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Abstract

Fine-grained hardware protection could deliver signiftdzenefits to soft-
ware, enabling the implementation of strongly encapsdltdgt-weight ob-
jects, but only if it can be done without slowing down the @ssor.

In this survey we explore the interaction between the pemescaches
and virtual memory in traditional as well as research asdtitres. We find
that while caching and translation mechanisms have redeivech atten-
tion in the literature, hardware protection mechanism&hramained largely
neglected, with none of the explored architectures pragidruly scalable
support for context-sensitive, fine-grained protection.

Based on the insights gained from the survey we outline amoagp
which facilitates the construction of simple, yet fast, {pawer fine-grained
protection mechanisms for processor cores.
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1 Introduction

Very fine-grained hardware protection of memory objectd subpport the imple-

mentation of secure componentised systemsd/], secure sharing of arbitrary
data [WCAOZ], and better fault isolation(f~01, SMLEOZ. However, such pro-

tection is hard to achieve, as it tends to add expensive iasiseclookups to the

critical path of the processor. The lack of hardware supfmrfine-grained pro-

tection has meant that recent work has concentrated onaefti®chniques, such
as type safe languagesl[96] and proof-carrying codeNec91.

This survey explores the interaction between the procesastiies and virtual
memory, critically assessing the suitability of variousgessor architectures with
respect to realisation of fine-grained protection. We firat tione of the explored
architectures is suitable for providing support for fineiged protection and sketch
out the requirements for a protection architecture, basdti®insights gained from
the survey, that may fill this void.

In the remainder of this section we briefly outline the orgation of a con-
ventional processor with caches and support for virtual mgnwhile in Sections
2 and3 we examine in detail the cache design space and coherenes iEspec-
tively. Sections4 and5 then explore processor support for the virtual memory
features of translation and protection respectively, anallfi Section6 concludes
and outlines areas for future work.

1.1 Processor caches

Modern processors are equipped with both caches and suppuwittual memory.
Processor caches improve application program performagoexploiting mem-
ory locality. Locality comes in two flavoursspatial locality, in which memory
addresses near a recently accessed address are likely todmsed as well; and
temporal locality where a recently accessed address is likely to be accegagd a
in the near future. Caches exploit locality by storing rdsereferenced blocks
of data in fast memory in or near the processor core. To keegpited high and
expense low, the caches on the processor are typically diely éens of kilobytes
in size.

When presented with large multi-megabyte and even mujigyte memories,
the coverage of a single processor cache is often insufficlérerefore one or more
extra levels of cache are added, either to the processotweba the processor and
main memory. Generally, the further away from the procéssare a cache is, the
larger and slower it is. An example of such a hierarchy is ctepiiin Figurel. The
first-level (L1) cache is in the processor, while the sectaved (L2) cache resides
between the processor and main memory.

This interaction of faster and smaller memory with progresg slower but
larger memory is generally known as the memory hierarchythAttop of the hier-
archy are the processor registers which are the fastest,erpsnsive and smallest
memories, going down the hierarchy are first-level cach#srdevels of cache,



main memory and finally disk (when virtual memory is presenthie system) as
depicted in Figure@. The key property exhibited by the memory hierarchy is that
on average a memory accesses approach the speed of the tofewebof the
hierarchy, while providing as much storage as the lowest lev

Processor
core

L1 Cache

| L2 Cache \

Main
Memory

Figure 1: Example multi-level cache organisation.
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Figure 2: The memory Hierarchy.

1.2 Processor support for virtual memory

The virtualisation of memory enables programs to utiliserenmemory then is
physically present in the system by multiplexiplgysical framesof main memory
between a potentially larger set wirtual pagesof memory. Inactive pages are

A frame is a contiguous block of physical memory some powewofin size, typically 4KB.



typically swapped oufrom main memory into some form of secondary memory,
typically a hard-disk drive, until they are once again aseeésin the future. An
access to a page that is not resident in memory causes artierceqmown as a
page fault The operating system then allocates a suitable free frdime. frame

is available, a victim page is swapped out. The system thaasl@waps in the
accessed page into the target frame.

Virtual memory also allows physical frames to be shared betwmultiple ap-
plications in a secure fashion. For example, the same cogbtrioé used by mul-
tiple applications, allowing code frames to be shared. Hewreghe system must
ensure none of the applications modifies the shared cods.cghibe achieved by
the system marking the shared code pageasad-onlyor evenexecute-only

Because each memory access must be both translated frorual @ddress
(VA) to physical address (PA), and have some access rigtgskeld, some kind
of hardware support is required. Such hardware supporjisajly implemented
by a memory management unit (MMU) either on the processorebivéen the
processor and main memory.

The MMU, shown in Figures, translates virtual to physical addresses and per-
forms protection checks between the processor and main ngeBoth the trans-
lations and the access rights are stored in a data structurain memory, know
as apage table which is maintained by the operating system. If a virtuajga
has no translation associated with it in the page table, threifaccess rights are
insufficient, a page fault exception is raised.

[ Processor ]—

Page-fault
VA exception

MMU
TLB

Data

PA

Main
Memory

Figure 3: The memory management unit.

A translation and protection check must be performed by thdWon ev-
ery memory access by the processor. Each of these tramslatquires at least
one, if not more, additional memory references to look upphge table. To keep
the number of additional accesses to main memory by the MMbageable, the



MMU typically implements a cache of translations, known dsaaslation look-
aside buffe(TLB), or page table cacheEach TLB entry contains both the trans-
lation and protection information of the page it covers iriual memory.

2 Caching

We begin our investigation into the interaction of caching &irtual memory with
the processor cache. A cache is a piece of hardware devottdring a limited
amount, typically a subset, of information used by a prome$sr a particular
purpose. Caches are characterised by high speed accessemalhsize. The
larger the cache is, the more it costs in silicon real estatk sbower its access
speed.

A cache is implemented as an array of fixed-size lines canasome data and
atag. The lines are grouped insets and arindexis used to select a particular set.
Once indexed, the tags are then compared to the addressalfrtieat reference, a
match indicating @ache hit

Caches can store any type of information used by the progessging from
instructions and data, to access rights of instructions a@atd, virtual memory
translations or branch prediction tables. In this sectiennill restrict our attention
to instruction and data caches.

Regardless of what is being cached, the goal is the same: Jimwa the av-
erage access latency to the information and thereby allsteifaoperation of the
processor core. A cache’s average access latency can bibddszs

H+MxR

whereH is the hit access latenty)M the miss cost, an& the miss raté

2.1 Cache design space

A large number of design choices are available for cachewemnel of which Smith
[Smi87] provides a thorough, if dated, survey. In our investigatiwe will look
into a subset of the these aspects of cache design, in partloow the cache is
addressed, i.e., indexed and tagged. A summary of the des@oes is presented
in the following sections. Figuré illustrates the interaction of the design choices
pertinent to the remainder of this paper.

2.1.1 Addressing

The cache address is made up of 3 parts: the index, tag ard. dffsstly, the index
selects the set of lines of the cache that will be examined fat. Then, the tag is
compared with the tag stored in each line of the indexed getssert a cache hit

2This is usually one to a few processor cycles for first levehess.
3While the termmiss ratds commonly used we are really talking about the probabiiftg miss.
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Figure 4: Cache organisation.

or miss. Finally, theoffsetselects the pertinent part of the cache line’s data to be
accessed.

Although more general hashing schemes are possible, teg,iteh and offset
are usually substrings of the full address. It should alsadied at this point that
the index and tag can be derived, independently, from eftteevirtual or physical
addresses used in the processor.

2.1.2 Set associativity

The set associativity of a cache refers to the number of chigbg in a set whose
tags are searched in parallel on a reference. When a simglaslichecked for a
match, the cache is known agl@ect-mappedcache. At the opposite end of the
spectrum, a cache in which every line is checked in paradleafhit is know as a
fully-associativecache. The remaining organisations are collectively reteto as
n-way set-associativeaches where is the number of lines in each set.

Higher-associative designs, in general, exhibit highevgraconsumption and
slower access speeds, compared to direct mapped and leoeiaivity caches of
the same capacity. For this reason fully-associative caaletypically small.

The advantage of higher-associative caches is the facthbathit rates are
inherently higher then those of direct-mapped, and low @asee, caches of the
same capacity. This is due to the lowamflict missrates of caches with higher
associativity. Conflict misses occur when members of the&kingrset index to the
same cache line.

A fully-associative cache has a single set, hence it has nfliciomisses. It
lacks an index address.



2.1.3 Write-through v. write-back

Because data caches can be updated by processor activityica for data consis-
tency between the cache and main memory has to be made. Tthieeg@@ta cache
and RAM coherent, writes to the cache may also be sent to theomyecontroller.
This organisation is known asverite-throughcache. While such an organisation
maintains strict coherency, it can lead to a performancddmaick if writes are
frequent and the difference in speed between the cache andmaanory is large.

To overcome this problem, therite-backcache was introduced: Writes only
update the cache, avoiding the bottleneck of main memorghwalth. Main mem-
ory is updated when a modifiedlifty) cache line is evicted from the cache by
the replacement policy or via an explicit flush operation. iN/tvrite-back caches
improve cache performance, they lead to inconsistenci#is mwain memory that
application software and/or the operating system must m@ewnf, as we will see
in later sections.

2.1.4 Line size

If a single word of data is stored per cache line, the silicon overhead oftheand
any other cache metadata is quite high, compared to thelakitea In addition,
the cache will not take advantage of any spatial locality.

Additionally, line size is influenced by the cost of each memipanslation
required to fill, and for write-back caches write out, a catthe. The larger the
cache line, the longer it takes to transfer between main mgamal the cache. The
cost of each memory transaction consists of two factors:ctirestant overhead
of setting up the transaction; as well as the per-word access Current RAM
technologies facilitate burst reads and writes where tiseéaftaccesses the second,
third, etc contiguous word is a fraction of the cost of actegghe initial word.

To reduce the cache overheads for a given cache capacihgsasually store
a collection of contiguously-addressed words. This tephai known assub-
blocking increases the size of each cache line while slightly redu¢he size
of the tag. Larger line sizes combined with good spatial libcaan significantly
reduce the number of memory transactions in the system while fractionally
increasing the cost of each memory transaction.

If spatial locality is low, longer line sizes can lead to essige line fetch over-
heads where only a fraction of the fetched cache line is dgtused. Many modern
systems employ a line size of 4-8 words, balancing out ddatiality and burst
transactions to main memory.

2.1.5 Replacement policy

When a reference misses the cache, a victim entry must betesgli® free up space
to load the missing reference into. The selection of theimi@ntry is known as

“Here word refers to the register size of the processor.
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thereplacement policySome speciality cache organisations generate an exoneptio
on a cache miss, allowing software handleito select the victim and thus leave
the replacement policy up to the operating system. The disddge of software
handlers is that they typically take a longer time to exeeug pollute the caches
with instructions and data needed to execute the handler.

2.1.6 Read v. read/write allocation

Allocation of a reference to a cache entry can happen onredthiead access, or
read and write accesses of the data.

2.1.7 Splitv. unified caches

Cache organisation for data, protection, or translatiom ei¢gher beunified as in
the von Neumann architecturor caches, osplit into separate instruction- and
data-stream caches, such asriadified Harvard architecturéor caches.

Split caches allow for faster processor cores. This is dubedact that any
instruction that accesses the data leads to two memory seesne for the in-
struction word and a second for the data word. By providingasate caches for
instructions and data the accesses can occur in parallel.

The disadvantage of split cache implementations is thenfiatdor inconsis-
tencies to arise between the split caches. These incamsisteoccur when data
already resident in the instruction cache is modified, famegle in self-modifying
cod€ or when an executable is first loaded in from disk. Instrutithat mod-
ify code words will make those modifications through the datehe, creating the
potential for an inconsistency. Split caches also incurgbwer and silicon area
overheads of providing two separately addressed caches.

2.2 Cache coherence issues

One of the main areas of concern in cache design is cacheerw®erAn incoher-
ent cache can lead to incorrect data being accessed or validony being over-
written by stale data. In this section we summarise the @otger problems that
caches suffer from. Later in Sectiéh3 we examine how some coherence issues
are only experienced by particular cache designs, whileeitti®n 3 we examine
the different approaches put forward by the literature teuea cache coherence.

2.2.1 Synonyms

Synonyms, also known as aliases, arise when the same datzessible via sev-
eral distinct addresses. This situation only occurs irugily indexed caches, as
multiple virtual addresses can refer to the same physicahong

®Self-modifying code is becoming more common due tjust-in-time(JIT) anddynamiccom-
pilation.
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Synonyms reduce the effective size of the cache, as wellwssngeecoherence
issues, since a single piece of data can reside in multigleecantries. The reduc-
tion of the effective size, in turn, results in an increassmtalledcapacity misses
i.e. the misses that result from the size of the working-satdplarger than the size
of the cache.

Synonyms lead to two forms of coherence problems. The filseéafrom the
simple fact that the same data can reside in more then one tiaeh The correct
operation of the system may require that future reads semdise¢recently updated
copy of the data. The second problem relates to the cohewnte cache and
main memory. It may be additionally required that the mosendly updated copy
is written back to main memory, while all other copies arealidated to ensure
they do not corrupt valid main memory.

2.2.2 Homonyms

A homonymis an address, which, used in different contexts, refers#fierent data.
Homonyms are a problem unique to virtually indexed, vityutdgged caches (see
Section2.3.4) and are the result of the same virtual address being usatfenet
address-spaces, where the virtual-to-physical transiatiliffer.

2.2.3 Multi-cache coherence

When the same data potentially reside in more than one cachki-cache co-
herence can become a problem. For example, a modified Haavahitecture
processor or where multiple processors, hence cachesymieyed. If the data
is updated in one of the caches, the others may potentiatlyeca stale copy. Al-
ternatively, where write-back caches are employed, maimamg contains a stale
copy of the data. Other caches may then load this stale cofiyeafata from main
memory. In both cases, stale data maybe used. Either the eachitecture itself
or the operating system must take steps to ensure stales@mgieither invalidated
or updated.

2.2.4 Direct memory accesses

Further problems arise from 1/O usirdirect memory acces®MA) with write-
back caches. DMA typically by-passes the caches. Since dséup-to-date copy
resides in the cache and not in main memory, additional steyst be taken to
ensure DMA sees the most recently updated copy.

2.3 Cache indexing and tagging

The focal point of our investigation into cache design is awltaches are in-
dexed and tagged (see Sectidhs.1and2.1.2. For data and instruction caches
of a processor, the index and tag can be based on either phgsiwirtual ad-
dresses. The choice of the index and tag addresses are Imtdepeleading to
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four possible configurations, each of which we shall exanmirtarn. Cekleov and
Dubois [ ) ] explored the issues relating to virtually-addressed each
in the context of single- and multi-processor systems. ftillowing sections
we shall revisit their assessment of the strengths and vesaks of each style of
indexing and tagging.

While initially limiting our survey to first-level data andistruction caches, in
later sections we will examine caches of protection andstedion information.

2.3.1 Physically-indexed, physically-tagged caches

The physically-indexed and -tagged (P/P) cache, commambyk as gohysical
cache has traditionally been favoured by processor designarause it avoids the
problem of synonyms and homonymes.

Virtual Address Virtual Address
| vPN|Offset | | VPN| Offset |
| TLB pym
! —| TLB Cache
| PFN | Offset |
| PFN|| P Tag pata |
P/P
Cache

\—1 I_l J \ J

1 !
Perms Data Hit Perms  Hit Data
(a) Sequential lookup (b) Parallel lookup

Figure 5: Physically-indexed and -tagged cache.

However, physical caches have performance limitationguri€i5 shows the
two common configurations available for physical cacheshE@nfiguration has
its own drawbacks.

In Figure5 (a), the TLB is first used to obtain the physical address wigch
then used to index the cache. The problem with such a configaré that it
either limits the processor’s clock speed (due to the skridd up of the caches) or
requires the TLB and caches to be placed in separate pipghiges, lengthening
the pipeline. Elongation of the processor pipeline add$i¢openalties of control
flow changes like exceptions and mispredicted branchess, rhiturn, can limit
the processor’s performance.
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Figure5 (b) shows how the TLB and a physical cache can be indexed in par
allel, removing any speed or pipelining penalties. In thrasfiguration only the
untranslated offset bits of the virtual address can be usdide index. The trans-
lated physical frame number (PFN) is then compared agaiesplysical address
tag (P Tag) in the cache to validate the access. While thiigroation avoids the
performance problems of the former, the size of the cachenigeld by

W x P

where WV is the associativity of the cache, aftithe minimum page size of the
processor core.

The page sizes and cache associativities employed by mpdmeassors might
suggest that the limitations of the parallel configuratioa iasignificant. How-
ever, one issue Cekleov and Dubois[J974 fail to address is the support for
fine-grained protection or translation, down to sizes sl individual cache
line [Lie96]. In such situations, this size limitation becomes sigatifitc For exam-
ple, assuming a minimum page size of a 64 byte cache line aedassociativity
of 64, the maximum size of the first-level caches is only 4KB.

2.3.2 Virtually-indexed, physically-tagged cache

The virtually-indexed, physically-tagged (V/P) cache la®y enjoyed popularity

in modern processors as the favoured choice for large, gétfiest-level caches.
Since the V/P cache is virtually indexed, the cache and Tld&kug can occur in
parallel, as shown in Figuré. Parallel lookup facilitates cache speed, and since
the index is virtual, the size of the cache is not limited.

However, V/P caches are not without limitations as theyesttiip the synonym
problem. As mentioned in Secti@n2.1, synonyms lead to coherence problems and
reduce the effective size of the cache.

In addition to synonyms, mapping coherence is a problem f6t daches.
When a mapping is modified, the physical tag of the cache lkboesred by the
modified mapping becomes stale. The problem is two-foldtlfjrhe old physical
frame may be reused at a different virtual address, if a s@tbe entry is written
back to main memory it will overwrite the valid data in the sed frame. The
second mapping coherence problem occurs if the cache entrgtiwritten-back
to main memory, leading to the loss of any updates. This tefam the fact that
the update does not yet reside in main memory and any refesénthe cache will
result in a miss, since the cache’s physical tag no longecmeatthephysical page
number(PPN) returned by the TLB. These coherence problems areasnigsue
for write-back caches.

The size limitation really only affects first-level cache€aches further down the hierarchy
are either referenced after the translation step has alreeclrred, or the increased access cost is
acceptable.

14



Virtual Address

| VPN |Offset |

5- Superset i
bits

V/IP
1 TLB Cache

| PFN|| P Tag Ppata |

1

Perms  Hit Data

Figure 6: Virtually-indexed, physically-tagged cache.

2.3.3 Physically-indexed, virtually-tagged cache

A quite unusual cache implementation is the physicallyekadl, virtually-tagged
(P/V) cache employed by the MIPS R6000, see Figurdt overcomes the size
limitations of a physical cache by employing a new transkattache known as
a TLB slice[TDF9(. The majority of the cache’s indices are made up of the
untranslated offset bits while the TLB slice translates alsmumber of VPN bits
into PPN bits making up the remainder of the index.

Since the cache is tagged with the virtual address, a hit eagtetected with-
out translating the complete virtual address. Because amgrtial translation is
needed, the TLB slice can be quite small and fast, impactigrainimally on the
processor’s cycle time. In particular, because the viradalress is used to validate
the access, the TLB slice can be direct-mapped and avoiddatiah tag. If the
entry is incorrect, the cache’s virtual-tag mismatch willlicate a miss.

The original proposal cites two major drawbacks of the TLiBeslapproach.
The firstis the potentially low hit rate of the TLB slice. Thecend is the increased
complexity of a cache miss. A cache miss signifies two pdggsisi

TLB slice miss: In this case the TLB slice contains the incorrect partiahsta-
tion, this is in effect a slice miss masquerading as a cacks.nio validate
this, the full TLB is queried on a cache miss to provide the full translation.
If the slice entry is mismatched, it is updated and the acessd.

Virtual-tag miss: If the TLB slice contains the correct partial translatiohgt
cache’s virtual tag missed. This can signify either a reaheamiss or a

"This access to the main TLB can result in a TLB miss requirifgllaTLB reload.
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Figure 7: Physically-indexed, virtually-tagged cache.

synonym. To address this problem, the cache also contaitysical ad-
dress tag which is compared with the full translation from Th.B. A match
indicates a hit, in which case the cache’s virtual tag is tgmtlawhile no
match is an indication of a full cache miss.

In their assessment of the TLB slice[JF9(, the authors found that while
instruction references showed high TLB slice hit ratesadaferences suffered
from significant misses. The low data hit rate arises fromsthell, direct-mapped
nature of the TLB slice. The authors proposed to use the PéYiecas a second-
level cache shielded by a virtual first-level cache to soheegroblem.

One weakness of the proposal is its failure to address the isEhow protec-
tion is implemented. Two TLB-based approaches could be @yegl

Access full TLB in parallel: By accessing the full TLB in parallel to the cache,
the permission bits can be retrieved in time to validate teess rights to
the cache line. This has the advantage that the physicalaten is already
available during a cache miss. However, such a design esjthie full TLB
to be in the processor’s critical path, negating of the maindiit of the TLB
slice.

Store permissions in TLB slice: At the cost of a significant increase in silicon
real estaté of the slice, but for similar speed and power costs, the permi

8In the R6000's TLB slice, each entry contains 4 PFN bits. UP &xtra bits would be required
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sions can be stored in the TLB slice entry itself. This opi®highlighted
by a dotted line in Figuré.

As we will see later (Sectioh) alternatives to TLB-based protection are also
available.

While the P/V cache paired with a TLB slice overcomes the Bméations
of a physically indexed cache, it has a number of clear drakdathe cost of
cache miss handling blows out, requiring more complex mislter hardware; a
physical tag is stored along with the virtual tag, consunmirage silicon real estate;
and finally, the directly-mapped nature of the TLB slice k#&alpoor hit rates for
data references.

While the above drawbacks are manageable, the issue ofcpooteparticu-
larly fine-grained protection, is not addressed.

2.3.4 Virtually indexed, virtually tagged cache

The virtually-indexed and -tagged (V/V) cache, commonhokn as avirtual
cache has the unique property of allowing both the indexing amgddamparison
of the cache to be completely independent of the TLB (Figre

Virtual Address

| vPN| Offset |
v _T
o VIV
TLB i Tl Cache
:.-: —
\ ; ; y,

PFN Perms Hit Data

Figure 8: Virtually indexed, virtually tagged cache.

A side effect of this organisation is that TLB lookups areyomteded to vali-
date access permissions of the cache reference on a hitt)iHis can be taken a
step further by completely removing the translation steghlighted by the dotted
lines in Figure8) from the processor’s core. This facilitates a single fast arge
cache on the critical path of the proces¥or.

While the removal of the TLB from the processor core has athges (see
Sectiond) it leaves the problem of validating the access rights oféfierence. We

to store permission information in a unified TLB slice, ngatbubling its size.
°For now we are ignoring unified caches v. separate instmittiia caches as the choice has little
effect on the processor’s core.
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will examine alternative approaches to caching proteciidormation in Section
5.

Wilkes and Sears/[/S97 claim that virtual addresses are typically longer then
physical ones leading to longer tags in V/V caches for 64ystems. Longer tags
increase the silicon area of the cache and its power consumyithout increasing
its capacity, a serious drawback. It should be noted, horyvéat this expense
comes at the benefit of potentially faster processor arcthites.

Virtual caches, like V/P caches, suffer from the synonynbfam, and in ad-
dition the homonym problem. The homonym problem is paréidulnasty due to
the fact that, without some hardware support, the only wasffeectively deal with
homonyms is to flush them from the cache on every addres® smantext switch.

An advantage of the V/V cache over the V/P cache is that mgpginsistency
is no longer a problem. This, however, comes at the cost ofdditianal TLB
reference on a cache miss. During a cache miss, if the viatitty @eeds to be
written back to main memory, a TLB lookup must occur to find phgsical write-
back address. An alternative to the additional TLB lookufistore the physical
address in the cache line, facilitating write back withdwé &dditional translation,
albeit at the expense of more silicon real-estate.

As Cekleov and Dubois([D97H note, these drawbacks have prevented virtual
caches from widespread use in modern processors for thecdate. However,
they are often the used for instruction caches and have fowrah attention in the
research community.

3 Handling cache coherency

A large number of approaches have been described in thatliterfor dealing with
the coherence issues outlined in Secttah The aim here is not to investigate them
thoroughly but to summarise the general approaches andlithéations. Many,
but not all, of these are covered i6lD975CD971.

3.1 Synonym avoidance

A number of techniques exist to avoid synonyms altogethistl{z synonyms in
the cache can be avoided by marking them uncachable. Sudtemegchowever,
leads to poor performance where the data is accessed fityguen

Another approach is to handle inter-address-space symoiynilushing the
cache on each address-space context switch. While suclemedias the benefit
of dealing with homonyms as well, it fails to handle intra egl$-space synonyms,
and can lead to poor cache performance and high contexthswitsts for write-
back data cache&\[HOO, WTUHOJ].

Finally, synonyms can be avoided by various alignmentictiins, like ensur-
ing the superset bit8 of the VPN translate to the same way for all synonyms of

1%The superset bits of a V/P cache are those bits of the VPN oded part of the index address,
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any given piece of physical memory. While this somewhatrictstOS memory
management, it otherwise exhibits no run-time costs.

3.2 Asingle global address-space

An effective way of handling synonyms and homonyms in théheas to simply
remove the need for them. This can be achieved by using sesihgibal address-
space to address the cache.

Two basic approaches to realising a single address-spatresaihg of the
cache exist, one software based, the other hardware badesl software-based
approach is that of the single-address-space operatitgnsy{SASOS) CLFL94,
HEV798). In a SASQOS, all applications run in the same address-spmmish-
ing homonyms and removing the need for synonyms. SASOSes\@wo gain
widespread popularity.

The alternative is to provide some form of segmentationWward. Since the
aim is to provide a single address-space view, to the catithissegmentation hard-
ware must be on the critical path of the processor, beforedicbe is indexed. To
this end segmentation provides a per-task/process viehedatger single address
space used to look up the caches. In the following sectionwit@xamine the
different approaches to hardware segmentation mechanisms

3.2.1 Address-space identifiers

The first and simplest form of segmentation is to prepend itiigal address with an
address-space identifier (ASID), producing a unique, dlabdress for the cache
tags. On a cache reference the virtual address is taggedhwithrocessor ASID
register before being presented to the cache (FiQuré\SIDs are used by many
RISC architectures (MIPS, Alpha, SPARC, etc) because af siraplicity.

Global address
ASID | Virtual address

Figure 9: ASID-based global address.

Such a scheme leads to both fast hardware and fast contexhegii as the
additional cost of saving/restoring the ASID register oroatext switch is mini-
mal. Each address space is then a segment of a fixed size \shiwpped into the
cache’s global address-space as shown in FijQre

ASIDs handle the homonym problem by transforming it into asym prob-
lem. This is achieved by taking a context-specific addredstramsforming it into
a unique, global address, by concatenating the ASID witlvittheal address. This

see Figures.
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Figure 10: ASID-based segmentation.

form of segmentation, however, does not remove synonymsatsadhas the un-

fortunate side effect of turning virtual memory referensbared between multiple

address-space contexts into synonyms, generating aslitoherence issues.
For systems where sharing is insignificant, ASIDs provideféactive solution.

suffers. Handling of synonyms remains an issue to be de#itwia an alternative
method.

To deal with the issue of sharing, many processors using ASilpport a
coarse-grained form of sharing, where one special ASICcetgis that the address
is accessible to all address-spaces. While this is usefudderating system con-
structs, it is not sufficiently general for sharing betweeerlevel applications,
without per-context protection.

One approach to overcoming the problem of aliases in ASIEetaystems is
the common-mask schemié [95], where the ASID tag is generalised to be either
an address-space identifier or a kindsbired domain identifiefThe distinction is
made via an additional selector bit in the tag. The procésa@ID register is then
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extended by a shared domain identifier, allowing each peoteaccess a single,
unique ASID and one shared domain. While this approach igmeneral than the
plain ASID approach, once again, it is not general enougmbsapsingle shared
domain is available.

3.2.2 Segment registers

A more general form of segmentation than ASIDs is the segmegjigter approach
employed by such architectures as the PA-RIS&:B], Itanium [Int00] and Pow-
erPC [MISSW94. In this scheme, the most significanbits of the virtual addresses
form an index into a small segment-register file. Each emtpaads to ann-bit
segment number (Seg #), which is prepended to the remainisgithe virtual
address (segment offset) to form the global address as simokigure 11.

Virtual address
| Reg | Seg offset |
|

— 1

[ Seg# [Seg offset

Global cache address

Figure 11: Segment registers.

The advantage of this scheme is that it allows each addrese $p access up
to 2" equally-sized segments. This can be used to remove bothrhyonsoand
synonyms which are at equal offsets from the start of thejnmsants.

The drawbacks, however, should be clear: Firstly the meltgggment reg-
isters add additional address-space context to be switcAdgk tradeoff is: a
smaller number of segment registers, hence smaller corgstxicts the number of
uniquely addressable shared segments; on the other hanehsing the number of
segment registers increases both the silicon area of tleesggegister file and its
associated address-space context. Secondly, only segiiggreéd synonyms be-
tween address-spaces are removed, which severely lingitaghlicability of this
form of segmentation for removing synonyms.

The PA-RISC has 4 segment registers, each either 16- ort82viile to gen-
erate a 48- or 64-bit global address, while the Itanium eggp&region registers
each between 18- and 24-bits to provide up to 85-bits of glatbdress space. The
PowerPC architecture utilises 16 segment registers, e&ddit? wide to generate
a 52-bit global address space. In each of these systemsdhescare physically
addressed, hence the global addresses are used for TLBEp®okily.
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3.2.3 Segment tables

More general than a small, fixed set of segment registergiagh of a generalised
segment tablesuch as that used by the PowerPC 64 architecture\WV94. A
segment table is similar to the page tables found in most moslgstems, but
typically maps larger regions.

While segment tables can support arbitrélsgse, limit)address pairs, in prac-
tice segment sizes are usually limited to large, fixed-sizeders of two. This
greatly simplifies the segmentation hardware.

Similarly to a page table, the segment table needs to be satam every
memory reference. To avoid the multiple memory accessesirastjto lookup
the segment table entry on each memory reference, the PGn&Rarchitecture
employs a segment look-aside buffer (SLB), similar to a Ttd¢cache the most
recently referenced segments. The SLB can be made validsalicaddress-space
contexts by adding an ASID style tag the SLB.

This form of segmentation allows a much more fine-grained@aagh to syn-
onym and homonym management, lower address-space cootxtand makes
wide-spread usage of shared segments practical.

The problem with such an approach, however, is the fact thsitriply sub-
stitutes the TLB with another cache of similar complexityglaoverage, the SLB.
This negates any benefit virtual caches have in allowing b  be removed
from the critical path.

3.2.4 Thoughts regarding segmentation

As we have seen, hardware segmentation approaches care lsyndinyms and
homonyms to varying degrees by remapping the virtual addspace into a single
address space, which is used to address the caches.

The limitation is that, as the techniques provide more gargrpport in han-
dling of synonyms and wide-spread sharing, the hardwamhiad approaches the
complexity of a TLB, adding yet another cache to the proaessdtical path. Ad-
ditionally, only inter address-space synonyms are remowbde synonyms within
the same address-space remain an issue.

3.3 Reverse maps

An alternative approach to remapping virtual addresseseoroving synonyms
is that ofreverse mapsReverse maps work by only allowing a single copy of a
synonym to reside in the cache at any time. To facilitate, #hidirectory of some
sort has to be maintained on the cache-miss path which kesgsdf the active
aliases for each synonyms in the cache.

Cekleov and Dubois}D974 divide reverse maps into two basic implementing
approaches, which are defined below.
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3.3.1 Back-pointers

The easiest implementation of reverse maps is in systents aviecond-level
cache. When a first-level cache miss goes to the seconddaubE, the account-
ing info of the second-level cache line contains the locatibthe first-level cache
entry, if any, that is a synonym of the line that generatedotfiginal miss. If such
a synonym is present, the miss handling hardware loads tieedae from the
first-level synonym, rather than the second-level caches diti synonym is then
invalidated to ensure the uniqueness property in the fisstticache. This extra ac-
counting information is represented byoack-pointeradded to each second-level
cache line. The back-pointer consists of a valid bit and tidress of the line in
the first-level cache, containing the synonym.

For such a scheme to work, the cache organisation must havieltbwing
properties: firstly, the second-level cache must be inetyghat is, if a line resides
in the first-level cache, it must also reside in the secomdtleache; secondly,
synonyms in the second-level cache must be avoided. Thisually facilitated
through the use of a P/P second-level cache.

A bonus of this approach is that if a unified second-level edstused, as is
typically the case, instruction and data cache coherentypeanaintained as well.
Expanding the back-pointer by a single bit allows it to irzdécin which first-level
cache the synonym resides.

The only drawback, besides the requirement of a specific &irscond-level
cache, is that for systems in which software avoids synongnts manages in-
struction/data cache consistency, significant amounttod éardware is needlessly
present.

3.3.2 Dual directories

An alternative to back-pointers is to have a cache dedidatetbring the addresses
cached by the first-level cache lines. Such a cache is knoalaal directory. The
dual directory is usually a P/P cache, which is ideally fidgsociative and has as
many entries as there are active synonyms.

The cost of a dual directory can be reduced by reducing its gizassociativ-
ity. This leads to the possibility of dual-directory missése handling of which
requires a victim entry to be selected and replaced. Thigtien additionally re-
quires the eviction of the first-level cache entry it covergrocess known gsir
eviction Pair eviction can lead to the underutilisation of the fiestel caches.

While a dual directory might seem to be overkill for unipreser systems,
when paired with bus snooping protocols, such an approactpoavide multi-
cache and DMA coherence. It is also worth noting that the disattory is not on
the processors critical path. It is only accessed on eadieoaiss or bus transac-
tions.
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3.3.3 Thoughts regarding reverse maps

Reverse maps employ additional hardware resources todagdbnyms, in gen-
eral by ensuring only a single alias is active at any one timgarticular, reverse
maps can ensure multi-cache and DMA coherence for bus-srpbpsed sys-
tems. In such systems all bus transactions are snoopedhgy die second-level
cache or all the dual-directories. If the address of thes@ation hits in the reverse
map, the respective first-level cache entry is either inzéd (in the case of write
transactions) or used instead of the copy in main memoryladinvalidated (for
read transactions).

A side effect of the reverse map approach is that read-onig daich may
safely reside in multiple caches is forced to reside in, astna single cache
line. This restriction reduces the access performance délyishared read-only
data. Most bus snooping based systems overcome this preidesmnite-updateor
write-invalidateprotocols [Fch94 which allow read-only data to reside in multiple
caches, unlike thaccess-invalidatscheme outlined above. Note that only a single
alias of a synonym may be active per reverse map.

While reverse maps do not lie on the processor critical ghthy, are still fairly
expensive in terms of silicon area and power consumptiorey &tso fail to deal
with homonyms.

3.4 Protection-based approaches

Work with the Mach kernel\[V/B97] demonstrated that a carefully designed ker-
nel could utilise the processor’s virtual memory mechasisonenforce coherence.
Their prototype efficiently managed synonyms as well as rimgpand DMA con-
sistency on a processor with virtually-indexed write-baekhes.

Similar work [WHOO, WTUHO3] has demonstrated that such protection-based
approaches can, together with careful address-spacet/ay@mage homonyms
effectively. This technique attempts to lay out all proesswithout overlap in the
address space, similar to a SASOS, handling any unremoveinienyms with
virtual memory protection mechanisms.

3.5 Multi-cache coherence of virtual caches

Many coherent multi-cache systems that employ virtual ea¢hg each cache line
with a physical address, in order to ensure multi-cache revive as well as poten-
tially handle synonyms. An example of such a system is theFSR{UE\VW 85,
which went as far as broadcasting both the virtual and physiddresses on the
system bus. The problem with such approaches is the inctesiléeon area of
the cache, as well as the expense of increased bus tramsactlo also intro-
duces the mapping consistency problem (Sectiénh?), which V/P caches suffer
from [CD974.

The motivation for such approaches is the P/P nature of tla ditectories
used for cache coherence. However, a dual directory maly isedmplemented
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as a V/V cache, providing multi-cache coherency based dunalinddresses. Such
systems require only virtual addresses to be published ersyltem bus. The
drawback is the dual directory no longer manages synonymigsg\problematic
side effect is that each addressable device on the bus ntlist bBe mapped to a
fixed location in the virtual address space, or have some dfrichnslation func-
tionality.

3.6 Alternative synonym handling approaches

There is an abundant amount of literature covering hardwerkniques to man-
age synonyms in virtually address caches, for further egfees see Cekleov and
Dubois’s survey CD975CD971.

3.7 Coherence for network-based interconnects

The use of virtual addresses in network interconnected ifprdtessor, multi-
cache architectures is a more recent area of research (sgerSe2). While this
is clearly tied into the future direction of this work, it i®yond the scope of this
report and will have to be revisited later.

4 Translation

Section3 introduced address translation, the process of deriviegpthysical ad-

dresses (PA) used to access main memory, from progranievigittual addresses
(VA). We have already seen that the cache architecturerdeties where this step
occurs in the processor. In this section we will outline tlesign of conventional
translation architectures, namely the TLB, and examing& f®perties in rela-

tion to the cache design issues we have explored. While dlatbt@nalysis of

alternative translation architectures is beyond the sadphis investigation, we
will outline some of the alternatives to TLB-based trarislatand attempt to draw
some conclusions from this.

4.1 Translation look-aside buffers

Before examining the alternatives, let us take a close loskme of the properties
of modern TLB design. Typically, the TLB is on the processattitical path,
translatingl’ A — P A in parallel to the first-level cache indexing. On physically
tagged cache architectures, the resolving TLB entry is tsgdlidate both the tag
and the access rights, while on virtually tagged ones the iELdmply referenced
to validate access rights on a cache hit.

Some key points to note about the design of conventional TarBsexplored
in the following sections.
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4.1.1 Homonyms

The TLB is avirtual cache, hence it suffers from synonymstamdonyms. Homo-
nyms in the TLB arise from address-space switches. Typiddley are dealt with
via some form of hardware segmentation, ASIDs, segmenstergi, etc. Some ar-
chitectures, like the x861jit02], provide little or no hardware support for handling
TLB homonyms, so the operating system must either invadida¢ TLB on each
context switch, or alternatively, the hardware has to flimnt when the register
containing the page table pointer is modified. The leads terpg@al performance
problems.

4.1.2 Synonyms and coherence

If a page is shared, multiple TLB entries will be used to maf@lese synonyms
in the TLB lead to mapping consistency issues. If a sharedpimgps unmapped
or remapped, multiple TLB entries potentially cover the miag. All of these
may have to be invalidated or updated, for example when adfiampreempted and
reused.

Furthermore, TLBs suffer multi-cache coherence issuegaino those of data
caches. For example, if an address-space has run on myltg@essors and a page
is unmapped or remapped, the system must ensure that TLiBseofrall proces-
sors potentially covering the mapping are invalidated ataipd. Typically, hard-
ware does not ensure TLB coherence, so operating systemaseftnust ensure
it through techniques such as TLB shootdovitiR[> 89 where each processor
potentially mapping the effected page is interrupted aaliiest until all processors
have updated their TLBs.

4.1.3 Mixed page-size support

The inadequate coverage of modern TLBs has been highligiyeseéveral studies
[CBJ9ZHHI93 Tal95 KS07. One approach to improving the coverage of the TLB
is to support a number of different page sizes, allowing th®& To map more
physical memory without increasing the number of entriehenTLB [TKHP97.

This issue of support for mixed page sizes is of particulserast, as it high-
lights one of the main limitations of modern TLB design. Tallet al. [TKHP97
show that support for more then two page sizes is generaliiitéaed via the use
of fully-associative TLBs. In such organisations, the emttaddressable-memory
(CAM) cell of the TLB utilises the size mask of the entry to tkhasit the relevant
bits of the virtual address before the tag match is performed

The limitation of such an organisation is that the TLB'’s sigeestricted due
to its fully-associative nature. Increasing the numberrdfies in the TLB has a
detrimental effect on its size, power consumption and spdedhelp solve this
problem, the TLB either needs to be removed from the the gsmrecore or have
its associativity lowered. The latter makes support fortipld page sizes trouble-
some.
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4.2 Off-core TLBs

The first alternative to having the TLB on the processors,darewn as ammn-core
TLB, is to move the TLB from the processor to a place further ddvembemory hi-
erarchy. A particularly interesting approach cited by @eki and DuboisCD97]
is that of in-memory translationE19(] in which the TLB is pushed right down to
main memory, and virtual addresses are used on the main rgéoasr

Such an approach not only removes the TLB from the criticéth,p@asing the
constraints on its size, power and speed, it also elimindwesTLB consistency
problem, even with DMA. Cekleov and Dubois claim:

A virtual-address bus combined with virtually addressednoe banks
is a very attractive design point for cache-based multipssors that
has not been fully explored.

Some recent approaches in the literature are even examihégpplicabil-
ity of utilising virtual addressing in network-intercorcted, multi-cache systems

[QD98 QDO1.

4.3 Eliminating the TLB

An alternative approach is to eliminate the TLB altogetfi@ro methods for elim-
inating the TLB stand out in the literature, which we will exime briefly.

4.3.1 In-cache translation

The first steps towards eliminating the TLB where made by tR&JB worksta-
tion’s in-cache translatiormechanism\[VEG' 86], in which the processor’s first-
level cache is used for data, as well as translation infaonat

In the SPUR, a cache miss is handled by first applying the naideeas to a
hardware translation walker. This walker then traversegeeatchical page table
in-cache. The walker can generate recursive cache misseshgroot of the page
table, whose physical address is stored in a special procesgister.

SPUR’s in-cache translation mechanism overcomes man\edirtitations of
conventional TLBs. Because the SPUR provides multi-cadhermncy, transla-
tion coherency is a side effect; and translation coveraglynsmically traded off
with data coverage. Since a cache line is typically muchéotigen a single trans-
lation entry, in-cache translations automatically pregdsub-blocking TH94],
where a single entry stores multiple translations.

However, such an approach is not without its drawbacks. ¥amgle, without
a fully-associative first-level cache, support for mixed@aizes is problematic.

4.3.2 Software managed translation

A particularly novel approach to translation is thatsafftware-managed address
translation[JMO01], in which cache misses raise an exception and are handled by
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software. The arguments for such an approach:

Replacement policy: The caches replacement policy is totally in control of the
operating system, allowing working set profiling and manatece. Such
control can potentially lead to higher hit rates and moredaife cache util-
isation.

Increased page table flexibility: By minimising the hardware constraints on page
table structure, more efficient support for large and spadiress-spaces,
super-paging becomes possible. Fine-grained transldtam to the granu-
larity of a single cache line also becomes a possibility.

However, such an approach is limited by its impact on the andtfrequency
of cache misses. In particular, the cache-miss-exceptmaller must be fast, and
a large second-level cache is required to offset the ineceasiss penalty with a
lower miss rate. Additionally, some mechanism must be al#lto pin part of the
exception handling code into the cache.

4.4 Thoughts regarding translation

All of the above approaches to removing the TLB from the pssoe core employ
virtual caches. However, such systems leave the issueidbtialg access permis-
sions for first-level cache references unresolved. The SRafRxample, utilised
four segment registers to restrict access, while Jacob amthkls software trans-
lation scheme use PowerPC segments in a similar way. Theg®dsefacilitate
only coarse-grained protection.

These schemes will work well if we can de-couple protectind anslation.
The challenge is then to provide some kind of access righteecéhat exhibits
more effective coverage than an on-core TLB, while enabfiraye fine-grained
protection.

5 Protection

We conclude our survey with an examination of the differgpraaches to protec-
tion in architectures where translation has been remowad the processor core.
Our aim is to discover an approach which is cheaper, smatidrfaster than a
conventional TLB, while providing better coverage and nitegible protection.

5.1 In-cache access rights

In their study of software-managed translation, Jacob anddé [JM01] proposed
to provide protection down to a single cache line by storimg protection bits in
the cache line itself.
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While an attractive idea, such a scheme suffers from two m@joblems.
Firstly, protection updates are potentially very expeasis a protection update
covers from zero to all cache lines, each cache line mustd®saed and updated.

The second issue relates to fine-grained per-context gimtedrotection bits
in the cache provide no mechanism for sharing a cache linedeet separate ad-
dress spaces with different access rights. As mentiondiedacob and Mudge
provided per-address-space protection through the udeed?owerPC segmenta-
tion mechanisms. Such an approach, while allowing finengihiprotection on a
global basis, still provides only course-grained protatibn a per-context basis.

5.2 Segmentation-based protection

Access rights can be supplied by hardware segmentationgedsawe seen from
some of the above systems. However, the same problemsfidériti Section3.2
come into play, basically that segmentation-based appesaeither lacks flexibil-
ity or performance. Segmentation-based access rightsdmtiier be too course-
grained or would result in hardware of similar complexitydaaxpense to that of a
conventional TLB.

5.3 Protection look-aside buffer

In order to facilitate the use of virtual-cache architeetuwith support for per-page
and per-domain access rights, Koldinger el EIC[E97 put forward the proposal
of a protection look-aside buffer (PLB). The design of theBRS& identical to that
of a conventional TLB, except that the physical-address gfagach PLB entry is
dropped. This leads to cache organisation as depicted imé-i. The PLB was
put forward as a suitable protection architecture for pssoes aimed at SASOSes.

Virtual Address

| Address |

PLB

1 1

Perms Hit Data

Figure 12: PLB-based cache organisation.

Such an approach has several advantages over a conveftidiased archi-
tecture. Firstly, the use of a PLB completely decouplesgutain from translation,
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allowing the employment of an arbitrarily small protectipage size at the cost
of reduced coverage. The selection of the minimum page sizerbtection is
completely independent from the translation techniquegleyed by the system.

The PLB, like its cousin, the TLB, can also increase its cagerby providing
support for mixed protection-page sizes. In addition, wtign of virtual address-
space regions to different protection page sizes avoidgriitdems associated with
migrating to different translation page size. In particutaigrating from a smaller
to a larger page does not require the allocation of largeigoatis areas of physical
memory and resulting copying of data.

The main point to note at this stage is that the PLB will sufierilar coverage
problems as a conventional TLB. Mixed page sizes will rezjfilll associativity,
limiting the PLB’s size, while supporting a single size insps a hard limit on
the granularity of protection, requiring a hardware demisto be made for the
granularity v. coverage tradeoff.

Some other advantages cited by Koldinger’'s proposal ircthe reduced sil-
icon of the PLB v. a TLB of the same coverage, as well as supiporshared
memory. Wilkes and Sears provide a critical qualitative panson of the PLB ap-
proach to the protection architecture employed by HP's REAR[\WS97. While
this report presents some questionable comparisons,dgh@iments regarding the
comparative sizes of virtually-addressed v. physicatligrassed tags merit atten-
tion.

Although the PLB itself requires a smaller silicon area tharequivalent TLB,
the use of a virtual cache will result typically in larger bactags which has a
detrimental effect the silicon area, power consumptionspekd of the cache.

While this is qualitatively clear, only quantitative simatibn results can truly
evaluate its effects. For example, modern processors sufgrger and larger
physical address spaces, reducing the effects of virtughysical tags for the
cache.

5.3.1 Range PLB

An interesting extension to the PLB design is that of thage PLB(RPLB)
[SM99, which, in addition to access rights, provides protectdmmain rights,
facilitating potentially light-weight protection domagontext switches. The in-
herent complexity of the RPLB raises serious doubts abauptssibility of de-
signing an RPLB suitable for a processor with a very highklate, and Skousen
and Miller's simulations do not alleviate this fear.

5.4 Protection keys

It seems fairly clear that Intel's new Itaniurm{00] architecture’sprotection-keys
are based on Wilkes and Sears’s critique of the PLB v. the HHRFBC protection
architecture [VS97. The organisation of the Itanium’s caches is outlined uFe

13.
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Figure 13: Itanium cache organisation.

In Itaniumt?, TLB entries are tagged with a protection key which is used to
index into a set oprotection-key registerKR). The PKR is a software-managed,
fully-associative cache with no context-specific tags. @fipular note is its small
size relative to the number of protection keys, only 16 estan the first generation
Itanium-I processors, compared to thé supported protection-keys.

Because the PKR is indexed after a TLB lookup, the TLB and P&dRUps
are serialised, requiring the accumulative time of bottkigas to be achievable in
a single clock cycle or for them to be pipelined. On a hit, thi&éRRentries access
rights are AND-ed with the access rights stored in the TLByenBecause the
PKR entry only conveys access rights, the cache lookup isleppéndent on the
PKR lookup. Invalid accesses can then be aborted in theipgpstage after the
relevant memory access stage.

The small size of the PKR could be influenced by the followiagign choices:
firstly, the choice of a fully-associative cache inheretitlyits its size and speed;
secondly, the lack of context-specific tags means the PKR baugwalidated or
saved on every context switch, leading to additional ovadlke Neither of these
are inherent limitations of the protection key approach.

The benefits of Itanium’s protection keys lie in the fact ttiety facilitate a
partial de-coupling of protection and translation, whila@imaining a small tag
size. This approach has a few drawbacks, some general tgreaeh, others
specific to this particular implementation.

Because the protection keys tag TLB entries, the TLB is atilicore, leading
to the problems we have discussed previously. Some adalifiwablems also exist

"The size and associativity of the first-level caches on theilim-1/2 indicate that they are P/P.
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which we will discuss.

While the protection keys partially decouple protectiom aranslation, there
is still a strong link between them, in particular, the minim protection granu-
larity is that of a single TLB entry. This is obviously not &able for fine-grained
protection.

In addition, no hardware support is provided for retaggird3Tentries with
new protection-keys when a protection object is split uthalgh software tech-
nigues can achieve this at the cost of more complex key mameagte

All of this comes at the cost of yet another cache on the pemreasore!

5.5 Thoughts regarding protection

Wilkes and Sears/[/S97 make an interesting statement that has formed much of
the motivation of this exploration.

The intellectual attractiveness of associating per-pagmary access
rights with the process is undeniable: it is a very simpleightfor-
ward model. Unfortunately, it is potentially expensive toplement,
and the real issues arise in determining what to compromigaple-
menting an efficient approximation to it.

The problem is that all the protection architectures presgbhere make arch-
itecture-level compromises. None provide an architectunech allows operating
system policies to control the various trade-offs. Whiltdicy-free architectures
are impractical, it is never-the-less a worthy aim to try teslp policy decisions
from the hardware into the system software.

If we focus our attention on the PLB and Itanium protecti@y-lapproaches,
we can highlight these architectural-level compromises.

The PLB, while de-coupling protection from translatiorsutts in hardware of
similar power, size and speed constraints as that of a ctiowah TLB. The de-
coupling, however, presents the hardware designer withréukeoff of protection
granularity v. coverage.

The Itanium protection-key approach presents a differenmtipromise, one of
protection-object coverage v. context-switch costs. Addally, this approach
fails to deliver true de-coupling of protection and tratisia or fine-grained pro-
tection, because protection-keys are still tied to thefgmgrained) TLB.

6 Conclusions and future work

This study illustrates some of the many interactions betweehes of data, trans-
lation and protection information. In particular it hashiighted that virtual caches,
combined with a fast and flexible protection cache and arcafé translation
scheme, are an attractive basis for faster and lower-powarepsor cores with
support for fine-grained protection.
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Out of the architectures surveyed only the PLB-based anegtion-key-based
ones approach approach the properties desirable for feiaegt protection. How-
ever, neither approach would appear to scale well, as the iRtddves the same
trade-offs as a TLB, while protection keys are coupled toTh®, keeping the
TLB on-core.

If we look at the PLB and protection-key architectures, wd irmix of the de-
sired properties. Hence, we define a basis for an alternpttection architecture
incorporating aspects from both, see Figli¥e In this organisation we associate
the nameof the object being protected with the cacheline that itdesiin. This
name is then is then concatenated with a context identifitmméddoeing used to
index a protection-key cache (PKC), where the access ragbtstored.

Virtual Address

| Address |
‘l’:l—

VIV
Cache

v
PKC

. J/

1 1

Hit Perms Data

Figure 14: Alternative protection architecture.

The PKC architecture allows per-context protection attels to be associated
with data down to the granularity of a single cacheline. kimkhe PLB, the PKC
need not be fully associative, as mixed page-sizes are gaireel. Hence, the
PKC should scale better then a PLB.

A number of questions remain to be answered though. Whild’th€ may
provide the the key to fast cores, where and how déds— objectname trans-
lation occur? How can sub-cacheline object names be stdfieieetly in the
caches? Given the ability to remove the TLB from the core, tvettlress trans-
lation method is most appropriate to replace it? Can synengnd homonyms
be effectively managed or even removed by software, or isssfomm of hardware
support preferential? And how can the virtual address sfmaoethe basis of cache
coherence across network-based interconnects?

Finally, how can an operating system kernel most effegtiegploit and export
these hardware mechanisms, allowing performance traslémtbe made by high-
level user policies?
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Some of these questions are currently being explored in wgtovide fine-
grained protection through a PKC-based mechanigriV/[l HO3]. Future work
will aim at bringing these protection techniques togethihwew coherence tech-
niques for virtually-addressed caches in multiprocesgsiesns, exploring the new
applications of fast and flexible protection made possiglsuzh architectures.
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