Overview

• Bitcoin overview
• Distributed ledger
• Consensus
• Blockchain generalised
• Limitations

Bitcoin

• Satoshi Nakamoto
 • Oct 2008: Bitcoin: A Peer-to-Peer Electronic Cash System
 • 2009 open source software
• Peer-to-peer digital cryptocurrency (e-cash)
 • anonymous, irreversible transactions
 • goals: privacy, scalability (throughput), decentralisation
 • previous e-cash systems: centralised
 • challenges: protocol updates, robustness of overlay network, incentives

Bitcoin Example

Alice → Bob → Carol
• We need:
 • Identity
 • use public keys
 • Transaction
 • public key Alice sends X coins to public key Bob
 • Ledger of Transactions
 • global list, contains history of all transactions
 • transactions validated before adding
 • ledger is immutable
Threats

- Integrity
 - Spend money you don’t have
 - create bitcoins
 - add a transaction for someone else
- Availability
 - Prevent a user from entering any transactions in ledger
- Confidentiality
 - Break anonymity, identify links between different identities

Blockchain

- Transactions signed -> can’t forge
- Hash pointers -> immutability
- Represents Ledger -> validate transaction before adding it

Distributed Ledger
Threats: Distributed Ledger

- Integrity
- Double spend
 - Bob’s ledger contains Alice -> Bob
 - others contain Alice -> Alice’
- Honest nodes vs dishonest nodes

Proof of Work

- How does everyone agree on the ‘random’ node?
- Do a bunch of work, whoever finishes first gets to go
- Work: hash puzzle. Find nonce such that
 - \(H(\text{nonce} + \text{prev hash} + \text{mrkl_root}) < \text{target} \)
 - target set so that on avg a nonce found every 10 minutes
- Unlikely that >1 node will find a nonce at same time

Consensus

- New transactions broadcast to all nodes
- Random node:
 - collects transactions it received into block
 - broadcasts its block
- Other nodes:
 - validate transactions in block
 - add block to their copy of the blockchain

Transaction Details

- meta data
 - hash id of transaction
 - # inputs, # outputs
- inputs: array of input records
 - input TxID & index
 - ScriptSig: sig (Tx hash signed with Tx creator privkey), pubkey (of Tx creator)
- outputs: array of output records
 - value
 - ScriptPubKey: contains dest pubkey hash
Checking Transaction

• Check T2:
 • T1:HPB = H(T2:PB) => PBs match
 • PB(sigB) = H(T2) => T2 creator has SB

Incentive: Mining Bitcoins

• Create new bitcoins every time a block added to chain
• halve number of bitcoins every 4 years
• limited total number of bitcoins
• Transaction fee for every transaction processed

Network Details

• P2P network
• Joining network
 • seed node
 • get peer info
• Flooding

Mining Details

• Every block has coinbase transaction
 • 15 BTC
 • all transaction fees (inputs - outputs) for block
• coinbase field: arbitrary data
• output: to miner

• Receive transaction:
 • validate inputs
 • check if input already spent
 • check if transaction already seen
 • check if valid scripts (whitelist)
Defence Against Threats

- Steal bitcoin: Bob creates transaction Alice -> Bob
 - signature and keys
- Forge bitcoin: Bob creates a transaction Null -> Bob
 - invalid transaction
- DoS identity: refuse to add any of Bob’s transactions to chain
 - honest nodes will add transaction, need majority of honest nodes

Defense Against Threats

- Double spend: Alice creates a transaction Alice -> Bob, then replaces it with Alice -> Alice’
 - wait until several blocks added so transaction is ‘safe’
 - unlikely that malicious node can add enough fraudulent blocks.
 - needs to create fraudulent chain longer than good chain
 - has to re-mine X fraudulent blocks faster than good nodes can mine single new blocks
 - unless >= 51% of nodes

altcoins

- Ethereum
 - blockchain-based platform
- Ethereum VM, Smartcontracts
- Zcash
- *coin
- Differences:
 - proof of stake
 - zero-knowledge proofs

Generalising Blockchain

- Blockchain is a distributed database
- What can you do with a public distributed database?
 - DNS, identity management, track physical assets, authorisation
 - Smart Contracts
Limitations

- Low throughput
 - bitcoin: 7 transactions/sec
 - credit card: 2000 transactions/sec
- Latency
 - bitcoin: 10 min to process a block
 - credit card: seconds

Reading List

- Bitcoin: A Peer-to-Peer Electronic Cash System. Satoshi Nakamoto
- Lots of articles, blogs, forums, videos, software
- https://blockchain.info: view the blockchain