
School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

2023 T3 Week 07 Part 1

Real-Time Systems Basics
@GernotHeiser

blocked 1 preempted 1

2 2

33 3 3

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Copyright Notice
These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License
• You are free:

• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

2

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Today’s Lecture
• Real-time systems (RTS) basics

• Types or RTS
• Basic concepts & facts

• Resource sharing in RTS
• Scheduling overloaded RTS
• Mixed-criticality systems (MCS)

3

© Gernot Heiser 2019 – CC BY 4.0

Presented by Dr Anna Lyons
Work
• 2022-23, secure kernel team @ Apple
• 2019-22, platform team @ Ghost
• 2010-18 Research Engineer @ Trustworthy Systems
• 2007-2018 Tutor - OS, AOS, COMP19**
• 2010 summer intern @ Microsoft - Bing
• 2008-10 Part-time @ Atlassian
• 2007 summer ToR @ NICTA 2007-08

Education
• 2012-2018 PhD w/ Gernot
• 2006-11 B Sci (Computer Science) / BA (Philosophy)

4

© Gernot Heiser 2019 – CC BY 4.0

Presented by Dr Anna Lyons
Work at Trustworthy Systems
• Initial port of AOS to seL4 w/

Adrian Danis, then aarch64 +
pico tcp + nfsv3

• Shepherd AOS from nslu2 to
imx6 then odroid c2

• PhD: MCS kernel extensions
• I did AOS on the slug —> w/

OKL4

5

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Real-Time Basics

6

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Real-Time Systems

7

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

What’s a Real-Time System?

8

A real-time system is a system that is required to react to stimuli from the
environment (including passage of physical time) within time intervals dictated by
the environment.

[Randell et al., Predictably Dependable Computing Systems, 1995]

Real-time systems have timing constraints, where the correctness of the
system is dependent not only on the results of computations, but on the time
at which those results arrive. [Stankovic, IEEE Computer, 1988]

Issues:
• Correctness: What are the temporal requirements?
• Criticality: What are the consequences of failure?

Aka. events

© Gernot Heiser 2019 – CC BY 4.0

Real Time → time isn’t fungible

9

Fungible: replaceable by another identical item

Fungible Not fungible

Chocolate chip cookies Human Beings

Memory (e.g RAM) The seconds after you
hit the brake

https://www.google.com/search?client=safari&sca_esv=575682614&rls=en&sxsrf=AM9HkKkm68K9oR3C_xqg6KTo5yPpzCYclQ:1698031567277&q=replaceable&si=ALGXSlYpmWhtmlIZKYHTCPXiYmMErKWJ3NFoN4QAM8b9KWiL2CEjW40pjPAEhA4SLyhcPPvkydf0Q2mzcRoColS3Yihprwgq_5xb1ILcQtQu5qSJULJx7d4%3D&expnd=1

© Gernot Heiser 2019 – CC BY 4.0

Real-time = Real confusion

10

❌ Real-time Applications

Real-time apps are those that react to changes anywhere in a connected application’s system
❌ Real-time Processing

They actually mean “not batch processed”

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Strictness of Temporal Requirements
• Hard real-time systems
• Weakly-hard real-time systems
• Firm real-time systems
• Soft real-time systems
• Best-effort systems

11

St
ric

tn
es

s
of

 te
m

po
ra

l
re

qu
ire

m
en

ts

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Real-Time Tasks

12

void main(void) {

 init(); // initialise system

 while (1) {
 wait(); // timer, device interrupt, signal
 doJob();
 }
}

T1
T2

TimeT0

Ev
en

t

R
el

ea
se

T1

C
om

pl
et

io
n

T2

Processing
timeR

el
ea

se
Ji

tte
r

D
ea

dl
in

e

Real-time tasks have deadlines
• Usually stated relative to release time
• Frequently implicit: next release time

Period

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Real Time ≠ Real Fast

13

System Deadline Single Miss Conseq Ultimate Conseq.

Combustion engine ignition 2.5 ms Catastrophic Engine damage

Industrial robot 5 ms Recoverable? Machinery damage

Air bag 20 ms Catastrophic Injury or death

Aircraft control 50 ms Recoverable Crash

Industrial process 100 ms Recoverable Lost production, plant/
environment damage

Pacemaker 100 ms Recoverable Death

Criticality

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Example: Industrial Control

14

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Hard Real-Time Systems

15

Deadline

Triggering
Event

Cost

Time

≈ ≈

• Deadline miss is catastrophic
• Steep and real cost function

• Safety-critical: Failure ⇒ death, serious injury
• Mission-critical: Failure ⇒ massive financial damage

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Challenge: Execution-Time Variance

16

WCET/BCET
may be orders
of magnitude! • Data-dependent execution paths

• Microarchitecture (caches)

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Weakly-Hard Real-Time Systems

17

Tolerate small fraction
of deadline misses

• Most feedback control systems (incl life-support!)
• Control compensates for occasional miss
• Becomes unstable if too many misses

• Typically integrated with fault tolerance for HW issues

Time

Triggering
Event

Deadline
Cost

In practice, certifiers treat
critical avionics as hard RT

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Firm Real-Time Systems

18

Result obsolete if deadline
missed (loss of revenue)

• Forecast systems
• Trading systems

Time

Triggering
Event

DeadlineGain

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Soft Real-Time Systems

19

Deadline miss undesirable
but tolerable, affects QoS

TimeTriggering
Event

DeadlineCost

Time

DeadlineCost

Tardiness

Bounded
Tardiness

• Media players
• Web services

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Best-Effort Systems

20

No deadline

In practice, duration is
rarely totally irrelevant

Time

Triggering
Event

Cost

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Real-Time Operating System (RTOS)
• Designed to support real-time operation

• Fast context switches, fast interrupt handling
• More importantly, predictable response time

• Main duty is scheduling tasks to meet their deadline

21

Requires analysis of
worst-case execution
time (WCET)

Traditional RTOS is very primitive
• single-mode execution
• no memory protection
• inherently cooperative
• all code is trusted

RT vs OS terminology:
• “task” = thread
• “job” = execution of thread

 resulting from
event

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Real-Time Scheduling
• Ensuring all deadlines are met is harder than bin-packing
• Reason: time is not fungible

22

Time

A: needs 1
slot every 3

B: needs 3
slots every 9

Deadline
missed!

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Real-Time Scheduling
• Ensuring all deadlines are met is harder than bin-packing
• Time is not fungible

23

Terminology:
• A set of tasks is feasible if there is a known algorithm that

will schedule them (i.e. all deadlines will be met).
• A scheduling algorithm is optimal if it can schedule all

feasible task sets.

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Cyclic Executives
• Very simple, completely static, scheduler is just table
• Deadline analysis done off-line
• Fully deterministic

24

t
1

t2 t
1

t1 t4 t
1

t2 t
1

t1 t4

Hyper-period (inverse base rate)

while (true) {
 wait_tick();
 job_1();
 wait_tick();
 job_2();
 wait_tick();
 job_1();
 wait_tick();
 job_3();
 wait_tick();
 job_4();
}

Drawback: Latency of event handling is hyper-period

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Are Cyclic Executives Optimal?
• Theoretically yes if can slice (interleave) tasks
• Practically there are limitations:

• Might require very fine-grained slicing
• May introduce significant overhead

25

t
1

t2 t
1

t1 t4 t
1

t2 t
1

t1 t4

Hyper-period (inverse base rate)

while (true) {
 wait_tick();
 job_1();
 wait_tick();
 job_2();
 wait_tick();
 job_1();
 wait_tick();
 job_3();
 wait_tick();
 job_4();
}

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

On-Line RT Scheduling
• Scheduler is part of the OS, performs scheduling decision on-demand
• Execution order not pre-determined
• Can be preemptive or non-preemptive
• Priorities can be

• fixed: assigned at admission time
• scheduler doesn’t change prios
• system may support dynamic adjustment of prios

• dynamic: prios potentially different at each scheduler run

26

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Fixed-Priority Scheduling (FPS)
• Classic L4 scheduling is a typical example:

• always picks highest-prio runnable thread
• round-robin within prio level
• will preempt if higher-prio thread is unblocked or time slice depleted

27

prio0 255

In general may or may not:
• preempt running threads
• require unique prios

FPS is not optimal, i.e. cannot schedule some feasible sets

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Rate Monotonic Priority Assignment (RMPA)
• Higher rate ⇒ higher priority:

• Ti<Tj ⇒ Pi>Pj

• Schedulability test: Can schedule task set with periods {T1…Tn} if

 U ≡ ∑ Ci/Ti ≤ n(21/n-1)

28

T: period
1/T: rate
P: priority
U: utilisation

Assumes “implicit”
deadlines: release
time of next job

n 1 2 3 4 5 10 ∞
U [%] 100 82.8 78.0 75.7 74.3 71.8 log(2) = 69.3

RMPA is optimal for FPS

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Rate-Monotonic Scheduling Example

29

Task T P C U [%]

t3 20 3 10 50

t2 40 2 10 25

t1 80 1 20 25

100
blocked 1 preempted 1

2 2

33 3 3

WCET

RMPA schedulability bound is
sufficient but not necessary

C/T

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Another RMPA Example

30

P C T D U [%] release

t3 3 5 20 20 25 5

t2 2 8 30 20 27 12

t1 1 15 50 50 30 0

82

t3

t2

t1

Deadline

Release
Preemption

Deadline

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Dynamic Prio: Earliest Deadline First (EDF)
• Job with closest deadline executes

• priority assigned at job level, not task (i.e. thread) level
• deadline-sorted release queue

• Schedulability test: Can schedule task set with periods {T1…Tn} if

 U ≡ ∑ Ci/Ti ≤ 1

31

Preemptive EDF is optimal

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

FPS vs EDF

32

RMPA

EDF

t3

t2

t1

t3

t2

t1

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Task P C T D U [%] release

t3 3 5 20 20 25 5

t2 2 8 30 20 27 12

t1 1 15 50 50 30 0

82

FPS vs EDF

33

RMPA t3

t2

t1

Task P C T D U [%] release

t3 3 5 20 20 25 5

t2 2 8 30 20 27 12

t1 1 15 40 40 37.5 0

89.5

Misses
deadline!

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

FPS vs EDF

34

RMPA t3

t2

t1

Misses
deadline!

EDF
schedules

EDF t3

t2

t1

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Resource Sharing

35

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Challenge: Sharing

36

Vehicle control must
see consistent state Updates

Vehicle
Control

Shared Data
(waypoints etc) Navigation

Ground
Comms

Sharing
introduces

dependencies

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Critical Sections: Locking vs Delegation

37

Client2

Client1

Shared
Buffer

Lock()
Unlock()

Server

Buffer

Send()

Lock()
Unlock()

Send()

RT terminology:
Resource
Server

Receive()
or Poll()

Receive()
or Poll()

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems38

Implementing Delegation

Server2

Client2

Client1

Server1

serv_remote() {
 …
 while (1) {
 Wait(not_rq);
 /* critical section */
 Signal(not_ry);
 }
}

serv_local() {
 …
 Wait(ep);
 while (1) {
 /* critical section */
 ReplyWait(ep);
 }
}

client() {
 while (1) {
 …
 Call(ep);
 …
 Signal(not_ry);
 …
 Wait(not_rq);
 }
}

Hoare-style monitor
Suitable intra-core

Semaphore synchronisation
Suitable inter-core

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Problem: Priority Inversion

39

• High-priority job is blocked by low-prio for a long time
• Long wait chain: t4→t1→t3→t2
• Worst-case blocking time of t4 bounded by total WCET: C1+C2+C3

t4

t3

t2

t1 1 Q Q 1

2

33 V V

4 4VQQ

Preempted

Blocked!Critical
Section

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Solution 1: Priority Inheritance (“Helping”)

40

t4
t3

t2

t1 1 Q Q 1

2

33 V V

4 4VQ

t4
t3

t2

t1 1 Q 4 1

2

33 V V

4 4VQ

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Solution 1: Priority Inheritance (“Helping”)

41

t4
t3

t2

t1 1 Q 4 1

2

33 V V

4 4VQ

If t1 blocks on a resource held by t2, and P1>P2, then
– t2 is temporarily given priority P1

– when tt releases the resource, its priority reverts to P2

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Solution 1: Priority Inheritance (“Helping”)

42

t5
t4

t3

t2

t1 1 Q 4 15

2

33

4 4Q

If t1 blocks on a resource held by t2, and P1>P2, then
– t2 is temporarily given priority P1

– when tt releases the resource, its priority reverts to P2

2 V 5 5 5

5 5V

Transitive
Inheritance

Long blocking
chains!

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

If t1 blocks on a resource held by t2, and P1>P2, then
– t2 is temporarily given priority P1

– when tt releases the resource, its priority reverts to P2

Solution 1: Priority Inheritance (“Helping”)

43

t5
t4

t3

t2

t1 1 Q 4 15

2

33

4 4Q

2 V 5 5 5

Deadlock!

?

Priority Inheritance:
• Easy to use
• Potential deadlocks
• Complex to implement
• Bad worst-case blocking times

5 5V

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Solution 2: Priority Ceiling Protocol (PCP)
• Aim: Block at most once, avoid deadlocks
• Idea: Associate ceiling priority with each resource

• Ceiling = Highest prio of jobs that may access the resource
• On access, bump prio of job to ceiling

44

t4
t3

t2

t1 1 4 1

2

33 V

4 4VQ

IPCP

Immediate prio ceiling
protocol (IPCP)

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

IPCP vs PIP

45

t4
t3

t2

t1 1 4 1

2

33 V

4 4VQ

IPCP

t4
t3

t2

t1 1 Q 4 1

2

33 V V

4 4VQ

PIP

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems46

ICPC Implementation With Delegation

Client2
P2

Client1
P1Server

prio Ps

PS = max (P1, P2) + 1

Each task must declare all resources at admission time
• System must maintain list of tasks using resource
• Defines ceiling priority

Easy to enforce
with caps

Immediate Priority Ceiling:
• Requires correct prio config
• Deadlock-free
• Easy to implement
• Good worst-case blocking

timesEDF: Floor
of deadlines

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems47

Comparison of Locking Protocols

Priority Inversion Bound

Im
pl

em
en

ta
tio

n
Co

m
pl

ex
ity Original Priority-

Ceiling Protocol

Immediate Priority-
Ceiling Protocol

Priority-Inheritance
Protocol

Non-Preemptible
Critical Sections

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Scheduling Overloaded
RT Systems

48

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Naïve Assumption: Everything is Schedulable
Standard assumptions of classical RT systems:
• All WCETs known
• All jobs complete within WCET
• Everything is trusted

More realistic: Overloaded system:

• Total utilisation exceeds schedulability bound
• Cannot trust everything to obey declared WCET

49

Which job
will miss its
deadline?

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Overload: FPS

50

t3

t2

t1

Task P C T D U [%]

t1 1 5 20 20 25

t2 2 8 30 20 27

t3 3 15 50 50 30

82

Task P C T D U [%]

t3 3 5 20 20 25

t2 2 12 20 20 60

t1 1 15 50 50 30

115

Old

OldNew

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Overload: FPS

51

t3

t2

t1

Old

New

t3

t2

t1

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Overload: FPS vs EDF

52

t3

t2

t1

t3

t2

t1

FPS

EDF

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Overload: EDF

53

t3

t2

t1

t3

t2

t1

“EDF behaves
badly under
overload”

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Mixed-Criticality Systems

54

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Mixed Criticality Systems

55

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Mixed Criticality

56

Control
loop

Sensor
readings

NW
driver

NW
interrupts

NW driver must preempt control loop
• … to avoid packet loss
• Driver must run at high prio (i.e. RMPA)
• Driver must not monopolise CPU

Need temporal
isolation!

Runs every 100 ms
for a few millisecods

Runs frequently but for
short time (order of µs)

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Mixed Criticality

57

NW driver must preempt control loop
• … to avoid packet loss
• Driver must run at high prio (i.e. RMPA)
• Driver must not monopolise CPU

Certification requirement:
More critical components must
not depend on any less critical
ones! [ARINC-653]

Critical system certification:
• expensive
• conservative assumptions

• eg highly pessimistic WCET

• Must minimise critical software
• Need temporal isolation:

Budget enforcement

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Mixed-Criticality Support
For supporting mixed-criticality systems (MCS), OS must provide:
• Temporal isolation, to force jobs to adhere to declared WCET

• Mechanisms for safely sharing resources across criticalities

58

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Remember: Delegation of Critical Sections

59

Client1

Server

Running

Running

Client2

Server may run on
clients time slice, its
own or a combination

Client may frequently
invoke server without
using much of its own

time!

No accurate
accounting

for time

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems60

MCS Model: Scheduling Contexts
Classical thread attributes
• Priority
• Time slice

MCS thread attributes
• Priority
• Scheduling context capability

Not runnable
if null

Not runnable
if null

Scheduling context object
• T: period
• C: budget (≤ T)

Limits CPU
access! Per-core SchedControl capability

conveys right to assign budgets
(i.e. perform admission control)

C = 2
T = 3

C = 250
T = 1000

Capabilit
y for time

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems61

Delegation with Scheduling Contexts

Client1

Passive Server

Running
Running

Server runs on client’s
scheduling context

Client is charged
for server’s time

Client2

Scheduling-context capabilities: a principled, light-weight OS
mechanism for managing time [Lyons et al, EuroSys’18]

Passive servers
support migrating

thread model!

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Mixed-Criticality Support
For mixed-criticality systems (MCS), OS must provide:
• Temporal isolation, to force jobs to adhere to declared WCET

• Mechanisms for safely sharing resources across criticalities

62

Solved by scheduling
contexts

Client1
Passive Server

Client1Crit: High

Crit: Low

What if budget expires while
shared server executing on
Low’s scheduling context?

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Timeout Exceptions
Policy-free mechanism for dealing with budget depletion

Possible actions:
• Provide emergency budget to leave critical section
• Cancel operation & roll-back server
• Reduce priority of low-crit client (with one of the above)
• Implement priority inheritance (if you must…)

63

Arguable not ideal: better prevent timeout
completely
RFC-14: Adding budget limit thresholds to endpoints
for SC Donation

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems64

Isn’t a Fixed-Prio Scheduler Policy?

Scheduler waits for client timeout

Client runs for
period, then time-
faults (or explicitly

yields by calling EP)

Implementing scheduling policy at user level

User-level
Scheduler

pS

Client2 pC

C2 = P2 = D2

Client1 pC

C1 = P1 = D1
Timeout EP

Scheduler runs
client by replying

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems65

User-Level EDF Scheduler Performance

Linux in-kernel

© Gernot Heiser 2019 – CC BY 4.0

COMP9242 2023 T3 W07
Part 1: Real-Time Systems

WCET Analysis
Program

binary

Control
Flow

Graph

Loop
bounds

Micro-
architectu
re model

Integer
linear

equations

Infeasible
path info

WCETILP solverAnalysis tool

Accurate & sound
model of

pipeline, caches

Scalability!

Pessimism!

66

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems67

WCET Analysis on ARM11

99.5
378

0. 99.8 199.5 299.3 399.

Observed
Computed

Pessimism due
to under-
specified
hardware

WCET presently limited by verification
practicalities
• without regard to verification achieved 50 µs
• 10 µs seem achievable
• BCET ~ 1µs
• [Blackham‘11, ‘12] [Sewell’16]

µs

© Gernot Heiser 2019 – CC BY 4.0

Presented by Dr Anna Lyons

Internship!
https://jobs.apple.com/en-sg/details/200509672/secure-kernel-
engineering-intern?team=SFTWR
search “secure kernel engineering intern apple”
Contact
linked in: https://www.linkedin.com/in/annamlyons/
email: anna.lyons@apple.com

68

https://jobs.apple.com/en-sg/details/200509672/secure-kernel-engineering-intern?team=SFTWR
https://jobs.apple.com/en-sg/details/200509672/secure-kernel-engineering-intern?team=SFTWR
https://www.linkedin.com/in/annamlyons/
mailto:anna.lyons@apple.com

© Gernot Heiser 2019 – CC BY 4.0COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Fun links

69

For the dark nights of AOS debugging: “The Night Watch”
https://www.usenix.org/system/files/1311_05-08_mickens.pdf
Real world priority inversion: NASA
https://www.rapitasystems.com/blog/what-really-happened-
software-mars-pathfinder-spacecraft
Real world mess: (When real time is wrong) Toyota breaking

https://www.transportation.gov/briefing-room/us-department-
transportation-releases-results-nhtsa-nasa-study-unintended-
acceleration

https://www.transportation.gov/briefing-room/us-department-transportation-releases-results-nhtsa-nasa-study-unintended-acceleration
https://www.transportation.gov/briefing-room/us-department-transportation-releases-results-nhtsa-nasa-study-unintended-acceleration
https://www.transportation.gov/briefing-room/us-department-transportation-releases-results-nhtsa-nasa-study-unintended-acceleration

