T D U [%]

t3 3 5 20 20 25

t2 2 12 20 20 60

t1 1 15 50 50 30

115

Old

OldNew
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Overload: FPS

51

t3

t2

t1

Old

New

t3

t2

t1
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Overload: FPS vs EDF

52

t3

t2

t1

t3

t2

t1

FPS

EDF
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Overload: EDF

53

t3

t2

t1

t3

t2

t1

“EDF behaves 
badly under 
overload”
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Mixed-Criticality Systems

54
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Mixed Criticality Systems

55
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Mixed Criticality

56

Control 
loop

Sensor
readings

NW 
driver

NW
interrupts

NW driver must preempt control loop
• … to avoid packet loss
• Driver must run at high prio (i.e. RMPA)
• Driver must not monopolise CPU

Need temporal 
isolation!

Runs every 100 ms
for a few millisecods

Runs frequently but for 
short time (order of µs) 
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Mixed Criticality

57

NW driver must preempt control loop
• … to avoid packet loss
• Driver must run at high prio (i.e. RMPA)
• Driver must not monopolise CPU

Certification requirement:
More critical components must 
not depend on any less critical 
ones! [ARINC-653]

Critical system certification:
• expensive
• conservative assumptions

• eg highly pessimistic WCET

• Must minimise critical software
• Need temporal isolation: 

Budget enforcement
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Mixed-Criticality Support
For supporting mixed-criticality systems (MCS), OS must provide:
• Temporal isolation, to force jobs to adhere to declared WCET

• Mechanisms for safely sharing resources across criticalities

58
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Remember: Delegation of Critical Sections

59

Client1     

Server

Running

Running

Client2

Server may run on 
clients time slice, its 
own or a combination

Client may frequently 
invoke server without 
using much of its own 

time!

No accurate 
accounting 

for time
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MCS Model: Scheduling Contexts
Classical thread attributes
• Priority
• Time slice

MCS thread attributes
• Priority
• Scheduling context capability

Not runnable 
if null

Not runnable 
if null

Scheduling context object
• T: period
• C: budget (≤ T)

Limits CPU 
access! Per-core SchedControl capability 

conveys right to assign budgets 
(i.e. perform admission control)

C = 2
T = 3

C =  250
T = 1000

Capabilit
y for time
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Delegation with Scheduling Contexts

Client1

Passive Server

Running
Running

Server runs on client’s 
scheduling context

Client is charged 
for server’s time

Client2

Scheduling-context capabilities: a principled, light-weight OS 
mechanism for managing time [Lyons et al, EuroSys’18]

Passive servers 
support migrating 

thread model!
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Mixed-Criticality Support
For mixed-criticality systems (MCS), OS must provide:
• Temporal isolation, to force jobs to adhere to declared WCET

• Mechanisms for safely sharing resources across criticalities

62

Solved by scheduling 
contexts

Client1
Passive Server

Client1Crit: High

Crit: Low

What if budget expires while 
shared server executing on 
Low’s scheduling context?
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Timeout Exceptions
Policy-free mechanism for dealing with budget depletion

Possible actions:
• Provide emergency budget to leave critical section
• Cancel operation & roll-back server
• Reduce priority of low-crit client (with one of the above)
• Implement priority inheritance (if you must…)

63

Arguable not ideal: better prevent timeout 
completely
RFC-14: Adding budget limit thresholds to endpoints 
for SC Donation
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Isn’t a Fixed-Prio Scheduler Policy?

Scheduler waits for client timeout

Client runs for 
period, then time-
faults (or explicitly 

yields by calling EP)

Implementing scheduling policy at user level

User-level
Scheduler

pS

Client2 pC

C2 = P2 = D2

Client1 pC

C1 = P1 = D1
Timeout EP

Scheduler runs 
client by replying
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User-Level EDF Scheduler Performance

Linux in-kernel
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WCET Analysis
Program

binary

Control 
Flow 

Graph

Loop 
bounds

Micro-
architectu
re model

Integer 
linear 

equations

Infeasible 
path info

WCETILP solverAnalysis tool

Accurate & sound 
model of 

pipeline, caches

Scalability!

Pessimism!

66
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WCET Analysis on ARM11

99.5
378

0. 99.8 199.5 299.3 399.

Observed
Computed

Pessimism due 
to under-
specified 
hardware

WCET presently limited by verification 
practicalities
•  without regard to verification achieved 50 µs  
•  10 µs seem achievable
•  BCET ~ 1µs
• [Blackham‘11, ‘12] [Sewell’16]

µs
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Presented by Dr Anna Lyons

Internship!
https://jobs.apple.com/en-sg/details/200509672/secure-kernel-
engineering-intern?team=SFTWR
search “secure kernel engineering intern apple”
Contact
linked in: https://www.linkedin.com/in/annamlyons/
email: anna.lyons@apple.com
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Fun links
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For the dark nights of AOS debugging: “The Night Watch”
https://www.usenix.org/system/files/1311_05-08_mickens.pdf
Real world priority inversion: NASA
https://www.rapitasystems.com/blog/what-really-happened-
software-mars-pathfinder-spacecraft
Real world mess: (When real time is wrong) Toyota breaking

https://www.transportation.gov/briefing-room/us-department-
transportation-releases-results-nhtsa-nasa-study-unintended-
acceleration

https://www.transportation.gov/briefing-room/us-department-transportation-releases-results-nhtsa-nasa-study-unintended-acceleration
https://www.transportation.gov/briefing-room/us-department-transportation-releases-results-nhtsa-nasa-study-unintended-acceleration
https://www.transportation.gov/briefing-room/us-department-transportation-releases-results-nhtsa-nasa-study-unintended-acceleration

