Distributed Systems (COMP9243)

Lecture 4: Synchronisation and Coordination
(Part 1)

1. Distributed Algorithms
2. Time and Clocks
3. Global State
4. Concurrency Control

Distributed Algorithms
Algorithms that are intended to work in a distributed environment

Distributed Algorithms

Used to accomplish tasks such as:
- Communication
- Accessing resources
- Allocating resources
- Consensus
- etc.

Synchronisation and coordination inextricably linked to distributed algorithms
- Achieved using distributed algorithms
- Required by distributed algorithms

Synchronous vs Asynchronous Distributed Systems
Timing model of a distributed system

Synchronous Distributed System:
- Time variance is bounded
- Execution: bounded execution speed and time
- Communication: bounded transmission delay
- Clocks: bounded clock drift (and differences in clocks)
- Effect:
 - Can rely on timeouts to detect failure
 - Easier to design distributed algorithms
 - Very restrictive requirements
 - Limit concurrent processes per processor Why?
 - Limit concurrent use of network Why?
 - Require precise clocks and synchronisation

Synchronous vs Asynchronous Distributed Systems

- Affected by:
 - Execution speed/time of processes
 - Communication delay
 - Clocks & clock drift
Asynchronous Distributed System:
Time variance is not bounded

Execution: different steps can have varying duration
Communication: transmission delays vary widely
Clocks: arbitrary clock drift

Effect:
- Allows no assumption about time intervals
- Cannot rely on timeouts to detect failure
- Most asynch DS problems hard to solve
- Solution for asynch DS is also a solution for synch DS
- Most real distributed systems are hybrid synch and asynch

EVALUATING DISTRIBUTED ALGORITHMS

Key Properties:
1. Safety: Nothing bad happens
2. Liveness: Something good eventually happens

General Properties:
- Performance
 - number of messages exchanged
 - response/wait time
 - delay, throughput: \(1/(delay + executiontime)\)
 - complexity: \(O()\)
- Efficiency
 - resource usage: memory, CPU, etc.
- Scalability
- Reliability
 - number of points of failure (low is good)

SYNCHRONISATION AND COORDINATION

Important:

Doing the right thing at the right time.

Two fundamental issues:
- Coordination (the right thing)
- Synchronisation (the right time)

COORDINATION

Coordinate actions and agree on values.

Coordinate Actions:
- What actions will occur
- Who will perform actions

Agree on Values:
- Agree on global value
- Agree on environment
- Agree on state
Synchronisation

Ordering of all actions
- Total ordering of events
- Total ordering of instructions
- Total ordering of communication
- Ordering of access to resources
- Requires some concept of time

Main Issues

Time and Clocks: synchronising clocks and using time in distributed algorithms

Global State: how to acquire knowledge of the system’s global state

Concurrency Control: coordinating concurrent access to resources

Time

Global Time:
- ‘Absolute’ time
 - Einstein says no absolute time
 - Absolute enough for our purposes
- Astronomical time
 - Based on earth’s rotation
 - Not stable
- International Atomic Time (IAT)
 - Based on oscillations of Cesium-133
- Coordinated Universal Time (UTC)
 - Leap seconds
 - Signals broadcast over the world
Local Time:
- Relative not ‘absolute’
- Not synchronised to Global source

Using Clocks in Computers
- Timestamps:
 - Used to denote at which time an event occurred
- Synchronisation Using Clocks:
 - Performing events at an exact time (turn lights on/off, lock/unlock gates)
 - Logging of events (for security, for profiling, for debugging)
 - Tracking (tracking a moving object with separate cameras)
 - Make (edit on one computer build on another)
 - Ordering messages

Physical Clocks
- Based on actual time:
 - $C_p(t)$: current time (at UTC time t) on machine p
 - Ideally $C_p(t) = t$
 - \times Clock differences causes clocks to drift
 - Must regularly synchronise with UTC
- Computer Clocks:
 - Crystal oscillates at known frequency
 - Oscillations cause timer interrupts
 - Timer interrupts update clock
- Clock Skew:
 - Crystals in different computers run at slightly different rates
 - Clocks get out of sync
 - Skew: instantaneous difference
 - Drift: rate of change of skew
Synchronising Physical Clocks

Internal Synchronisation:
- Clocks synchronise locally
- Only synchronised with each other

External Synchronisation:
- Clocks synchronise to an external time source
- Synchronise with UTC every δ seconds

Time Server:
- Server that has the correct time
- Server that calculates the correct time

Cristian’s Algorithm

Time Server:
- Has UTC receiver
- Passive

Algorithm:
- Clients periodically request the time
- Don’t set time backward Why not?
- Take propagation and interrupt handling delay into account
 - \((T_f - T_0)/2\)
 - Or take a series of measurements and average the delay
- Accuracy: 1-10 millisec (RTT in LAN)

What is a drawback of this approach?

Berkeley Algorithm

Accuracy: 20-25 milliseconds

When is this useful?

Network Time Protocol (NTP)

Hierarchy of Servers:
- Primary Server: has UTC clock
- Secondary Server: connected to primary
- etc.

Synchronisation Modes:

- **Multicast:** for LAN, low accuracy
- **Procedure Call:** clients poll, reasonable accuracy
- **Symmetric:** Between peer servers, highest accuracy

Synchronisation:
- Estimate clock offsets and transmission delays between two nodes
- Keep estimates for past communication
- Choose offset estimate for lowest transmission delay
- Also determine unreliable servers
- Accuracy 1 - 50 msec

Logical Clocks

Event ordering is more important than physical time:
- Events (e.g., state changes) in a single process are ordered
- Processes need to agree on ordering of causally related events (e.g., message send and receive)

Local ordering:
- System consists of N processes $p_i, i \in \{1, \ldots, N\}$
- Local event ordering \rightarrow: p_i observes e before e', we have $e \rightarrow e'$

Global ordering:
- Leslie Lamport’s happened before relation \rightarrow
- Smallest relation, such that
 1. $e \rightarrow e'$ implies $e \rightarrow e''$
 2. For every message m, $send(m) \rightarrow receive(m)$
 3. Transitivity: $e \rightarrow e'$ and $e' \rightarrow e''$ implies $e \rightarrow e''$

The relation \rightarrow is a partial order:
- If $a \rightarrow b$, then a causally affects b
- We consider unordered events to be concurrent:

Example:
- $a \not\rightarrow b$ and $b \not\rightarrow a$ implies $a \parallel b$

Causally related: $E_{11}, E_{12}, E_{13}, E_{14}, E_{21}, E_{22}, E_{23}, E_{24}, \ldots$
- Concurrent: $E_{11} \parallel E_{21}, E_{12} \parallel E_{22}, E_{13} \parallel E_{23}, E_{14} \parallel E_{24}, E_{11} \parallel E_{21}, E_{12} \parallel E_{22}, E_{13} \parallel E_{23}, E_{14} \parallel E_{24}, \ldots$

Comments about his papers: Google: lamport my writings
Lamport’s logical clocks:
- Software counter to locally compute the happened-before relation →
- Each process p_i maintains a logical clock L_i
- Lamport timestamp:
 - $L_i(e)$: timestamp of event e at p_i
 - $L(e)$: timestamp of event e at process it occurred at

Implementation:
1. Before timestamping a local event p_i, executes $L_i := L_i + 1$
2. Whenever a message m is sent from p_i to p_j:
 - p_j receives L_i with m and executes $L_j := \max(L_j, L_i) + 1$
 - ($\text{receive}(m)$ is annotated with the new L_j)

Properties:
- $a \rightarrow b$ implies $L(a) < L(b)$
- $L(a) < L(b)$ does not necessarily imply $a \rightarrow b$

Example:

How can we order E_{13} and E_{23}?

Total event ordering:
- Complete partial to total order by including process identifiers
- Given local time stamps $L_i(e)$ and $L_j(e')$, we define global time stamps $(L_i(e), i)$ and $(L_j(e'), j)$

Lexicographical ordering: $(L_i(e), i) < (L_j(e'), j)$ if
- $L_i(e) < L_j(e')$ or
- $L_i(e) = L_j(e')$ and $i < j$

$E_{13} = 3, E_{24} = 4$. Did E_{13} happen before E_{24}?

Vector Clocks

Main shortcoming of Lamport’s clocks:
- $L(a) < L(b)$ does not imply $a \rightarrow b$
- We cannot deduce causal dependencies from time stamps:

We have $L_i(E_{11}) < L_j(E_{33})$, but $E_{11} \not\rightarrow E_{33}$
- Why?
 - Clocks advance independently or via messages
 - There is no history as to where advances come from
Vector clocks:
- At each process, maintain a clock for every other process
- i.e., each clock \(V_i \) is a vector of size \(N \)
- \(V_i[j] \) contains \(i \)'s knowledge about \(j \)'s clock
- Events are timestamped with a vector

Implementation:
1. Initially, \(V_i[j] := 0 \) for \(i, j \in \{1, \ldots, N\} \)
2. Before \(p_i \) timestamps an event: \(V_i[i] := V_i[i] + 1 \)
3. Whenever a message \(m \) is sent from \(p_i \) to \(p_j \):
 - \(p_i \) executes \(V_i[i] := V_i[i] + 1 \) and sends \(V_i \) with \(m \)
 - \(p_j \) receives \(V_i \) with \(m \) and merges the vector clocks \(V_i \) and \(V_j \):
 \[
 V_j[k] := \begin{cases}
 \max(V_j[k], V_i[k]) + 1 & \text{if } j = k \\
 \max(V_j[k], V_i[k]) & \text{otherwise}
 \end{cases}
 \]

Properties:
- For all \(i, j \), \(V_i[j] \geq V_j[j] \)
- \(a \rightarrow b \) if \(V(a) < V(b) \) where
 - \(V = V^i \) if \(V_i[i] = V'[i] \) for \(i \in \{1, \ldots, N\} \)
 - \(V \geq V^i \) if \(V_i[i] \geq V'[i] \) for \(i \in \{1, \ldots, N\} \)
 - \(V > V^i \) \(\text{iff } V \geq V' \land V' \neq V' \)
 - \(V \parallel V^i \) \(\text{iff } V \not\geq V' \land V' \not\geq V \)

Example:
- For \(L_1(E_{12}) \) and \(L_1(E_{23}) \), \(2 = 2 \) versus \((0, 0, 0) \neq (0, 0, 2) \)

Determining global properties:
- Distributed garbage collection: Do any references exist to a given object?
- Distributed deadlock detection: Do processes wait in a cycle for each other?
- Distributed termination detection: Did a set of processes cease all activity? (Consider messages in transit?)
- Distributed checkpoint: What is a correct state of the system to save?
CONSISTENT CUTS

Determining global properties:
- We need to combine information from multiple nodes.
- Without global time, how do we know whether collected local information is consistent?
- Local state sampled at arbitrary points in time surely is not consistent.
- We need a criterion for what constitutes a globally consistent collection of local information.

Local history:
- \(N \) processes \(p_i, i \in \{1, \ldots, N\} \)
- For each \(p_i \),
 - event: \(e_j^i \) local action or communication
 - history: \(h_k^i = (e_0^i, e_1^i, \ldots, e_k^i) \)
 - May be finite or infinite

Process state:
- \(s_k^i \): state of process \(p_i \) immediately before event \(e_k^i \)
- \(s_k^i \) records all events included in the history \(h_{k-1}^i \)
- Hence, \(s_0^i \) refers to \(p_i \)'s initial state.

Global history and state:
- Using a total event ordering, we can merge all local histories into a global history:
 \[H = \bigcup_{i=1}^N h_i \]
- Similarly, we can combine a set of local states \(s_1, \ldots, s_N \) into a global state:
 \[S = (s_1, \ldots, s_N) \]
- Which combination of local state is consistent?

Cuts:
- Similar to the global history, we can define cuts based on \(k \)-prefixes:
 \[C = \bigcup_{i=1}^N h_k^i \]
- \(h_k^i \) is history of \(p_i \) up to and including event \(e_k^i \)
- The cut \(C \) corresponds to the state
 \[S = (s_1^{k+1}, \ldots, s_N^{k+1}) \]
- The final events in a cut are its frontier:
 \[\{ e_{k+1}^i \mid i \in \{1, \ldots, N\} \} \]
Consistent cut:

- We call a cut **consistent** iff,

 \[\text{for all events } e' \in C, e \rightarrow e' \text{ implies } e \in C \]

- A global state is consistent if it corresponds to a consistent cut

- Note: we can characterise the execution of a system as a sequence of consistent global states

 \[S_0 \rightarrow S_1 \rightarrow S_2 \rightarrow \cdots \]

Linearisation:

- A global history that is consistent with the happened-before relation \(\rightarrow \) is also called a **linearisation** or **consistent run**

- A linearisation only passes through consistent global states

- A state \(S' \) is **reachable** from state \(S \) if there is a linearisation that passes thorough \(S \) and then \(S' \)

Outline of the algorithm:

1. One process initiates the algorithm by
 - recording its local state and
 - sending a **marker message** over each outgoing channel

2. On receipt of a marker message over incoming channel \(c \),
 - if local state not yet saved, save local state and send marker messages, or
 - if local state already saved, channel snapshot for \(c \) is complete

3. Local contribution complete after markers received on all incoming channels

Result for each process:

- One local state snapshot

- For each incoming channel, a set of messages received after performing the local snapshot and before the marker came down that channel

Properties:

- Reliable communication and failure-free processes
- Point-to-point message delivery is ordered
- Process/channel graph must be strongly connected
- On termination,
 - processes hold only their local state components and
 - a set of messages that were in transit during the snapshot.
Spanner and TrueTime

Globally Distributed Database

- Want external consistency (linearisability)
- Want lock-free read transactions (for scalability)

WWGD? (what would Google do?)

Use a Global Clock!

External Consistency with a Global Clock

Data:
- Versioned using timestamp

Read:
- Read operations performed on a snapshot
- Snapshot: latest version of data items <= given timestamp

Write:
- Each write operation (transaction actually) has unique timestamp
 - Timestamps must not overlap!
- Write operations are protected by locks
 - Means they don’t overlap
- So get global time during the transaction
 - Means timestamps won’t overlap
But clocks are not perfectly synchronised. So transaction A could get the same timestamp as transaction B.

True Time

Add uncertainty to timestamps:
- `TT.now()`: current local clock value
- `TT.now().earliest, TT.now().latest`: maximum skew of clock

Add delay to transaction:
- so timestamps can’t possibly overlap
- `s = TT.now(); wait until TT.now().earliest > s.latest`
Concurrency in a Non-Distributed System:
- Typical OS and multithreaded programming problems
 - Prevent race conditions
 - Critical sections
 - Mutual exclusion
 - Locks
 - Semaphores
 - Monitors
 - Must apply mechanisms correctly
 - Deadlock
 - Starvation

Concurrency in a Distributed System:
- Distributed System introduces more challenges
 - No directly shared resources (e.g., memory)
 - No global state
 - No global clock
 - No centralised algorithms
 - More concurrency

Distributed Mutual Exclusion
- Concurrent access to distributed resources
- Must prevent race conditions during critical regions

Requirements:
1. **Safety**: At most one process may execute the critical section at a time
2. **Liveness**: Requests to enter and exit the critical section eventually succeed
3. **Ordering**: Requests are processed in happened-before ordering (also Fairness)
RECALL: EVALUATING DISTRIBUTED ALGORITHMS

General Properties:

- Performance
 - number of messages exchanged
 - response/wait time
 - delay
 - throughput: \(\frac{1}{\text{delay} + \text{execution time}} \)
 - complexity: \(O() \)
- Efficiency
 - resource usage: memory, CPU, etc.
- Scalability
- Reliability
 - number of points of failure (low is good)

METHOD 1: CENTRAL SERVER

Simplest approach:

- Requests to enter and exit a critical section are sent to a lock server
- Permission to enter is granted by receiving a token
- When critical section left, token is returned to the server

METHOD 2: TOKEN RING

Implementation:

- All processes are organised in a logical ring structure
- A token message is forwarded along the ring
- Before entering the critical section, a process has to wait until the token comes by
- Must retain the token until the critical section is left

Properties:

- Number of message exchanged?
- Delay before entering critical section?
- Reliability?
 - Easy to implement
 - Does not scale well
 - Central server may fail
Method 3: Using Multicasts and Logical Clocks

Algorithm by Ricart & Agrawala:
- Processes p_i maintain a Lamport clock and can communicate pairwise
- Processes are in one of three states:
 1. Released: Outside of critical section
 2. Wanted: Waiting to enter critical section
 3. Held: Inside critical section

Process behaviour:
1. If a process wants to enter, it
 - multicasts a message (L_i, p_i) and
 - waits until it has received a reply from every process
2. If a process is in Released, it immediately replies to any request to enter the critical section
3. If a process is in Held, it delays replying until it is finished with the critical section
4. If a process is in Wanted, it replies to a request immediately only if the requesting timestamp is smaller than the one in its own request

Method 3: Using Multicasts and Logical Clocks

Properties:
- Number of message exchanged?
- Delay before entering critical section?
- Reliability?
- Multicast leads to increasing overhead (try using only subsets of peer processes)
- Susceptible to faults
Mutual Exclusion: A Comparison

Messages Exchanged:
- Messages per entry/exit of critical section
 - Centralised: 3
 - Ring: \(1 \rightarrow \infty\)
 - Multicast: \(2(n - 1)\)

Delay:
- Delay before entering critical section
 - Centralised: 2
 - Ring: \(0 \rightarrow n - 1\)
 - Multicast: \(2(n - 1)\)

Reliability:
- Problems that may occur
 - Centralised: coordinator crashes
 - Ring: lost token, process crashes
 - Multicast: any process crashes

Home Work
- How would you use vector clocks to implement causal consistency?
- Could you use logical clocks to implement sequential consistency?

Hacker’s edition:
- Modify the Ricart Agrawala mutual exclusion algorithm to only require sending to a subset of the processes.
- Can you modify the centralised mutual exclusion algorithm to tolerate coordinator crashes?

Reading List

Optional

Slide 63
Time, Clocks, and the Ordering of Events in a Distributed System Classic on Lamport clocks.

Distributed Snapshots: Determining Global States of Distributed Systems Chandy and Lamport algorithm.