
Slide 1

DISTRIBUTED SYSTEMS [COMP9243]

Lecture 4: Communication

➀ Communication in a Distributed System

➜ Shared memory vs message passing

➜ Communication modes

➁ Communication Abstractions

Slide 2

Why Communication?

Cooperating processes need to communicate.

➜ For synchronisation and control

➜ To share data

DISTRIBUTED SYSTEMS [COMP9243] 1

Slide 3

In a Non-Distributed System:

Two approaches to communication:

➜ Shared memory

Slide 4

Shared Memory:

memory

Process A Process B

Address space 1 Address space 2

Shared

x=12 i=x

x

DISTRIBUTED SYSTEMS [COMP9243] 2

Slide 5

In a Non-Distributed System:

Two approaches to communication:

➜ Shared memory

• Direct memory access (Threads)

• Mapped memory (Processes)

➜ Message passing

Slide 6

Message Passing:

Process A Process B

Address space 1 Address space 2

DISTRIBUTED SYSTEMS [COMP9243] 3

Slide 7

In a Non-Distributed System:

Two approaches to communication:

➜ Shared memory

• Direct memory access (Threads)

• Mapped memory (Processes)

➜ Message passing

• OS’s IPC mechanisms

Slide 8

COMMUNICATION IN A DISTRIBUTED SYSTEM

Previous slides assumed a uniprocessor or a multiprocessor.

In a distributed system (multicomputer) things change:

Shared Memory:

➜ There is no way to physically share memory

Message Passing:

➜ Over the network

➜ Introduces latencies

➜ Introduces higher chances of failure

➜ Heterogeneity introduces possible incompatibilities

MESSAGE PASSING 4

Slide 9

MESSAGE PASSING

Basics:

➜ send()

➜ receive()

Variations:

➜ Connection oriented vs Connectionless

➜ Point-to-point vs Group

➜ Synchronous vs Asynchronous

➜ Buffered vs Unbuffered

➜ Reliable vs Unreliable

➜ Message ordering guarantees

Data Representation:

➜ Marshalling

➜ Endianness

Slide 10

COUPLING

Dependency between sender and receiver

Temporal do sender and receiver have to be active at the

same time?

Spatial do sender and receiver have to know about each

other? explicitly address each other?

Semantic do sender and receiver have to share knowledge

of content syntax and semantics?

Platform do sender and receiver have to use the same

platform?

Tight vs Loose coupling: yes vs no

COMMUNICATION MODES 5

Slide 11

COMMUNICATION MODES

Data-Oriented vs Control-Oriented Communication:

Data-oriented communication

➜ Facilitates data exchange between threads

➜ Shared address space, shared memory & message passing

Control-oriented communication

➜ Associates a transfer of control with communication

➜ Active messages, remote procedure call (RPC) & remote

method invocation (RMI)

Slide 12

Synchronous vs Asynchronous Communication:

Synchronous

➜ Sender blocks until message received

• Often sender blocked until message is processed and a

reply received

➜ Sender and receiver must be active at the same time

➜ Receiver waits for requests, processes them (ASAP), and returns

reply

➜ Client-Server generally uses synchronous communication

Asynchronous

➜ Sender continues execution after sending message (does not

block waiting for reply)

➜ Message may be queued if receiver not active

➜ Message may be processed later at receiver’s convenience

When is Synchronous suitable? Asynchronous?

COMMUNICATION MODES 6

Slide 13

Transient vs Persistent Communication:

Transient

➜ Message discarded if cannot be delivered to receiver

immediately

➜ Example: HTTP request

Persistent

➜ Message stored (somewhere) until receiver can accept it

➜ Example: email

Coupling?

Slide 14

Provider-Initiated vs Consumer-Initiated Communication:

Provider-Initiated

➜ Message sent when data is available

➜ Example: notifications

Consumer-Initiated

➜ Request sent for data

➜ Example: HTTP request

COMMUNICATION MODES 7

Slide 15

Direct-Addressing vs Indirect-Addressing Communication:

Direct-Addressing

➜ Message sent directly to receiver

➜ Example: HTTP request

Indirect-Addressing

➜ Message not sent to a particular receiver

➜ Example: broadcast, publish/subscribe

Coupling?

Slide 16

Combinations:

Persistent Asynchronous

A

B

Message can be
sent only if B is
running

A

B

Transient Asynchronous

A

B

Accepted

Persistent Synchronous

Starts processing
requestACK

A

B

Transient Synchronous
(Receipt Based)

A

B

Accepted

Transient Synchronous
(Delivery Based)

Request
Received

A

B

Transient Synchronous

Request
Received Accepted

(Response Based)

Examples?

COMMUNICATION ABSTRACTIONS 8

Slide 17

COMMUNICATION ABSTRACTIONS

Abstractions above simple message passing make

communication easier for the programmer.

Provided by higher level APIs

➀ Message-Oriented Communication

➁ Request-Reply, Remote Procedure Call (RPC) & Remote

Method Invocation (RMI)

➂ Group Communication

➃ Event-based Communication

➄ Shared Space

Slide 18

MESSAGE-ORIENTED COMMUNICATION

Communication models based on message passing

Traditional send()/receive() provides:

➜ Asynchronous and Synchronous communication

➜ Transient communication

What more does it provide than send()/receive()?

➜ Persistent communication (Message queues)

➜ Hides implementation details

➜ Marshalling

EXAMPLE: MESSAGE PASSING INTERFACE (MPI) 9

Slide 19

EXAMPLE: MESSAGE PASSING INTERFACE (MPI)

➜ Designed for parallel applications

➜ Makes use of available underlying network

➜ Tailored to transient communication

➜ No persistent communication

➜ Primitives for all forms of transient communication

➜ Group communication

MPI is BIG. Standard reference has over 100 functions and is

over 350 pages long!

Slide 20

EXAMPLE: MESSAGE QUEUING SYSTEMS

Application

Send queue

Application

Application

Application
Router

Message

Sender A

R2

R1

Receiver B

Receive
queue

EXAMPLE: MESSAGE QUEUING SYSTEMS 10

Slide 21

Provides:

➜ Persistent communication

➜ Message Queues: store/forward

➜ Transfer of messages between queues

Model:

➜ Application-specific queues

➜ Messages addressed to specific queues

➜ Only guarantee delivery to queue. Not when.

➜ Message transfer can be in the order of minutes

Examples:

➜ IBM MQSeries, Java Message Service, Amazon SQS, Advanced

Message Queuing Protocol, MQTT, STOMP

Very similar to email but more general purpose (i.e., enables

communication between applications and not just people)

Slide 22

REQUEST-REPLY COMMUNICATION

Request:

➜ a service

➜ data

Reply:

➜ result of executing service

➜ data

Requirement:

➜ Message formatting

➜ Protocol

EXAMPLE: REMOTE PROCEDURE CALL (RPC) 11

Slide 23

EXAMPLE: REMOTE PROCEDURE CALL (RPC)

Idea: Replace I/O oriented message passing model by

execution of a procedure call on a remote node [BN84]:

➜ Synchronous - based on blocking messages

➜ Message-passing details hidden from application

➜ Procedure call parameters used to transmit data

➜ Client calls local “stub” which does messaging and marshalling

Confusing local and remote operations can be dangerous,

why?

Slide 24

Remember Erlang client/server example?:

% Client code using the increment server

client (Server) ->

Server ! {self (), 10},

receive

{From, Reply} -> io:format ("Result: ~w~n", [Reply])

end.

% Server loop for increment server

loop () ->

receive

{From, Msg} -> From ! {self (), Msg + 1},

loop ();

stop -> true

end.

% Initiate the server

start_server() -> spawn (fun () -> loop () end).

EXAMPLE: REMOTE PROCEDURE CALL (RPC) 12

Slide 25

This is what it’s like in RPC:

% Client code

client (Server) ->

register(server, Server),

Result = inc (10),

io:format ("Result: ~w~n", [Result]).

% Server code

inc (Value) -> Value + 1.

Where is the communication?

Slide 26

RPC Implementation:

proc: "inc"
int: val(i)

j = inc(i);

Server machine

Server process

Server OS

Implementation
of inc

proc: "inc"
int: val(i)

Client process

j = inc(i);

Client OS

Client machine

proc: "inc"
int: val(i)

1

4

2

3 5

6

Message

Client stub Server stub

EXAMPLE: REMOTE PROCEDURE CALL (RPC) 13

Slide 27

RPC Implementation:

➀ client calls client stub (normal procedure call)

➁ client stub packs parameters into message data structure

➂ client stub performs send() syscall and blocks

➃ kernel transfers message to remote kernel

➄ remote kernel delivers to server stub, blocked in receive()

➅ server stub unpacks message, calls server (normal proc call)

➆ server returns to stub, which packs result into message

➇ server stub performs send() syscall

➈ kernel delivers to client stub, which unpacks and returns

Slide 28

Example client stub in Erlang:

% Client code using RPC stub

client (Server) ->

register(server, Server),

Result = inc (10),

io:format ("Result: ~w~n", [Result]).

% RPC stub for the increment server

inc (Value) ->

server ! {self (), inc, Value},

receive

{From, inc, Reply} -> Reply

end.

EXAMPLE: REMOTE PROCEDURE CALL (RPC) 14

Slide 29

Example server stub in Erlang:

% increment implementation

inc (Value) -> Value + 1.

% RPC Server dispatch loop

server () ->

receive

{From, inc, Value} ->

From ! {self(), inc, inc(Value)}

end,

server().

Slide 30

Parameter marshalling:

➜ stub must pack (“marshal”) parameters into message structure

➜ message data must be pointer free

(by-reference data must be passed by-value)

➜ may have to perform other conversions:

• byte order (big endian vs little endian)

• floating point format

• dealing with pointers

• convert everything to standard (“network”) format, or

• message indicates format, receiver converts if necessary

➜ stubs may be generated automatically from interface specs

EXAMPLE: REMOTE PROCEDURE CALL (RPC) 15

Slide 31

Examples of RPC frameworks:

➜ SUN RPC (aka ONC RPC): Internet RFC1050 (V1), RFC1831 (V2)

• Based on XDR data representation (RFC1014)(RFC1832)

• Basis of standard distributed services, such as NFS and NIS

➜ Distributed Computing Environment (DCE) RPC

➜ XML (data representation) and HTTP (transport)

• Text-based data stream is easier to debug

• HTTP simplifies integration with web servers and works

through firewalls

• For example, XML-RPC (lightweight) and SOAP (more

powerful, but often unnecessarily complex)

➜ Many More: Facebook Thrift, Google Protocol Buffers RPC,

Microsoft .NET

Slide 32
Sun RPC Example:

Run example code from website

EXAMPLE: REMOTE PROCEDURE CALL (RPC) 16

Slide 33

Sun RPC - interface definition:

program DATE_PROG {

version DATE_VERS {

long BIN_DATE(void) = 1; /* proc num = 1 */

string STR_DATE(long) = 2; /* proc num = 2 */

} = 1; /* version = 1 */

} = 0x31234567; /* prog num */

Slide 34

Sun RPC - client code:

#include <rpc/rpc.h> /* standard RPC include file */

#include "date.h" /* this file is generated by rpcgen */

...

main(int argc, char **argv) {

CLIENT *cl; /* RPC handle */

...

cl = clnt_create(argv[1], DATE_PROG, DATE_VERS, "udp");

lresult = bin_date_1(NULL, cl);

printf("time on host %s = %ld\n", server, *lresult);

sresult = str_date_1(lresult, cl);

printf("time on host %s = %s", server, *sresult);

clnt_destroy(cl); /* done with the handle */

}

EXAMPLE: REMOTE PROCEDURE CALL (RPC) 17

Slide 35

Sun RPC - server code:

#include <rpc/rpc.h> /* standard RPC include file */

#include "date.h" /* this file is generated by rpcgen */

long * bin_date_1() {

static long timeval; /* must be static */

long time(); /* Unix function */

timeval = time((long *) 0);

return(&timeval);

}

char ** str_date_1(long *bintime) {

static char *ptr; /* must be static */

char *ctime(); /* Unix function */

ptr = ctime(bintime); /* convert to local time */

return(&ptr); /* return the address of pointer */

}

Slide 36

ONE-WAY (ASYNCHRONOUS) RPC

Call local procedure

Call remote
procedure

Return
from call

Request Accept request

Wait for acceptance

Call local procedure
and return results

Call remote
procedure

Return
from call

Client Client

Request Reply

Server ServerTime Time

Wait for result

(a) (b)

➜ When no reply is required

➜ When reply isn’t needed immediately (2 asynchronous RPCs -

deferred synchronous RPC)

REMOTE METHOD INVOCATION (RMI) 18

Slide 37

REMOTE METHOD INVOCATION (RMI)

Like RPC, but transition from the server metaphor to

the object metaphor.

Why is this important?

➜ RPC: explicit handling of host identification to determine the

destination

➜ RMI: addressed to a particular object

➜ Objects are first-class citizens

➜ Can pass object references as parameters

➜ More natural resource management and error handling

➜ But still, only a small evolutionary step

Slide 38

TRANSPARENCY CAN BE DANGEROUS

Why is the transparency provided by RPC and RMI

dangerous?

➜ Remote operations can fail in different ways

➜ Remote operations can have arbitrary latency

➜ Remote operations have a different memory access model

➜ Remote operations can involve concurrency in subtle ways

What happens if this is ignored?

➜ Unreliable services and applications

➜ Limited scalability

➜ Bad performance

See “A note on distributed computing” [Waldo et al. 94]

GROUP-BASED COMMUNICATION 19

Slide 39

GROUP-BASED COMMUNICATION

machine
A

machine
E

machine
D

machine
C

machine
B

➜ Sender performs a single send()

What are the difficulties with group communication?

Slide 40

Two kinds of group communication:

➜ Broadcast (message sent to everyone)

➜ Multicast (message sent to specific group)

Used for:

➜ Replication of services

➜ Replication of data

➜ Service discovery

➜ Event notification

Issues:

➜ Reliability

➜ Ordering

Example:

➜ IP multicast

➜ Flooding

EXAMPLE: GOSSIP-BASED COMMUNICATION 20

Slide 41

EXAMPLE: GOSSIP-BASED COMMUNICATION

Technique that relies on epidemic behaviour, e.g. spreading

diseases among people.

Variant: rumour spreading, or gossiping.

• When node P receives data item x, it tries to push it to

arbitrary node Q.

• If x is new to Q, then P keeps on spreading x to other

nodes.

• If node Q already has x, P stops spreading x with certain

probability.

Analogy from real life: Spreading rumours among people.

Slide 42

EVENT-BASED COMMUNICATION

➜ Communication through propagation of events

➜ Generally associated with publish/subscribe systems

➜ Sender process publishes events

➜ Receiver process subscribes to events and receives only the

ones it is interested in.

➜ Loose coupling: space, time

➜ Example: OMG Data Distribution Service (DDS), JMS, Tibco

Component Component

Component

Publish

Event delivery

Event bus

SHARED SPACE COMMUNICATION 21

Slide 43

SHARED SPACE COMMUNICATION

Example: Distributed Shared Memory:

161 2 3 4 5 6 7 8 10 119 12 13 14 150

Shared global address space

CPU 1 CPU 2 CPU 3 CPU 4

0 2 5

9

1 3 6

8 10

4 7 11

12 14

13 15 16

Coupling?

Slide 44

Example: Tuple Space:

Tuple instance

A

A B T

C

B A

C
BB

Insert a
copy of A

Write A Write B Read T

Insert a
copy of B

Look for
tuple that
matches T

Return C
(and optionally

remove it)

A JavaSpace

Coupling?

READING L IST 22

Slide 45

READING LIST

Implementing Remote Procedure Calls A classic paper

about the design and implementation of one of the first

RPC systems.

Slide 46

HOMEWORK

RPC:

➜ Do Exercise Client server exercise (Erlang) Part B

Synchronous vs Asynchronous:

➜ Explain how you can implement synchronous communication

using only asynchronous communication primitives.

➜ How about the opposite?

HOMEWORK 23

