
Slide 1

DISTRIBUTED SYSTEMS [COMP9243]

Lecture 3a: Replication & Consistency

➀ Replication

➁ Consistency

• Models vs Protocols

➂ Update propagation

Slide 2

REPLICATION

Make copies of services on multiple machines.

Why?:

➜ Reliability

• Redundancy

➜ Performance

• Increase processing capacity

• Reduce communication

➜ Scalability (prevent centralisation)

• Prevent overloading of single server (size scalability)

• Avoid communication latencies (geographic scalability)

DATA VS CONTROL REPLICATION 1

Slide 3

DATA VS CONTROL REPLICATION

Data Replication (Server Replication/Mirroring):

FTP Server

FTP Server

GNU Ftp mirror

GNU Ftp mirror

GNU Ftp mirror

FTP

FTP

FTP

Slide 4

Data Replication (Caching):

Cache

Cache

Cache
Pop Website

Pop Website

Pop Website

Web Server

HTTP

HTTP

HTTP

What’s the difference between mirroring and caching?

DATA VS CONTROL REPLICATION 2

Slide 5

Control Replication:

Slashdot

Web Server

− process request
− build web page

Apache + Perl

Web Server

− process request
− build web page

Apache + Perl

Slashdot

Slashdot

SQL Database

SQL

SQL

HTTP

HTTP

HTTP

What are thethe challenges of doing this?

Slide 6

Data and Control Replication:

Slashdot

Web Server

− process request
− build web page

Apache + Perl

Web Server

− process request
− build web page

Apache + Perl

Slashdot

Slashdot

HTTP

HTTP

HTTP

SQL

SQL

SQL Database

SQL Database

We will be looking primarily at data replication

(including combined data and control replication).

REPLICATION ISSUES 3

Slide 7

REPLICATION ISSUES

Updates

➜ Consistency (how to deal with updated data)

➜ Update propagation

Replica placement

➜ How many replicas?

➜ Where to put them?

Redirection/Routing

➜ Which replica should clients use?

Slide 8

DISTRIBUTED DATA STORE

➜ data-store stores data items

Client’s Point of View:

Client A Client B Client C Client D

Data Store

DISTRIBUTED DATA STORE 4

Slide 9

Distributed Data-Store’s Point of View:

Client A Client B Client C Client D

Replica 1 Replica 2 Replica 3 Replica 4

Data Store

Slide 10

Data Model:

➜ data item: simple variable

➜ data item values: explicit (0, 1), abstract (a,b)

➜ data store: collection of data items

Operations on a Data Store:

➜ Read. Ri(x)b Client i performs a read for data item x and it

returns b

➜ Write. Wi(x)a Client i performs write on data item x setting it to a

➜ Operations not instantaneous

• Time of issue (when request is sent by client)

• Time of execution (when request is executed at a replica)

• Time of completion (when reply is received by client)

➜ Coordination among replicas

DISTRIBUTED DATA STORE 5

Slide 11

Replica Managers:

2

1

4

3

completion

Client B

Replica
Manager

Replica 2

Client A

protocol
consistency

execution

updates

messages
protocol

Replica 1

issue Client C

Replica
Manager

Replica 3

Manager
Replica

Slide 12

Timeline:

➜ ClientA/Replica1: WA(x)1, WA(x)0

➜ ClientB/Replica2: RB(x)-, RB(x)1, RB(x)1, RB(x)0

Client B/
Replica 2

W(x)1

R(x)1R(x)1R(x)−

W(x)0
Client A/

R(x)0

Replica 1

CONSISTENCY 6

Slide 13

CONSISTENCY

Conflicting Data:

➜ Do replicas have exactly the same data?

➜ What differences are permitted?

Consistency Dimensions:

➜ Time and Order

Time:

➜ How old is the data (staleness)?

➜ How old is the data allowed to be?

• Time, Versions

Operation order:

➜ Were operations performed in the right order?

➜ What orderings are allowed?

Real world examples of inconsistency?

Slide 14

ORDERING

Updates and concurrency result in conflicting operations

Conflicting Operations:

➜ Read-write conflict (only 1 write)

➜ Write-write conflict (multiple concurrent writes)

➜ The order in which conflicting operations are performed affects

consistency

Partial vs Total Ordering:

➜ partial order: order of a single client’s operations

➜ total order: interleaving of all conflicting operations

ORDERING 7

Slide 15

Example:

Client A: x = 1; x = 0;

Client B: print(x);

print(x);

Possible results:

- -, 11, 10, 00

How about 01?

What are the conflicting ops? What are the partial orders?

What are the total orders?

W(x)1Client A

Client B

W(x)0

R(x)1R(x)0

Can you sanely use a system like this?

Slide 16

CONSISTENCY MODEL

Defines which interleavings of operations are valid

(admissible)

Consistency Model:

➜ Concerned with consistency of a data store.

➜ Specifies characteristics of valid total orderings

A data store that implements a particular model of

consistency will provide a total ordering of operations

that is valid according to the model.

CONSISTENCY MODEL 8

Slide 17

Data Coherence vs Data Consistency:

Data Coherence ordering of operations for single data item
➜ e.g. a read of x will return the most recently written value of x

Data Consistency ordering of operations for whole data store

➜ implies data coherence

➜ includes ordering of operations on other data items too

Non-distributed data store:

➜ Data coherence is respected

➜ Program order is maintained

Slide 18

DATA-CENTRIC CONSISTENCY MODEL

A contract, between a distributed data store and

clients, in which the data store specifies precisely

what the results of read and write operations are in

the presence of concurrency.

➜ Multiple clients accessing the same data store

➜ Described consistency is experienced by all clients

• Client A, Client B, Client C see same kinds of orderings

➜ Non-mobile clients (replica used doesn’t change)

STRONG ORDERING VS WEAK ORDERING 9

Slide 19

STRONG ORDERING VS WEAK ORDERING

Strong Ordering (tight):

➜ All writes must be performed in the order that they are invoked

➜ Example: all replicas must see: W(x)a W(x)b W(x)c

➜ Strict (Linearisable), Sequential, Causal, FIFO (PRAM)

Weak Ordering (loose):

➜ Ordering of groups of writes, rather than individual writes

➜ Series of writes are grouped on a single replica

➜ Only results of grouped writes propagated.

➜ Example: {W(x)a W(x)b W(x)c} == {W(x)a W(x)c} == {W(x)c}

➜ Weak, Release, Entry

Slide 20

STRICT CONSISTENCY

Any read on a data item x returns a value

corresponding to the result of the most recent write

on x

Absolute time ordering of all shared accesses

Client A

Client B

Client A

Client B

W(x)a

R(x)a R(x)a

strictly consistent not strictly consistent

W(x)a

R(x)−

What is most recent in a distributed system?

➜ Assumes an absolute global time

➜ Assumes instant communication (atomic operation)

➜ Normal on a uniprocessor

X Impossible in a distributed system

L INEARISABLE CONSISTENCY 10

Slide 21

LINEARISABLE CONSISTENCY

All operations are performed in a single sequential

order

➜ Operations ordered according to a global (finite) timestamp.

➜ Program order of each client maintained

Client A

Client B

W(x)a

R(x)a

R(x)a

W(x)b

R(x)b

R(x)b

Client C

Client D

Client A

Client B

W(x)a

W(x)b

Client C

Client D

R(x)b R(x)a

R(x)b R(x)a

linearisable not linearisable

Slide 22

SEQUENTIAL CONSISTENCY

All operations are performed in some sequential order

➜ More than one correct sequential order possible

➜ All clients see the same order

➜ Program order of each client maintained

➜ Not ordered according to time Why is this good?

Client A

Client B

R(x)b

R(x)b

R(x)a

R(x)a

Client C

Client D

W(x)b

W(x)a
Client A

Client B

R(x)b R(x)a

Client C

Client D

R(x)a R(x)b

W(x)a

W(x)b

sequential not sequential

Performance:

read time + write time >= minimal packet transfer time

CAUSAL CONSISTENCY 11

Slide 23

CAUSAL CONSISTENCY

Potentially causally related writes are executed in the

same order everywhere

Causally Related Operations:

➜ Read followed by a write (in same client)

➜ W(x) followed by R(x) (in same or different clients)

Client A

Client B

W(x)a

R(x)a

W(x)b

R(x)a R(x)b

R(x)b

Client C

Client D

W(x)c

R(x)c

R(x)c

Client A

Client B

W(x)a

R(x)bR(x)a

R(x)a

Client C

Client D

W(x)b

R(x)b R(x)a

W(x)c

R(x)c

R(x)c

causally consistent not causally consistent

How could we make this valid?

Slide 24

FIFO (PRAM) CONSISTENCY

Only partial orderings of writes maintained

Client A

Client B

W(x)a

W(x)bR(x)a

R(x)a

R(x)b

R(x)cR(x)b

R(x)a R(x)c

W(x)c

Client C

Client D

Client A

Client B

W(x)a

W(x)bR(x)a

R(x)a R(x)b R(x)c

R(x)b

W(x)c

Client C

Client D
R(x)c R(x)a

FIFO consistent not FIFO consistent

How could we make this valid?

WEAK CONSISTENCY 12

Slide 25

WEAK CONSISTENCY

Shared data can be counted on to be consistent

only after a synchronisation is done

Enforces consistency on a group of operations, rather than

single operations

➜ Synchronisation variable (S)

➜ Synchronise operation (synchronise(S))

➜ Define ‘critical section’ with synchronise operations

Properties:

➜ Order of synchronise operations sequentially consistent

➜ Synchronise operation cannot be performed until all previous

writes have completed everywhere

➜ Read or Write operations cannot be performed until all previous

synchronise operations have completed

Slide 26

Example:

➜ synchronise(S) W(x)a W(y)b W(x)c synchronise(S)

➜ Writes performed locally

➜ Updates propagated only upon synchronisation

➜ Only W(y)b and W(x)c have to be propagated

Client A

Client B

W(x)a W(x)b S

R(x)a S

S

R(x)b

R(x)b R(x)a
Client C

Client A

Client B

W(x)a W(x)b S

Client C

R(x)bS

R(x)bS

R(x)a

R(x)a

weak consistent not weak consistent

How could we make this valid?

RELEASE CONSISTENCY 13

Slide 27

RELEASE CONSISTENCY

Explicit separation of synchronisation tasks

➜ acquire(S) - bring local state up to date

➜ release(S) - propagate all local updates

➜ acquire-release pair defines ’critical region’

Properties:

➜ Order of synchronisation operations are FIFO consistent

➜ Release cannot be performed until all previous reads and writes

done by the client have completed

➜ Read or Write operations cannot be performed until all previous

acquires done by the client have completed

Slide 28

Client A

Client B

Client C

W(x)a W(x)bAcq(S) Rel(S)

R(x)a

Rel(S)R(x)bAcq(S)

release consistent

What is an example of an invalid ordering?

RELEASE CONSISTENCY 14

Slide 29

Lazy Release Consistency:

➜ Don’t send updates on release

➜ Acquire causes client to get newest state

➜ Added efficiency if acquire-release performed by same client

(e.g., in a loop)

Client A

Client B

Client C

W(x)a W(x)bAcq(S) Rel(S)

R(x)a

Rel(S)R(x)bAcq(S)

lazy release consistent

Slide 30

ENTRY CONSISTENCY

Synchronisation variable associated with specific

shared data item (guarded data item)

➜ Each shared data item has own synchronisation variable

➜ acquire()

• Provides ownership of synchronisation variable

• Exclusive and nonexclusive access modes

• Synchronises data

• Requires communication with current owner

➜ release()

• Relinquishes exclusive access (but not ownership)

ENTRY CONSISTENCY 15

Slide 31

Properties:

➜ Acquire does not complete until all guarded data is brought up

to date locally

➜ If a client has exclusive access to a synchronisation variable, no

other client can have any kind of access to it

➜ When acquiring nonexclusive access, a client must first get the

updated values from the synchronisation variable’s current

owner

Client A

Client B

Client C

W(x)aAcq(Sx) Acq(Sy) W(y)b Rel(Sx) Rel(Sy)

Acq(Sx) R(x)a R(y)Nil

Acq(Sy) R(y)b

entry consistent

Slide 32

CAP THEORY

Consistency

AvailabilityPartition

Tolerance

C: Consistency: Linearisability

A: Availability: Timely response

P: Partition-Tolerance: Functions

in the face of a partition

You can only choose two of

C A or P

CAP THEORY 16

Slide 33

CAP THEORY

Consistency

AvailabilityPartition

Tolerance

C: Consistency: Linearisability

A: Availability: Timely response

P: Partition-Tolerance: Functions

in the face of a partition

You can only choose two of

C A or P

Slide 34

CAP THEORY

Consistency

AvailabilityPartition

Tolerance

C: Consistency: Linearisability

A: Availability: Timely response

P: Partition-Tolerance: Functions

in the face of a partition

You can only choose two of

C A or P

CAP THEORY 17

Slide 35

CAP THEORY

Consistency

AvailabilityPartition

Tolerance

C: Consistency: Linearisability

A: Availability: Timely response

P: Partition-Tolerance: Functions

in the face of a partition

You can only choose two of

C A or P

Slide 36

CAP Impossibility Proof:

Replica BReplica A

Client

00

CAP THEORY 18

Slide 37

CAP Impossibility Proof:

Replica BReplica A

Client

Rea ! Write

XX

Slide 38

CAP Impossibility Proof:

Replica BReplica A

Client

0

Write

X

CAP THEORY 19

Slide 39

CAP Impossibility Proof:

� � � � � � � �� � � � � � � �

Clie + 	

0

Write

X
 � �

N 1 � 1 � � � � � � � � �

Slide 40

CAP Impossibility Proof:

Re � � � � � �Re � � � � � �
Clie � �

0

Write (does not return)

X

No Availability

CAP THEORY 20

Slide 41

CAP Impossibility Proof:

Re � " # $ %Re � " # $ &

Clie ' (
0

Write (fails)

No Partition Tolerance

0

Slide 42

CAP CONSEQUENCES

For wide-area systems:

➜ Must choose: Consistency or Availability

➜ Choosing Availability

• Give up on consistency?

• Eventual consistency

➜ Choosing Consistency

• No availability

• delayed (and potentially failing) operations

Why can’t we choose C and A and forget about P?

EVENTUAL CONSISTENCY 21

Slide 43

EVENTUAL CONSISTENCY

If no updates take place for a long time, all replicas

will gradually become consistent

Client A

Client B

Client C

W(x)a R(x)a W(y)b W(z)c

R(x)Nil

R(x)a R(y)Nil R(z)c

R(x)aR(y)b R(z)c

R(y)b

eventual consistent

Requirements:

➜ Few read-write conflicts (R » W)

➜ Few write-write conflicts

➜ Clients accept time inconsistency (i.e., old data)

➜ What about ordering?

Slide 44

Examples:

➜ DNS:

• no write-write conflicts

• updates slowly (1-2 days) propagate to all caches

➜ WWW:

• few write-write conflicts

• mirrors eventually updated

• cached copies (browser or proxy) eventually replaced

• manual merging for write-write conflicts

CLIENT-CENTRIC CONSISTENCY MODELS 22

Slide 45

CLIENT-CENTRIC CONSISTENCY MODELS

Provides guarantees about ordering of operations for

a single client

➜ Single client accessing data store

➜ Client accesses different replicas (modified data store model)

➜ Data isn’t shared by clients

➜ Client A, Client B, Client C may see different kinds of orderings

In other words:

➜ The effect of an operation depends on the client performing it

➜ Effect also depends on the history of operations that client has

performed.

Slide 46

Data-Store Model for Client-Centric Consistency:

Client moves

Client A Client A

Replica 1 Replica 2 Replica 3

Data Store

• Data-items have an owner

• No write-write conflicts

CLIENT-CENTRIC CONSISTENCY MODELS 23

Slide 47

Notation and Timeline for Client-Centric Consistency:

➜ xi[t]: version of x at replica i at time t

➜ Write Set: WS(xi[t]): set of writes at replica i that led to xi[t]

➜ WS(xi[t1];xj[t2]): WS(xj[t2]) contains same operations as

WS(xi[t1])

➜ WS(!xi[t1];xj[t2]): WS(xj[t2]) does not contain the same

operations as WS(xi[t1])

➜ R(xi[t]): a read of x returns xi[t]

Replica 1

Replica 2

W(x1)

R(x2)

WS(x1)

W(x1) WS(x1)

R(x1)

WS(x1;x2)W(x2)

Slide 48

MONOTONIC READS

If a client has seen a value of x at a time t, it will never

see an older version of x at a later time

not monotonic−read consistent

Replica 1

Replica 2

WS(x1)

WS(x1;x2)

R(x1)

R(x2)

Replica 1

Replica 2

WS(x1) R(x1)

R(x2) WS(x1;x2)WS(!x1;x2)

monotonic−read consistent

When is Monotonic Reads sufficient?

MONOTONIC WRITES 24

Slide 49

MONOTONIC WRITES

A write operation on data item x is completed before

any successive write on x by the same client

All writes by a single client are sequentially ordered.

Replica 1

Replica 2

W(x1)

W(x2)W(x1) WS(x1)

Replica 1

Replica 2

W(x1)

W(x2)WS(!x1;x0)

monotonic−write consistent not monotonic−write consistent

How is this different from FIFO consistency?

➜ Only applies to write operations of single client.

➜ Writes from clients not requiring monotonic writes may appear

in different orders.

Slide 50

READ YOUR WRITES

The effect of a write on x will always be seen by a

successive read of x by the same client

Replica 1

Replica 2

W(x1)

WS(x1;x2) R(x2)

Replica 1

Replica 2

W(x1)

WS(!x1;x2) R(x2)

not read−your−writes consistentread−your−writes consistent

When is Read Your Writes sufficient?

WRITE FOLLOWS READS 25

Slide 51

WRITE FOLLOWS READS

A write operation on x will be performed on a copy of

x that is up to date with the value most recently read

by the same client

Replica 1

Replica 2
WS(x1;x2)

R(x1)W(x1)

W(x3)

Replica 1

Replica 2

WS(x1) R(x1)

WS(!x1;x2) W(x3)

writes−follow−reads consistent not writes−follow−reads consistent

When is Write Follows Reads sufficient?

Slide 52

CHOOSING THE RIGHT MODEL

Trade-offs

Consistency and Redundancy:

➜ All copies must be strongly consistent

➜ All copies must contain full state

➜ Reduced consistency → reduced reliability

Consistency and Performance:

➜ Consistency requires extra work and communication

X Can result in loss of overall performance

V Weaker consistency possible

Consistency and Scalability:

➜ Implementation of consistency must be scalable

• don’t take a centralised approach

• avoid too much extra communication

CONSISTENCY PROTOCOLS 26

Slide 53

CONSISTENCY PROTOCOLS

Consistency Protocol: implementation of a consistency

model

Primary-Based Protocols:

➜ Remote-write protocols

➜ Local-write protocols

Replicated-Write Protocols:

➜ Active Replication

➜ Quorum-Based Protocols

Slide 54

REMOTE-WRITE PROTOCOLS

Single Server:

➜ All writes and reads executed at single server

X No replication of data

Data store

Single server
for item x

Client Client

Backup server

W1. Write request
W2. Forward request to server for x
W3. Acknowledge write completed
W4. Acknowledge write completed

W1

W3 R3

W2 R2

W4

R1. Read request
R2. Forward request to server for x
R3. Return response
R4. Return response

R1 R4

REMOTE-WRITE PROTOCOLS 27

Slide 55

Primary-Backup:

➜ All writes executed at single server, Reads are local

➜ Updates block until executed on all backups

X Performance

Data store

Primary server
for item x

Client Client

Backup server

W1. Write request
W2. Forward request to primary
W3. Tell backups to update
W4. Acknowledge update
W5. Acknowledge write completed

W1

W2

W3 W3

W3

W4 W4

W4

W5

R1. Read request
R2. Response to read

R1 R2

Slide 56

LOCAL-WRITE PROTOCOLS

Migration:

➜ Data item migrated to local server on access

V Performance (when not sharing data)

Data store

Current server
for item x

Client

1. Read or write request
2. Forward request to current server for x
3. Move item x to client's server
4. Return result of operation on client's server

3

2

1 4

New server
for item x

LOCAL-WRITE PROTOCOLS 28

Slide 57

Migrating Primary (multiple reader/single writer):

V Performance for concurrent reads

X Performance for concurrent writes

Data store

Old primary
for item x

Client Client

Backup server

W1. Write request
W2. Move item x to new primary

W4. Tell backups to update
W5. Acknowledge update

W3. Acknowledge write completed

R1

W2

W4W4

W4

R2

R1. Read request
R2. Response to read

W1 W3

New primary
for item x

W5 W5

W5

Slide 58

ACTIVE REPLICATION

➜ Updates (write operation) sent to all replicas

➜ Need totally-ordered multicast (for sequential consistency)

➜ e.g. sequencer/coordinator to add sequence numbers

Client

inc(i)
inc(i)

inc(i)

inc(i)

inc(i)

QUORUM-BASED PROTOCOLS 29

Slide 59

QUORUM-BASED PROTOCOLS

➜ Voting

➜ Versioned data

➜ Read Quorum: Nr

➜ Write Quorum: Nw

➜ Nr + Nw > N Why?

➜ Nw > N/2 Why?

A A AB B BC C CD D D

E E EF F FG G GH H H

I I IJ J JK K KL L L

Read quorum

Write quorum

NR WN= 3, = 10 NR WN= 7, = 6 NR WN= 1, = 12

(a) (b) (c)

Slide 60

PUSH VS PULL

Read

Pull

Write

Push

Replica 1

Client A

Replica 2 Replica 1 Replica 2

Client B

Pull:

➜ Updates propagated

only on request

➜ Also called client-based

➜ R/W low

➜ Polling delay

Push:

➜ Push updates to replicas

➜ Also called server-based

➜ When low staleness re-

quired

➜ R » W

X Have to keep track of all

replicas

PUSH VS PULL 30

Slide 61

Push Update Propagation:

What to propagate?

➜ Data

• R/W high

➜ Update operation

• low bandwidth costs

➜ Notification/Invalidation

• R/W low

Slide 62

Compromise: Leases:

Server promises to push updates until lease expires

Lease length depends on:

age: Last time item was modified

renewal-frequency: How often replica needs to be updated

state-space overhead: lower expiration time to reduce

bookkeeping when many clients

REPLICA PLACEMENT 31

Slide 63

REPLICA PLACEMENT

Permanent
replicas

Server-initiated replicas

Client-initiated replicas

Clients

Client-initiated replication
Server-initiated replication

Slide 64

Permanent Replicas:

➜ Initial set of replicas

➜ Created and maintained by data-store owner(s)

➜ Allow writes

Server-Initiated Replicas:

➜ Enhance performance

➜ Not maintained by owner

➜ Placed close to groups of clients

• Manually

• Dynamically

Client-Initiated Replicas:

➜ Client caches

➜ Temporary

➜ Owner not aware of replica

➜ Placed close to client

➜ Maintained by host (often client)

DYNAMIC REPLICATION 32

Slide 65

DYNAMIC REPLICATION

Situation changes over time

➜ Number of users, Amount of data

➜ Flash crowds

➜ R/W ratio

Dynamic Replica Placement:

➜ Network of replica servers

➜ Keep track of data item requests at each replica

➜ Thresholds:

• Deletion threshold

• Replication threshold

• Migration threshold

➜ Clients always send requests to nearest server

Slide 66

MISCELLANEOUS IMPLEMENTATION AND DESIGN ISSUES

End-to-End argument:

➜ Where to implement replication mechanisms?

➜ Application? Middleware? OS?

Policy vs Mechanism:

➜ Consistency models built into middleware?

➜ One-size-fits-all?

Determining Policy:

➜ Who determines the consistency model used?

• Application, Middleware

• Client, Server

Keep It Simple, Stupid:

➜ Will the programmer understand the consistency model?

READING L IST 33

Slide 67

READING LIST

Brewer’s Conjecture and the Feasibility of Consistent,

Available, Partition-Tolerant Web Services An overview of

the CAP theorem and its proof.

Eventual Consistency An overview of eventual consistency

and client-centric consistency models.

Slide 68

HOMEWORK

Consistency Models:

➜ Research consistency models used in existing Distributed

Systems

➜ Why are those models being used?

➜ In the systems you looked at, could other models have been

used? Would that have made the system better?

Hacker’s Edition:

➜ Find a system that provides Eventual Consistency

➜ (alternatively, implement (possibly in Erlang) a system that

provides Eventual Consistency)

➜ Replicate some data and perform queries. How often do you

get inconsistent results?

➜ If you can tweak replication parameters, how do they affect

the consistency of results?

HOMEWORK 34

