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Naming

Most computer systems (in particular operating systems) manage wide collections of entities (such
as, files, users, hosts, networks, and so on). These entities are referred to by users of the system
and other entities by various kinds of names. Examples of names in Unix systems include the
following:

• Files: /boot/vmlinuz, ~/lectures/DS/notes/tex/naming.tex

• Processes: 1, 14293

• Devices: /dev/hda, /dev/ttyS1

• Users: chak, cs9243

For largely historical reasons, different entities are often named using different naming schemes.
We say that they exist in different name spaces. From time to time a new system design attempts
to integrate a variety of entities into a homogeneous name space, and then also attempts to provide
a uniform interface to these entities. For example, a central concept of Unix systems is the uniform
treatment of files, devices, sockets, and so on. Some systems also introduce a /proc file system,
which maps processes to names in the file system and supports access to process information
through this file interface. In addition, Linux provides access to a variety of kernel data structures
via the /proc file system. The systems Plan 9 [ATT93] and Inferno go even further and are
designed according to the concept that “all resources are named and accessed like files in a forest
of hierarchical file systems.”

Basic Concepts

A name is the fundamental concept underlying naming. We define a name as a string of bits or
characters that is used to refer to an entity. An entity in this case is any resource, user, process,
etc. in the system. Entities are accessed by performing operations on them, the operations are
performed at an entity’s access point. An access point is also referred to by a name, we call an
access point’s name an address. Entities may have multiple access points and may therefore have
multiple addresses. Furthermore an entity’s access points may change over time (that is an entity
may get new access points or lose existing ones), which means that the set of an entity’s addresses
may also change.

We distinguish between a number of different kinds of names. A pure name1 is a name that
consists of an uninterpreted bit pattern that does not encode any of the named entity’s attributes.
A nonpure name, on the other hand, does encode entity attributes (such as an access point
address) in the name. An identifier is a name that uniquely identifies an entity. An identifier
refers to at most one entity and an entity is referred to by at most one identifier. Furthermore an
identifier can never be reused, so that it will always refer to the same entity. Identifiers allow for
easy comparison of entities; if two entities have the same identifier then they are the same entity.
Pure names that are also identifiers are called pure identifiers. Location independent names are
names that are independent of an entity’s address. They remain valid even if an entity moves
or otherwise changes its address. Note that pure names are always location independent, though
location independent names do not have to be pure names.

1The distinction between pure and nonpure names is due to Needham [Nee93]
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System Names Versus Human Names

Related to the purity of names is the distinction between system-oriented and human-oriented
names. Human-oriented names are usually chosen for their mnemonic value, whereas system-
oriented names are a means for efficient access to, and identification of, objects.

Taking into account the desire for transparency human-oriented names would ideally be pure.
In contrast, system-oriented names are often nonpure which speeds up access to repeatedly used
object attributes. We can characterise these two kinds of names as follows:

• System-oriented names are usually fixed size numerals (or a collection thereof); thus they
are easy to store, compare, and manipulate, but difficult for the user to remember.

• Human-oriented names are usually variable-length strings, often with structure; thus they
are easy for humans to remember, but expensive to process by machines.

System-Oriented Names

As mentioned, system-oriented names are usually implemented as one or more fixed-sized numerals
to facilitate efficient handling. Moreover, they typically need to be unique identifiers and may be
sparse to convey access rights (e.g., capabilities). Depending on whether they are globally or
locally unique, we also call them structured or unstructured. These are two examples of how
structured and unstructured names may be implemented:

globally unique integer unstructured

node identifier local unique identifier structured

The structuring may be over multiple levels. Note that a structured name is not pure.
Global uniqueness without further mechanism requires a centralised generator with the usual

drawbacks regarding scalability and reliability. In contrast, distributed generation without exces-
sive communication usually leads to structured names. For example, a globally unique structured
name can be constructed by combining the local time with a locally unique identifier. Both values
can be generated locally and do not require any communication.

Human-Oriented Names

In many systems, the most important attribute bound to a human-oriented name is the system-
oriented name of the object. All further information about the entity is obtained via the system-
oriented name. This enables the system to perform the usually costly resolution of the human-
oriented name just once and implement all further operations on the basis of the system-oriented
name (which is more efficient to handle). Often a whole set of human-oriented names is mapped
to a single system-oriented name (symbolic links, relative addressing, and so on).

As an example of all this, consider the naming of files inUnix. A pathname is a human-oriented
name that, by means of the directory structure of the file system, can be resolved to an inode
number, which is a system-oriented name. All attributes of a file are accessible via the inode (i.e.,
the system-oriented name). By virtue of symbolic and hard links multiple human-oriented names
may refer to the same inode, which makes equality testing of files merely by their human-oriented
name impossible.

The design space for human-oriented names is considerably wider than that for system-oriented
names. As such naming systems for human-oriented names usually require considerably greater
implementation effort.

Name Spaces

Names are grouped and organised into name spaces. A structured name space is represented as a
labeled directed graph, with two types of nodes. A leaf node represents a named entity and stores
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information about the entity. This information could include the entity itself, or a reference to the
entity (e.g., an address). A directory node (also called a context) is an inner node and does not
represent any single entity. Instead it stores a directory table, containing (node− id, edge− label)
pairs, that describes the node’s children. A leaf node only has incoming edges, while a directory
node has both incoming and outgoing edges. A third kind of node, a root node is a directory node
with only outgoing edges.

A structured name space can be strictly hierarchical or can form a directed acyclic graph
(DAG). In a strictly hierarchical name space a node will only have one incoming edge. In a DAG
name space any node can have multiple incoming edges. It is also possible to have name spaces
with multiple root nodes. Scalable systems usually use hierarchically structured name spaces.

A sequence of edge labels leading from one node to another is called a path name. A path
name is used to refer to a node in the graph. An absolute path name always starts from a root
node. A relative path name is any path name that does not start at the root node. In Figure 1 the
absolute path name that corresponds to the leftmost branch is <home,ikuz,cs9243 lectures>.
The path <ikuz,cs9243 lectures>, on the other hand, represents a relative path name.

Many name spaces support aliasing, in which case an entity may be reachable by multiple
paths from a root node and will therefore be named by numerous path names. There are two
types of alias. A hard link is when there are two or more paths that directly lead to that entity.
A soft link, on the other hand, occurs when a leaf node holds a pathname that refers to another
node. In this case the leaf node implicitly refers to the file named by the pathname. Figure 1
shows an example of a name space with both a hard link (the solid arrow from d3 to n0) and a
soft link (the dashed arrow from n1 to n2).

hard link

n1 n2

n0d1

d0

d2 d3

home

ikuz

cs9243_lectures

tmp

cs9243

lectures

"/home/cs9243/lectures"

contains

"/tmp"

"/home/cs9243/lectures"

temp

"/home/cs9243/temp"

soft link

Figure 1: An example of a name space with aliasing

Ideally we would have a global, homogeneous name space that contains names for all entities
used. However, we are often faced with the situation where we already have a collection of name
spaces that have to be combined into a larger name space. One approach is to simply create a
new name that combines names from the other name spaces. For example, a Web URL

http://www.cse.unsw.edu.au/~cs9243/naming-slides.ps

globalises the local name ~cs9243/naming-slides.ps by adding the context www.cse.unsw.edu.
au. Unfortunately, this approach often compromises location transparency—as is the case in the
example of URLs.

Another example of the composition of name spaces is mounting a name space onto a mount
point in a different (external) name space. This approach is often applied to merge file systems
(e.g., mounting a remote file system onto a local mount point). In terms of a name space graph,
mounting requires one directory node to contain information about another directory node in the
external name space. This is similar to the concept of soft linking, except that in this case the
link is to a node outside of the name space. The information contained in the mount point node
must, therefore, include information about where to find the external name space.
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Name Resolution

The process of determining what entity a name refers to is called name resolution. Resolving a
name2 results in a reference to the entity that the name refers to. Resolving a name in a name
space often results in a reference to the node that the name refers to. Path name resolution is
a process that starts with the resolution of the first element in the path name, and ends with
resolution of the last element in the name. There are two approaches to this process, iterative
resolution and recursive resolution.

In iterative resolution the resolver contacts each node directly to resolve each individual element
of the path name. In recursive resolution the resolver only contacts the first node and asks it to
resolve the name. This node looks up the node referred to by first element of the name and then
passes the rest of the name on to that node. The process is repeated until the last element is
resolved after which the result is returned back through the nodes to the resolver.

A problem with name resolution is how to determine which node to start resolution at. Knowing
how and where to start name resolution is referred to as the closure mechanism. One approach is
to keep an external reference (e.g., in a file) to the root node of the name space. Another approach
is to keep a reference to the ’current’ directory node for dealing with relative names. Note that
the actual closure mechanism is always implicit, that is it is never explicitly defined in a name.
The reason for this is that if a closure mechanism was defined in a name there would have to
be a way to resolve the name used for that closure mechanism. This would require the use of a
closure mechanism to bootstrap the original closure mechanism. Because this could be repeated
indefinitely, at a certain point an implicit mechanism will always be required.

Naming Service

A naming service is a service that provides access to a name space allowing clients to perform
operations on the name space. These operations include adding and removing directory or leaf
nodes, modifying the contents of nodes and looking up names. The naming service is implemented
by name servers. Name resolution is performed on behalf of clients by resolvers. A resolver can
be implemented by the client itself, in the kernel, by the name server, or as a separate service.

Distributed Naming Service

As with most other system services, naming becomes more involved in a distributed environment.
A distributed naming service is implemented using multiple name servers over which the name
space is partitioned and/or replicated. The goal of a distributed naming service is to distribute
both the management and name resolution load over these name servers.

Before discussing implementation aspects of distributed naming services it is useful to split a
name space up into several layers according to the role the nodes play in the name space. These
layers help to determine how and where to partition and replicate that part of the name space.
The highest level nodes belong to the global layer. A main characteristic of nodes in this layer
is that they are stable, meaning that they do not change much. As such, replicating these nodes
is relatively easy because consistency does not cause much of a problem. The next layer is the
administrational layer. The nodes in this layer generally represent a part of the name space that
is associated to a single organisational entity (e.g., a company or a university). They are relatively
stable (but not as stable as the nodes in the global layer). Finally the lowest layer is the managerial
layer. This layer sees much change. Nodes may be added or removed as well as have their contents
modified. The nodes in the top layers generally see the most traffic and, therefore, require more
effort to keep their performance at an acceptable level.

Typically, a client does not directly converse with a name server, but delegates this to a local
resolver that may use caching to improve performance. Each of the name servers stores one
or more naming contexts, some of which may be replicated. We call the name servers storing
attributes of an object this object’s authoritative name servers.

2also referred to as looking up a name
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Directory nodes are the smallest unit of distribution and replication of a name space. If they
are all on one host, we have one central server, which is simple, but does not scale and does not
provide fault tolerance. Alternatively, there can be multiple copies of the whole name space, which
is called full replication. Again, this is simple and access may be fast. However, the replicas will
have to be kept consistent and this may become a bottleneck as the system grows.

In the case of a hierarchical name space, partial subtrees (often called zones) may be maintained
by a single server. In the case of the Internet Domain Name Service (DNS), this distribution also
matches the physical distribution of the network. Each zone is associated with a name prefix that
leads from the root to the zone. Now, each node maintains a prefix table (essentially, a hint cache
for name servers corresponding to zones) and, given a name, the server corresponding to the zone
with the longest matching prefix is contacted. If it is not the authoritative name server, the next
zone’s prefix is broadcast to obtain the corresponding name server (and update the prefix table).
As an alternative to broadcasting, the contacted name server may be able to provide the address
of the authoritative name server for this zone. This scheme can be efficiently implemented, as the
prefix table can be relatively small and, on average, only a small number of messages are needed
for name resolution. Consistency of the prefix table is checked on use, which removes the need for
explicit update messages.

For smaller systems, a simpler structure-free distribution scheme may be used. In this scheme
contexts can be freely placed on the available name servers (usually, however, some distribution
policy is in place). Name resolution starts at the root and has to traverse the complete resolution
chain of contexts. This is easy to reconfigure and, for example, used in the standard naming
service of CORBA.

Implementation of Naming Services

In the following, we consider a number of issues that must be addressed by implementations of
name services. First, a starting point for name resolution has to be fixed. This essentially means
that the resolver must have a list of name servers that it can contact. This list will usually
not include the root name server to avoid overloading it. Instead, physically close servers are
normally chosen. For example, in the BIND (Berkeley Internet Name Domain) implementation
of DNS, the resolver is implemented as a library linked to the client program. It expects the file
/etc/resolv.conf to contain a list of name servers. Moreover, it facilitates relative naming in
form of the search option.

Name Caches

Name resolution is expensive. For example, studies found that a large proportion of Unix system
calls (and network traffic in distributed systems) is due to name-mapping operations. Thus,
caching of the results of name resolution on the client is attractive:

• High degree of locality of name lookup; thus, a reasonably sized name cache can give good
hit ratio.

• Slow update of name information database; thus, the cost for maintaining consistency is low.

• On-use consistency of cached information is possible; thus, no invalidation on update: stale
entries are detected on use.

There are three types of name caches:

• Directory cache: directory node data is cached. Directory caches are normally used with
iterative name resolution. They require large caches, but are useful for directory listings etc.

• Prefix cache: path name prefix and zone information is cached. Prefix caching is unsuitable
with structure-free context distribution.
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• Full-name cache: full path name information is cached. Full-name caching is mostly used
with structure-free context distribution and tends to require larger cache sizes than prefix
caches.

A name cache can be implemented as a process-local cache, which lives in the address space of
the client process. Such a cache does not need many resources, as it typically will be small in size,
but much of the information may be duplicated in other processes. More seriously, it is a short-
lived cache and incurs a high rate of start-up misses, unless a scheme such as cache inheritance
is used, which propagates cache information from parent to child processes. The alternative is a
kernel cache, which avoids duplicate entries and excessive start-up misses, but access to a kernel
cache is slower and it takes up valuable kernel memory. Alternatively, a shared cache can be
located in a user-space cache process that is utilised by clients directly or by redirection of queries
via the kernel (the latter is used in the CODA file system). Some Unixvariants use a tool called
“name server cache daemon” (nscd) as a user-space cache process.

Example: Domain Name System (DNS)

Information about DNS, the main concepts, the model, and implementation details can be found
in RFCs 1034 [Moc87a] and 1035 [Moc87b].

Attribute-Based Naming

Whereas names as described above encode at most one attribute of the named entity (e.g., a domain
name encodes the entity’s administrative or geographical location) in attribute-based naming an
entity’s name is composed of multiple attributes. An example of an attribute-based name is given
below:

/C=AU/O=UNSW/OU=CSE/CN=WWW Server/Hardware=Sparc/OS=Solaris/Server=Apache

The name not only encodes the location of the entity (/C=AU/O=UNSW/OU=CSE, where C is the
attribute country, O is organisation, OU is organisational unit — these are standard attributes
in X.500 and LDAP), it also identifies it as a Web server, and provides information about the
hardware that it runs on, the operating system running on it, and the software used. Although
an entity’s attribute-based name contains information about all attributes, it is common to also
define a distinguished name (DN), which consists of a subset of the attributes and is sufficient to
uniquely identify the entity.

In attribute-based naming systems the names are stored in directories, and each distinguished
name refers to a directory entry. Attribute-based naming services are normally called directory
services. Similar to a naming service, a directory service implements a name space that can be flat
or hierarchical. With a hierarchical name space its structure mirrors the structure of distinguished
names.

The structure of the name space (i.e., the naming graph) is defined by a directory information
tree (DIT). The actual contents of the directory (that is the collection of all directory entries) are
stored in the directory information base (DIB).

Directory Service

A directory service implements all the operations that a naming service does, but it also adds a
search operation that allows clients to search for entities with particular attributes. A search can
use partial knowledge (that is, a search does not have to be based on all of an entity’s attributes)
and it does not have to include attributes that form part of a distinguished name. Thus, given
a directory service that stores the entity named in the previous example, a search for all entities
that have Solaris as their operating system would return a list of directory entries that contain
the OS=Solaris attribute. This ability to search based on attributes is one of the key properties
that distinguishes a directory service from a naming service.
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Distributed Directory Service

The directory service is implemented by a directory server. As with naming services, directory
servers can be centralised or distributed. Even more than name services, centralised directory
services run the risk of becoming overloaded, thus distributed implementations are preferable when
scalability is required. Distributed implementations also increase the reliability of the service.

As in naming services, the directory service can be partitioned or replicated (or partitioned
and replicated). Partitioning of directory services follows the structure of the DIT, with the
tree being split up over available directory servers. Generally the nodes are partitioned so that
administratively or geographically related parts of the DIT are placed on the same servers. Figure 2
shows an example of the administrative partitioning of a DIT.

C=AUC=US

O=Slashdot

CN=WWW Server

O=USYD

OU=CS

CN=WWW Server CN=WWW Server

OU=CSE

O=UNSW

Figure 2: A partitioned DIT

Replication in a directory service involves either replicating the whole directory, or replicating
individual partitions. This replication is generally more sophisticated than in naming services, and
as a result a distributed directory service usually provides both read-only and read/write replicas.
Furthermore, caching (e.g., caching of query results) is also used to improve performance.

Lookup in a distributed directory service is similar to lookup in a distributed naming service,
it can be done iteratively (called referral) and recursively (called chaining). Search operations are
also handled using referral or chaining.

Because a search can be performed on any attributes, performing a search may require the
examination of every directory entry to find those containing the desired attributes. In a dis-
tributed directory service, this would require that all directory servers be contacted and requested
to perform the search locally. As this is inherently unscalable and incurs a high performance
penalty it is necessary for users to reduce the scope of searches as much as possible, for example,
by specifying a limited part of the directory tree in which to search. Another approach to increase
the performance for commonly performed searches is to keep a catalog at each directory server.
The catalog contains a subset of each directory entry in the DIB. Catalog entries generally contain
the distinguished attributes and some of the most searched for attributes. This way a search
can easily be resolved by searching through the local catalog and finding all entries that fulfill
the search criteria. It is necessary to tune the set of attributes stored in the catalog so that the
catalog remains effective, but does not become too large.

Example: X.500 and LDAP

X.500 and LDAP are examples of widely used directory services. An overview of X.500 and LDAP
can be found in [How95]. More technical details about both can be found in RFCs 1309 [WRH92],
1777 [YHK95], and 2251 [WHK97].
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Address Resolution of Unstructured Names

Unstructured names are almost like random bit strings and contain no information whatsoever
on how to locate the access point of the entity they refer to. Because of this lack of structured
information, we have the problem of how to find the corresponding address of the entity. Examples
of such unstructured names are IP numbers in a LAN or hash values.

A simple solution is to use broadcasting: The resolver simply broadcasts the query to every
node and only the node that has the access point answers with the address. This approach works
well in smaller systems. However, as the system scales, the broadcasts impose an increasing load on
the network and the nodes, which make it impractical for larger systems. As a practical example,
the address resolution protocol (ARP) uses this approach to resolve IP addresses of local nodes or
routers in a network to MAC addresses.

A more complicated and scalable approach is to use distributed hash tables (DHT). DHTs
are constructed as overlay networks and allow the typical operations of hash tables such as
put(), get() and remove(). The details of a DHT implementation called “Chord” can be found
in [SMLN+03]. An advantage of such DHTs is that lookups of keys and their values can be done
in O(log n) (where n is the number of nodes in the DHT), which makes DHTs very practical
even in very large-scale systems. A well known application of DHTs are peer-to-peer file-sharing
networks, where DHTs are used to store meta-information about the filenames or keywords of the
files in the network.
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