
Slide 1

DISTRIBUTED SYSTEMS [COMP9243]

Lecture 10: Naming

➀ Basic Concepts

➁ Naming Services

➂ Attribute-based Naming (aka Directory Services)

➃ Distributed hash tables

Slide 2

WHAT IS NAMING?

Systems manage a wide collection of entities of different

kinds. They are identified by different kinds of names:

➜ Files (/boot/vmlinuz), Processes (1, 14293), Users (chak, ikuz,

cs9243), Hosts (weill, facebook.com), . . .

Examples of naming in distributed systems?

What’s the difficulty?

BASIC CONCEPTS 1

Slide 3

BASIC CONCEPTS

Name:

➜ String of bits or characters

➜ Refers to an entity

Entity:

➜ Resource, process, user, etc.

➜ Operations performed on entities at access points

Address:

➜ Access point named by an address

➜ Entity address = address of entity’s access point

➜ Multiple access points per entity

➜ Entity’s access points may change

Slide 4

Identifier:

➜ Name that uniquely identifies entity

➜ Properties:

➀ Refers to at most one entity

➁ Entity referred to by at most one identifier

➂ Always refers to same entity (i.e. no reuse)

➜ Allows easy comparison of references

SYSTEM-ORIENTED VS HUMAN-ORIENTED NAMES 2

Slide 5

SYSTEM-ORIENTED VS HUMAN-ORIENTED NAMES

System-Oriented Names:

➜ Represented in machine readable form (32 or 64 bit strings)

➜ Structured or unstructured

V Easy to store, manipulate, compare

X Not easy to remember, hard for humans to use

➜ Example: inode (0x00245dad)

Human-Oriented Names:

➜ Variable length character strings

➜ Usually structured

➜ Often many human-oriented names map onto a single

system-oriented name

V Easy to remember and distinguish between

X Hard for machine to process

➜ Example: URL (http://www.cse.unsw.edu.au/~cs9243/lectures)

Slide 6

NAME SPACES

Container for a set of related names

Structure options:

➜ Flat (only leaf nodes)

➜ Hierarchical (Strictly hierarchical, DAG, Multiple root nodes)

➜ Tag-based

NAME SPACES 3

Slide 7

root

n1 n2

n0d1

d0

d2 d3

home

ikuz

cs9243_lectures

tmp

cs9243

lectures

"/tmp"

"/home/cs9243/lectures"

ikuz

cs9243

d2

d3

directory table

directory
leaf

Path Names (in hierarchies):

➜ Sequence of edge labels

➜ Absolute: if first node in path name is a root node

➜ Relative: otherwise

Slide 8

Aliasing:

➜ Alias: another name for an entity

➜ Hard link: two or more paths to an entity in the graph

➜ Soft link: leaf node stores a (absolute) path name to another

node

NAME SPACES 4

Slide 9

Merging:

➜ Mounting

• Directory node stores info about a directory node in other

name space

• Need: protocol, server, path name, authentication and

authorisation info, keys for secure communication, etc.

contains

d1

d0

d2 d3

home

ikuz cs9243

mnt

namespace2
root

n0d1

d0

d2 d3

namespace2

namespace1

media

audio video

tmp

"/tmp"

"/mnt/media/audio"
"/media/audio"

authentication

d4

➜ Combining name spaces

• http://www.cse.unsw.edu.au/~cs9243/naming-slides.pdf

• Name Spaces: Protocol, DNS, File System

Slide 10

NAMING SERVICES

A naming service provides a name space

Name Server:

➜ Naming service implemented by name servers

➜ Implements naming service operations

Operations:

➜ Lookup: resolve a path name, or element of a path name

➜ Add: add a directory or leaf node

➜ Remove: remove a subtree or leaf node

➜ Modify: modify the contents of a directory or leaf node

Client:

➜ Invokes naming service operations

Centralised vs Distributed Naming Service

NAME RESOLUTION 5

Slide 11

NAME RESOLUTION

The process of looking up a name

Resolution:

➜ Mapping a name onto the node referred to by the name

➜ Interested in the data stored by the node

Path Name Resolution:

➜ Starts at a begin node (first element of the path name)

• Root node for absolute name

• Directory node for relative name

➜ Ends with data from (or a reference to) the last node (last

element of path name)

Resolver:

➜ Does name resolution on behalf of client

➜ In client process, in client’s kernel, process on client’s machine

Slide 12

Iterative Resolution:

resolve /home/ikuz/cs9243_lectures

cs9243_

n1 n2

n0d1

d0

d2 d3

tmp

cs9243

home

ikuz

lectures

resolver

lectures

X Caching only at resolver

X Lots of communication

NAME RESOLUTION 6

Slide 13

Recursive Resolution:

n1 n2

n0d1

d0

d2 d3

tmp

cs9243

lectures

resolver

cs9243_lectures

resolve /home/ikuz/cs9243_lectures

home

ikuz

V Effective caching at name servers

V Reduced communication (if name servers close together)

V Name servers can be protected from external access

X Higher performance demand placed on servers

Slide 14

NAMING SERVICE IMPLEMENTATION ISSUES

Performance and Scalability:

➜ Limit load on name servers

➜ Limit communication required

➜ Partitioning: split name space over multiple name servers

➜ Replication: copy (parts of) name space on multiple name

servers

Fault Tolerance:

➜ Replication

Authoritative Name Server:

➜ Name server that stores an entity’s original attributes

PARTITIONING 7

Slide 15

PARTITIONING

Split name space over multiple servers

Structured Partitioning:

➜ split name space according to graph structure

➜ Name resolution can use zone hints to quickly find appropriate

server

V Improved lookup performance due to knowledge of structure

X Rigid structure

Structure-free Partitioning:

➜ content placed on servers independent of name space

V Flexible

X Decreased lookup performance, increased load on root

Slide 16

n1

n0d1

d0

d2 d3

home tmp

ikuz cs9243

cs9243_lectures lectures

zones

n2

tmp

n0n4n3n2n1

d1

d0

d2 d3

home

ikuz cs9243

REPLICATION 8

Slide 17

REPLICATION

Copy name space to multiple servers

Full Replication:

➜ copy complete name space

V Fast performance

X Size (each server must store whole name space)

X Consistency (any change has to be performed at all replicas)

X Administration (who has rights to make changes where?)

cs9243_

n1 n2

n0d1

d0

d2 d3

tmp

cs9243

home

ikuz

lectures
lectures

cs9243_

n1 n2

n0d1

d0

d2 d3

tmp

cs9243

home

ikuz

lectureslectures

Slide 18

Partial replication:

➜ Replicate full name servers

➜ Replicate zones

V Improved performance, less consistency overhead

V Less administrative problems

servers
d0

d1 n0

d2

n1

d3

n2

d0 d0

n0d1

d2

n1

d3

n2

d0 d1 d2 n1

home tmp

ikuz cs9243

cs9243_lectures lectures

zones

REPLICATION 9

Slide 19

Caching:

➜ Cache query results

V No administrative problems

➜ Types of caches:

• Directory cache: cache directory node information

• Prefix cache: cache path name prefixes

• Full-name cache: cache full names

➜ Cache implementations:

• Process-local cache: in address space of process

• Kernel cache: cache kept by kernel

• User-process cache: separate shared service

➜ Cache updates and consistency

• On use checking

• Timeout

• Invalidation

• Slow propagation

Slide 20

DNS (DOMAIN NAME SYSTEM)

Structure:

➜ Hierarchical structure (tree)

➜ Top-level domains (TLD) (.com, .org, .net, .au, .nl, ...)

➜ Zone: a (group of) directory node

➜ Resource records: contents of a node

➜ Domain: a subtree of the global tree

➜ Domain name: an absolute path name

DNS (DOMAIN NAME SYSTEM) 10

Slide 21

server2

.

med

mail www

au au... com org

unswunsw

unsw.edu.au

mail www

cse

mail www

cse

cse.unsw.edu.au

resolver

result: A 192.168.211.3

query: www.cse.unsw.edu.au

cache:
mail.med.unsw.edu.au
206.112.134.12

server1

Slide 22

Partitioning:

➜ Each zone implemented by a name server

Replication:

➜ Each zone replicated on at least two servers

➜ Updates performed on primary

➜ Contents transferred to secondary using zone transfer

➜ Higher levels have many more replicas (13 root servers:

A-M.root-servers.net. Actually 386 replicas using anycast)

Caching:

➜ Servers cache results of queries

➜ Original entries have time-to-live field (TTL)

➜ Cached data is non-authoritative, provided until TTL expires

Name Resolution:

➜ Query sent to local server

➜ If cannot resolve locally then sent to root

➜ Resolved recursively or iteratively

ATTRIBUTE-BASED NAMING (& LDAP) 11

Slide 23

ATTRIBUTE-BASED NAMING (& LDAP)

White Pages vs Yellow Pages:

➜ White Pages: Name ➼Phone number

➜ Yellow Pages: Attribute ➼Set of entities with that attribute

➜ Example: X.500 and LDAP

Attribute-Based Names:

➜ Example:/C=AU/O=UNSW/OU=CSE/CN=WWW

Server/Hardware=Sparc/OS=Solaris/Server=Apache

➜ Distinguished name (DN): set of attributes (distinguished

attributes) that forms a canonical name for an entity

Slide 24

Attribute-Based Naming:

➜ Lookup entities based on attributes

➜ Example: search("&(C=AU)(O=UNSW)(OU=*)(CN=WWW Server)")

➜ Attributes stored in directory entry, all stored in directory

Name Space:

➜ Flat: no structure in directory service

➜ Hierarchical: structured according to a hierarchy

➜ Distinguished name mirrors structure of name space

➜ All possible attribute types and name space defined by schema

ATTRIBUTE-BASED NAMING (& LDAP) 12

Slide 25

Tree (DIT)

Directory Information
Base (DIB)

C=AU

OU=CSE

O=USYDO=Slashdot O=UNSW

CN=WWW Server

CN=WWW Server OU=CS

C=US

CN=WWW Server

entry

Directory Information

Slide 26

DIRECTORY SERVICES

A directory service implements a directory

Operations:

➜ Lookup: resolve a distinguished name

➜ Add: add an entity

➜ Remove: remove an entity

➜ Modify: modify the attributes of an entity

➜ Search: search for entities that have particular attributes

➜ Search can use partial knowledge

➜ Search does not have to include distinguished attributes

➜ Most important qualities: allow browsing and allow searching

Client:

➜ Invokes directory service operations

DISTRIBUTED DIRECTORY SERVICE 13

Slide 27

DISTRIBUTED DIRECTORY SERVICE

Partitioning:

➜ Partitioned according to name space structure (e.g., hierarchy)

C=AUC=US

O=Slashdot

CN=WWW Server

O=USYD

OU=CS

CN=WWW Server CN=WWW Server

OU=CSE

O=UNSW

Slide 28

Replication:

➜ Replicate whole directory

➜ Replicate partitions

➜ Read/Write and read only replicas (e.g. primary-backup)

➜ Catalog and cache replicas

CN=WWW Server

OU=CSE

CN=WWW Server

OU=CSE

C=AU

O=UNSW

SEARCHING AND LOOKUP IN A DISTRIBUTED DIRECTORY 14

Slide 29

SEARCHING AND LOOKUP IN A DISTRIBUTED DIRECTORY

C=AU

OU=CSE

O=USYDO=Slashdot O=UNSW

CN=WWW Server CN=WWW Server

CN=WWW Server OU=CS

C=US

Client

search: CN=WWW Server

Client

CN=WWW Server
search: C=AU, O=UNSW,

Slide 30

Approaches:

➜ Chaining (recursive)

➜ Referral (iterative)

➜ Multicasting (uncommon)

Performance of Searching:

➜ Searching whole name space: must visit each directory server

X bad scalability

➜ Limit searches by specifying context

➜ Catalog: stores copy of subset of DIB information in each server

➜ Main problem: multiple attributes mean multiple possible

decompositions for partitioning BUT only one decomposition

can be implemented

X.500 AND LDAP 15

Slide 31

X.500 AND LDAP

X.500:

➜ ISO standard

➜ Global DIT

➜ Defines DIB, DIB partitioning, and DIB replication

LDAP (Lightweight Directory Access Protocol):

➜ X.500 access over TCP/IP

• X.500 is defined for OSI Application layer

➜ Textual X.500 name representation

➜ Popular on Internet

➜ Also X.500 free implementations (e.g. openldap)

➜ Used in Windows for Active Directory

Slide 32

ADDRESS RESOLUTION OF UNSTRUCTURED NAMES

Unstructured Names:

➜ Practically random bit strings

➜ Example: random key, hash value

➜ No location information whatsoever

➜ How to find corresponding address of entity?

ADDRESS RESOLUTION OF UNSTRUCTURED NAMES 16

Slide 33

Simple Solution: Broadcasting:

➜ Resolver broadcasts query to every node

➜ Only nodes that have access point will answer

Example – ARP:

Protocol to resolve MAC addresses from IP addresses.

➜ Resolver broadcasts:

Who has 129.94.242.201? Tell 129.94.242.200

➜ 129.94.242.201 answers to 129.94.242.200:

129.94.242.201 is at 00:15:C5:FB:AD:95

Slide 34

DISTRIBUTED HASH TABLES

Hash table (key value store) as overlay network:

➜ put(key, value), value = get(key), remove(key)

Example: look up unstructured host names:

put(weill, 129.94.242.49)

put(beethoven, 129.94.172.11)

put(maestro, 129.94.242.33)

address = get(beethoven)

➜ How high is performance cost of lookup?

CHORD: DISTRIBUTED HASH TABLE 17

Slide 35

CHORD: DISTRIBUTED HASH TABLE

General Structure:

➜ keys and node IP addresses mapped to identifier

➜ consistent hashing (SHA-1 m-bits)

➜ key assigned to first node with id > key → successor(key)

Slide 36

A simple lookup:

➜ use successors function

➜ recursive RPCs until node with key is found

➜ O(n) cost

CHORD: DISTRIBUTED HASH TABLE 18

Slide 37

A scalable lookup:

➜ routing table at every node: finger table

➜ ith entry is successor(n+ 2i−1)

➜ finger[1] is successor

Slide 38

➜ lookup greatest node id in table < k

➜ ask it to lookup the key

➜ exponentially smaller jumps

CHORD: DISTRIBUTED HASH TABLE 19

Slide 39

Adding a node:

➜ stabilize: ensure successor pointers up-to-date

➜ fix_fingers: ensure that finger tables updated

Slide 40

Dealing with node failure:

➜ successor list: r successors to handle r − 1 failures

➜ higher level must handle loss of data relating to failure

Analysis:

➜ finger table size: O(logn).

➜ O(logn) nodes contacted for lookup

➜ 1/2logn average

HOMEWORK 20

Slide 41

HOMEWORK

➜ How could you use a DHT to implement a directory service?

➜ How could you use a DHT to implement a file system?

Hacker’s edition:

➜ Use an existing DHT implementation to implement a simple file

system.

➜ Implement the DHT yourself

Slide 42

READING LIST

Domain Names - Implementation and Specification RFC 1035

DNS

The Lightweight Directory Access Protocol: X.500 Lite LDAP

Chord: A Scalable Peer-to-peer Lookup Protocol for Internet

Applications Chord

READING L IST 21

