
Slide 1

DISTRIBUTED SYSTEMS [COMP9243]

Lecture 11: Distributed File Systems

➀ Introduction

➁ NFS (Network File System)

➂ AFS (Andrew File System) & Coda

➃ GFS (Google File System)

Slide 2

INTRODUCTION

Distributed File System Paradigm:

➜ File system that is shared by many distributed clients

➜ Communication through shared files

➜ Shared data remains available for long time

➜ Basic layer for many distributed systems and applications

Clients and Servers:

➜ Clients access files and directories

➜ Servers provide files and directories

➜ Servers allow clients to perform operations on the files and

directories

➜ Operations: add/remove, read/write

➜ Servers may provide different views to different clients

CHALLENGES 1

Slide 3

CHALLENGES

Transparency:

➜ Location: a client cannot tell where a file is located

➜ Migration: a file can transparently move to another server

➜ Replication: multiple copies of a file may exist

➜ Concurrency: multiple clients access the same file

Flexibility:

➜ Servers may be added or replaced

➜ Support for multiple file system types

Dependability:

➜ Consistency: conflicts with replication & concurrency

➜ Security: users may have different access rights on clients

sharing files & network transmission

➜ Fault tolerance: server crash, availability of files

Slide 4

Performance:

➜ Requests may be distributed across servers

➜ Multiple servers allow higher storage capacity

Scalability:

➜ Handle increasing number of files and users

➜ Growth over geographic and administrative areas

➜ Growth of storage space

➜ No central naming service

➜ No centralised locking

➜ No central file store

THE CLIENT’S PERSPECTIVE: F ILE SERVICES 2

Slide 5

THE CLIENT’S PERSPECTIVE: FILE SERVICES

Ideally, the client would perceive remote files like local ones.

File Service Interface:

➜ File: uninterpreted sequence of bytes

➜ Attributes: owner, size, creation date, permissions, etc.

➜ Protection: access control lists or capabilities

➜ Immutable files: simplifies caching and replication

➜ Upload/download model versus remote access model

Slide 6

FILE ACCESS SEMANTICS

UNIX semantics:

➜ A READ after a WRITE returns the value just written

➜ When two WRITEs follow in quick succession, the second persists

➜ Caches are needed for performance & write-through is

expensive

➜ UNIX semantics is too strong for a distributed file system

Session semantics:

➜ Changes to an open file are only locally visible

➜ When a file is closed, changes are propagated to the server

(and other clients)

➜ But it also has problems:

• What happens if two clients modify the same file

simultaneously?

• Parent and child processes cannot share file pointers if

running on different machines.

F ILE ACCESS SEMANTICS 3

Slide 7

Immutable files:

➜ Files allow only CREATE and READ

➜ Directories can be updated

➜ Instead of overwriting the contents of a file, a new one is

created and replaces the old one

X Race condition when two clients replace the same file

X How to handle readers of a file when it is replaced?

Atomic transactions:

➜ A sequence of file manipulations is executed indivisibly

➜ Two transaction can never interfere

➜ Standard for databases

➜ Expensive to implement

Slide 8

THE SERVER’S PERSPECTIVE: IMPLEMENTATION

Design Depends On the Use:

➜ Satyanarayanan, 1980’s university UNIX use

➜ Most files are small—less than 10k

➜ Reading is much more common than writing

➜ Usually access is sequential; random access is rare

➜ Most files have a short lifetime

➜ File sharing is unusual, Most process use only a few files

➜ Distinct files classes with different properties exist

Is this still valid?

There are also varying reasons for using a DFS:

➜ Big file system, many users, inherent distribution

➜ High performance

➜ Fault tolerance

STATELESS VERSUS STATEFUL SERVERS 4

Slide 9

STATELESS VERSUS STATEFUL SERVERS

Advantages of stateless servers:

➜ Fault tolerance

➜ No OPEN/CLOSE calls needed

➜ No server space needed for tables

➜ No limits on number of open files

➜ No problems if server crashes

➜ No problems if client crashes

Advantages of stateful servers:

➜ Shorter request messages

➜ Better performance

➜ Read ahead easier

➜ File locking possible

Slide 10

CACHING

We can cache in three locations:

➀ Main memory of the server: easy & transparent

➁ Disk of the client

➂ Main memory of the client (process local, kernel, or dedicated

cache process)

Cache consistency:

➜ Obvious parallels to shared-memory systems, but other trade

offs

➜ No UNIX semantics without centralised control

➜ Plain write-through is too expensive; alternatives: delay WRITEs

and agglomerate multiple WRITEs

➜ Write-on-close; possibly with delay (file may be deleted)

➜ Invalid cache entries may be accessed if server is not

contacted whenever a file is opened

REPLICATION 5

Slide 11

REPLICATION

Multiple copies of files on different servers:

➜ Prevent data loss

➜ Protect system against down time of a single server

➜ Distribute workload

Three designs:

➜ Explicit replication: The client explicitly writes files to multiple

servers (not transparent).

➜ Lazy file replication: Server automatically copies files to other

servers after file is written.

➜ Group file replication: WRITEs simultaneously go to a group of

servers.

Slide 12

CASE STUDIES

➜ Network File System (NFS)

➜ Andrew File System (AFS) & Coda

➜ Google File System (GFS)

NETWORK F ILE SYSTEM (NFS) 6

Slide 13

NETWORK FILE SYSTEM (NFS)

Properties:

➜ Introduced by Sun

➜ Fits nicely into UNIX’s idea of mount points, but does not

implement UNIX semantics

➜ Multiple clients & servers (a single machine can be a client and

a server)

➜ Stateless servers (no OPEN & CLOSE) (changed in v4)

➜ File locking through separate server

➜ No replication

➜ ONC RPC for communication

➜ Caching: local files copies

• consistency through polling and timestamps

• asynchronous update of file after close

Slide 14

Virtual file system
(VFS) layer

Virtual file system
(VFS) layer

System call layer System call layer

NFS client

RPC client
stub

RPC server
stub

NFS server
Local file

system interface
Local file

system interface

Network

Client Server

NETWORK F ILE SYSTEM (NFS) 7

Slide 15

Slide 16

ANDREW FILE SYSTEM (AFS) & CODA

Properties:

➜ From Carnegie Mellon University (CMU) in the 1980s.

➜ Developed as campus-wide file system: Scalability

➜ Global name space for file system (divided in cells, e.g.

/afs/cs.cmu.edu, /afs/ethz.ch)

➜ API same as for UNIX

➜ UNIX semantics for processes on one machine, but globally

write-on-close

ANDREW F ILE SYSTEM (AFS) & CODA 8

Slide 17

System Architecture:

➜ Client: User-level process Venus (AFS daemon)

➜ Cache on local disk

➜ Trusted servers collectively called Vice

Scalability:

➜ Server serves whole files. Clients cache whole files

➜ Server invalidates cached files with callback (stateful servers)

➜ Clients do not validate cache (except on first use after booting)

➜ Result: Very little cache validation traffic

Slide 18

Vice file
server

Virtue
client

Transparent access
to a Vice file server

CODA 9

Slide 19

CODA

➜ Successor of the Andrew File System (AFS)

• System architecture quite similar to AFS

➜ Supports disconnected, mobile operation of clients

➜ Supports replication

Slide 20

DESIGN & ARCHITECTURE

Disconnected operation:

➜ All client updates are logged in a Client Modification Log (CML)

➜ On re-connection, CML operations are replayed on the server

➜ Trickle reintegration tradeoff: Immediate reintegration of log

entries reduces chance for optimisation, late reintegration

increases risk of conflicts

➜ File hoarding: System (or user) can build a user hoard database,

which it uses to update frequently used files in a hoard walk

➜ Conflicts: Automatically resolved where possible; otherwise,

manual correction necessary

Servers:

➜ Read/write replication is organised on a per volume basis

➜ Group file replication (multicast RPCs); read from any server

➜ Version stamps are used to recognise server with out of date

files (due to disconnect or failure)

GOOGLE F ILE SYSTEM 10

Slide 21

GOOGLE FILE SYSTEM

Motivation:

➜ 10+ clusters

➜ 1000+ nodes per cluster

➜ Pools of 1000+ clients

➜ 350TB+ filesystems

➜ 500Mb/s read/write load

➜ Commercial and R&D ap-

plications

Assumptions:

➜ Failure occurs often

➜ Huge files (millions,

100+MB)

➜ Large streaming reads

➜ Small random reads

➜ Large appends

➜ Concurrent appends

➜ Bandwidth more impor-

tant than latency

Slide 22

Interface:

No common standard like POSIX.

Provides familiar file system interface:

➜ Create, Delete, Open, Close, Read, Write

In addition:

➜ Snapshot : low cost copy of a whole file with copy-on-write

operation

➜ Record append: Atomic append operation

GOOGLE F ILE SYSTEM 11

Slide 23

Design Overview:

➜ Files split in fixed size chunks of 64 MByte

➜ Chunks stored on chunk servers

➜ Chunks replicated on multiple chunk servers

➜ GFS master manages name space

➜ Clients interact with master to get chunk handles

➜ Clients interact with chunk servers for reads and writes

➜ No explicit caching

Slide 24

Architecture:

......

...

GFS Master /foo/bar

File name space

chunk data

(chunk handle, byte range)

(file name, chunk index)Application

GFS client
(chunk handle,

GFS chunkserver

Linux file systemLinux file system

chunk 2ef0

Instructions to chunk server

Chunk server state

GFS chunkserver

chunk locations)

GOOGLE F ILE SYSTEM 12

Slide 25

GFS Master:

➜ Single point of failure

➜ Keeps data structures in memory (speed, easy background

tasks)

➜ Mutations logged to operation log

➜ Operation log replicated

➜ Checkpoint state when log is too large

➜ Checkpoint has same form as memory (quick recovery)

➜ Note: Locations of chunks not stored (master periodically asks

chunk servers for list of their chunks)

GFS Chunkservers:

➜ Checksum blocks of chunks

➜ Verify checksums before data is delivered

➜ Verify checksums of seldomly used blocks when idle

Slide 26

Data Mutations:

➜ Write, atomic record append, snapshot

➜ Master grants chunk lease to one of a chunk’s replicas

➜ Replica with chunk becomes primary

➜ Primary defines serial order for all mutations

➜ Leases typically expire after 60 s, but are usually extended

➜ Easy recovery from failed primary: master chooses another

replica after the initial lease expires

GOOGLE F ILE SYSTEM 13

Slide 27

Example: Write:

Write(filename, offset, data)

Client Master

Secondary Replica

Lease Holder

Secondary Replica

1.who has lease?

2.lease info

3.data push

3.data push

3.data push

4.commit

5.serialised cmmit

6.commit ACK

6.commit ACK

7.ACK

6.commit ACK

6.commit ACK

5.serialised cmmit

4.commit

3.data push

3.data push

3.data push

2.lease info

1.who has lease?

Client Master

Secondary Replica

Lease Holder

Secondary Replica

Slide 28

RE-EVALUATING GFS AFTER 10 YEARS

Workload has changed → changed assumptions

Single Master:

X Too many requests for a single master

X Single point of failure

V Tune master performance

V Multiple cells

V Develop distributed masters

File Counts:

X Too much meta-data for a single master

V applications rely on Big Table (distributed)

RE-EVALUATING GFS AFTER 10 YEARS 14

Slide 29

File Size:

X Smaller files than expected

V Reduce block size to 1MB

Throughput vs Latency:

X Too much latency for interactive applications (e.g. Gmail)

V Automated master failover

V Applications hide latency: e.g. multi-homed model

Slide 30

CHUBBY

Chubby is...:

➜ Lock service

➜ Simple FS

➜ Name service

➜ Synchronisation/consensus service

Architecture:

➜ Cell: 5 replicas

➜ Master:

• gets all client requests

• elected with Paxos

• master lease: no new master until lease expires

➜ Write: Paxos agreement of all replicas

➜ Read: local by master

CHUBBY 15

Slide 31

API:

➜ Pathname: /ls/cell/some/file/name

➜ Open (R/W), Close, Read, Write, Delete

➜ Lock: Acquire, Release

➜ Events: file modified, lock acquired, etc.

Using Chubby: electing a leader:

if (open("/ls/cell/TheLeader", W)) {

write(my_id);

} else {

wait until "/ls/cell/TheLeader" modified;

leader_id = read();

}

Slide 32

WHAT ELSE ... ?

Colossus:

➜ follow up to GFS

BigTable:

➜ Distributed, sparse, storage map

➜ Chubby for consistency

➜ GFS/Colossus for actual storage

Megastore:

➜ Semi-relational data model, ACID transactions

➜ BigTable as storage , synchronous replication (using Paxos)

➜ Poor write latency (100-400 ms) and throughput

Spanner:

➜ Structured storage, SQL-like language

➜ Transactions with TrueTime, synchronous replication (Paxos)

➜ Better write latency (72-100ms)

READING L IST 16

Slide 33

READING LIST

Scale and Performance in a Distributed File System File

system properties

NFS Version 3: Design and Implementation NFS

Disconnected Operation in the Coda File System Coda

The Google File System GFS

Slide 34

HOMEWORK

➜ Compare Dropbox, Google Drive, or other popular distributed

file systems to the ones discussed in class.

Hacker’s edition:

➜ See Naming slides

HOMEWORK 17

