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DISTRIBUTED SYSTEMS [COMP9243]

Lecture 10: Naming

➀ Basic Concepts

➁ Naming Services

➂ Attribute-based Naming (aka Directory Services)

➃ Distributed hash tables
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WHAT IS NAMING?

Systems manage a wide collection of entities of different

kinds. They are identified by different kinds of names:

➜ Files (/boot/vmlinuz), Processes (1, 14293), Users (chak, ikuz,

cs9243), Hosts (weill, facebook.com), . . .

Examples of naming in distributed systems?

What’s the difficulty?

BASIC CONCEPTS 1
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BASIC CONCEPTS

Name:

➜ String of bits or characters

➜ Refers to an entity

Entity:

➜ Resource, process, user, etc.

➜ Operations performed on entities at access points

Address:

➜ Access point named by an address

➜ Entity address = address of entity’s access point

➜ Multiple access points per entity

➜ Entity’s access points may change
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Identifier:

➜ Name that uniquely identifies entity

➜ Properties:

➀ Refers to at most one entity

➁ Entity referred to by at most one identifier

➂ Always refers to same entity (i.e. no reuse)

➜ Allows easy comparison of references

SYSTEM-ORIENTED VS HUMAN-ORIENTED NAMES 2
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SYSTEM-ORIENTED VS HUMAN-ORIENTED NAMES

System-Oriented Names:

➜ Represented in machine readable form (32 or 64 bit strings)

➜ Structured or unstructured

V Easy to store, manipulate, compare

X Not easy to remember, hard for humans to use

➜ Example: inode (0x00245dad)

Human-Oriented Names:

➜ Variable length character strings

➜ Usually structured

➜ Often many human-oriented names map onto a single

system-oriented name

V Easy to remember and distinguish between

X Hard for machine to process

➜ Example: URL (http://www.cse.unsw.edu.au/~cs9243/lectures)
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NAME SPACES

Container for a set of related names

Structure options:

➜ Flat (only leaf nodes)

➜ Hierarchical (Strictly hierarchical, DAG, Multiple root nodes)

➜ Tag-based

NAME SPACES 3
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Path Names (in hierarchies):

➜ Sequence of edge labels

➜ Absolute: if first node in path name is a root node

➜ Relative: otherwise
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Aliasing:

➜ Alias: another name for an entity

➜ Hard link: two or more paths to an entity in the graph

➜ Soft link: leaf node stores a (absolute) path name to another

node

NAME SPACES 4
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Merging:

➜ Mounting

• Directory node stores info about a directory node in other

name space

• Need: protocol, server, path name, authentication and

authorisation info, keys for secure communication, etc.
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➜ Combining name spaces

• http://www.cse.unsw.edu.au/~cs9243/naming-slides.pdf

• Name Spaces: Protocol, DNS, File System
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NAMING SERVICES

A naming service provides a name space

Name Server:

➜ Naming service implemented by name servers

➜ Implements naming service operations

Operations:

➜ Lookup: resolve a path name, or element of a path name

➜ Add: add a directory or leaf node

➜ Remove: remove a subtree or leaf node

➜ Modify: modify the contents of a directory or leaf node

Client:

➜ Invokes naming service operations

Centralised vs Distributed Naming Service

NAME RESOLUTION 5
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NAME RESOLUTION

The process of looking up a name

Resolution:

➜ Mapping a name onto the node referred to by the name

➜ Interested in the data stored by the node

Path Name Resolution:

➜ Starts at a begin node (first element of the path name)

• Root node for absolute name

• Directory node for relative name

➜ Ends with data from (or a reference to) the last node (last

element of path name)

Resolver:

➜ Does name resolution on behalf of client

➜ In client process, in client’s kernel, process on client’s machine
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Iterative Resolution:

resolve /home/ikuz/cs9243_lectures

cs9243_
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X Caching only at resolver

X Lots of communication
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Recursive Resolution:
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resolve /home/ikuz/cs9243_lectures

home
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V Effective caching at name servers

V Reduced communication (if name servers close together)

V Name servers can be protected from external access

X Higher performance demand placed on servers
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NAMING SERVICE IMPLEMENTATION ISSUES

Performance and Scalability:

➜ Limit load on name servers

➜ Limit communication required

➜ Partitioning: split name space over multiple name servers

➜ Replication: copy (parts of) name space on multiple name

servers

Fault Tolerance:

➜ Replication

Authoritative Name Server:

➜ Name server that stores an entity’s original attributes

PARTITIONING 7
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PARTITIONING

Split name space over multiple servers

Structured Partitioning:

➜ split name space according to graph structure

➜ Name resolution can use zone hints to quickly find appropriate

server

V Improved lookup performance due to knowledge of structure

X Rigid structure

Structure-free Partitioning:

➜ content placed on servers independent of name space

V Flexible

X Decreased lookup performance, increased load on root
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REPLICATION

Copy name space to multiple servers

Full Replication:

➜ copy complete name space

V Fast performance

X Size (each server must store whole name space)

X Consistency (any change has to be performed at all replicas)

X Administration (who has rights to make changes where?)
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Partial replication:

➜ Replicate full name servers

➜ Replicate zones

V Improved performance, less consistency overhead

V Less administrative problems
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Caching:

➜ Cache query results

V No administrative problems

➜ Types of caches:

• Directory cache: cache directory node information

• Prefix cache: cache path name prefixes

• Full-name cache: cache full names

➜ Cache implementations:

• Process-local cache: in address space of process

• Kernel cache: cache kept by kernel

• User-process cache: separate shared service

➜ Cache updates and consistency

• On use checking

• Timeout

• Invalidation

• Slow propagation
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DNS (DOMAIN NAME SYSTEM)

Structure:

➜ Hierarchical structure (tree)

➜ Top-level domains (TLD) (.com, .org, .net, .au, .nl, ...)

➜ Zone: a (group of) directory node

➜ Resource records: contents of a node

➜ Domain: a subtree of the global tree

➜ Domain name: an absolute path name

DNS (DOMAIN NAME SYSTEM) 10
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Partitioning:

➜ Each zone implemented by a name server

Replication:

➜ Each zone replicated on at least two servers

➜ Updates performed on primary

➜ Contents transferred to secondary using zone transfer

➜ Higher levels have many more replicas (13 root servers:

A-M.root-servers.net. Actually 386 replicas using anycast)

Caching:

➜ Servers cache results of queries

➜ Original entries have time-to-live field (TTL)

➜ Cached data is non-authoritative, provided until TTL expires

Name Resolution:

➜ Query sent to local server

➜ If cannot resolve locally then sent to root

➜ Resolved recursively or iteratively

ATTRIBUTE-BASED NAMING (& LDAP) 11
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ATTRIBUTE-BASED NAMING (& LDAP)

White Pages vs Yellow Pages:

➜ White Pages: Name ➼Phone number

➜ Yellow Pages: Attribute ➼Set of entities with that attribute

➜ Example: X.500 and LDAP

Attribute-Based Names:

➜ Example:/C=AU/O=UNSW/OU=CSE/CN=WWW

Server/Hardware=Sparc/OS=Solaris/Server=Apache

➜ Distinguished name (DN): set of attributes (distinguished

attributes) that forms a canonical name for an entity
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Attribute-Based Naming:

➜ Lookup entities based on attributes

➜ Example: search("&(C=AU)(O=UNSW)(OU=*)(CN=WWW Server)")

➜ Attributes stored in directory entry, all stored in directory

Name Space:

➜ Flat: no structure in directory service

➜ Hierarchical: structured according to a hierarchy

➜ Distinguished name mirrors structure of name space

➜ All possible attribute types and name space defined by schema

ATTRIBUTE-BASED NAMING (& LDAP) 12
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Tree (DIT)

Directory Information 
Base (DIB)

C=AU

OU=CSE

O=USYDO=Slashdot O=UNSW

CN=WWW Server

CN=WWW Server OU=CS

C=US

CN=WWW Server

entry

Directory Information
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DIRECTORY SERVICES

A directory service implements a directory

Operations:

➜ Lookup: resolve a distinguished name

➜ Add: add an entity

➜ Remove: remove an entity

➜ Modify: modify the attributes of an entity

➜ Search: search for entities that have particular attributes

➜ Search can use partial knowledge

➜ Search does not have to include distinguished attributes

➜ Most important qualities: allow browsing and allow searching

Client:

➜ Invokes directory service operations

DISTRIBUTED DIRECTORY SERVICE 13
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DISTRIBUTED DIRECTORY SERVICE

Partitioning:

➜ Partitioned according to name space structure (e.g., hierarchy)

C=AUC=US

O=Slashdot

CN=WWW Server

O=USYD

OU=CS

CN=WWW Server CN=WWW Server

OU=CSE

O=UNSW
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Replication:

➜ Replicate whole directory

➜ Replicate partitions

➜ Read/Write and read only replicas (e.g. primary-backup)

➜ Catalog and cache replicas

CN=WWW Server

OU=CSE

CN=WWW Server

OU=CSE

C=AU

O=UNSW

SEARCHING AND LOOKUP IN A DISTRIBUTED DIRECTORY 14
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SEARCHING AND LOOKUP IN A DISTRIBUTED DIRECTORY

C=AU

OU=CSE

O=USYDO=Slashdot O=UNSW

CN=WWW Server CN=WWW Server

CN=WWW Server OU=CS

C=US

Client

search: CN=WWW Server

Client

CN=WWW Server
search: C=AU, O=UNSW,
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Approaches:

➜ Chaining (recursive)

➜ Referral (iterative)

➜ Multicasting (uncommon)

Performance of Searching:

➜ Searching whole name space: must visit each directory server

X bad scalability

➜ Limit searches by specifying context

➜ Catalog: stores copy of subset of DIB information in each server

➜ Main problem: multiple attributes mean multiple possible

decompositions for partitioning BUT only one decomposition

can be implemented

X.500 AND LDAP 15

Slide 31

X.500 AND LDAP

X.500:

➜ ISO standard

➜ Global DIT

➜ Defines DIB, DIB partitioning, and DIB replication

LDAP (Lightweight Directory Access Protocol):

➜ X.500 access over TCP/IP

• X.500 is defined for OSI Application layer

➜ Textual X.500 name representation

➜ Popular on Internet

➜ Also X.500 free implementations (e.g. openldap)

➜ Used in Windows for Active Directory
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ADDRESS RESOLUTION OF UNSTRUCTURED NAMES

Unstructured Names:

➜ Practically random bit strings

➜ Example: random key, hash value

➜ No location information whatsoever

➜ How to find corresponding address of entity?

ADDRESS RESOLUTION OF UNSTRUCTURED NAMES 16
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Simple Solution: Broadcasting:

➜ Resolver broadcasts query to every node

➜ Only nodes that have access point will answer

Example – ARP:

Protocol to resolve MAC addresses from IP addresses.

➜ Resolver broadcasts:

Who has 129.94.242.201? Tell 129.94.242.200

➜ 129.94.242.201 answers to 129.94.242.200:

129.94.242.201 is at 00:15:C5:FB:AD:95
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DISTRIBUTED HASH TABLES

Hash table (key value store) as overlay network:

➜ put(key, value), value = get(key), remove(key)

Example: look up unstructured host names:

put(weill, 129.94.242.49)

put(beethoven, 129.94.172.11)

put(maestro, 129.94.242.33)

address = get(beethoven)

➜ How high is performance cost of lookup?

CHORD: DISTRIBUTED HASH TABLE 17
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CHORD: DISTRIBUTED HASH TABLE

General Structure:

➜ keys and node IP addresses mapped to identifier

➜ consistent hashing (SHA-1 m-bits)

➜ key assigned to first node with id > key → successor(key)
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A simple lookup:

➜ use successors function

➜ recursive RPCs until node with key is found

➜ O(n) cost

CHORD: DISTRIBUTED HASH TABLE 18
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A scalable lookup:

➜ routing table at every node: finger table

➜ ith entry is successor(n+ 2i−1)

➜ finger[1] is successor
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➜ lookup greatest node id in table < k

➜ ask it to lookup the key

➜ exponentially smaller jumps

CHORD: DISTRIBUTED HASH TABLE 19
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Adding a node:

➜ stabilize: ensure successor pointers up-to-date

➜ fix_fingers: ensure that finger tables updated
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Dealing with node failure:

➜ successor list: r successors to handle r − 1 failures

➜ higher level must handle loss of data relating to failure

Analysis:

➜ finger table size: O(logn).

➜ O(logn) nodes contacted for lookup

➜ 1/2logn average

HOMEWORK 20
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HOMEWORK

➜ How could you use a DHT to implement a directory service?

➜ How could you use a DHT to implement a file system?

Hacker’s edition:

➜ Use an existing DHT implementation to implement a simple file

system.

➜ Implement the DHT yourself
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READING LIST

Domain Names - Implementation and Specification RFC 1035

DNS

The Lightweight Directory Access Protocol: X.500 Lite LDAP

Chord: A Scalable Peer-to-peer Lookup Protocol for Internet

Applications Chord
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