

NFS Version 3
Design and Implementation

Brian Pawlowski
Chet Juszczak
Peter Staubach

Carl Smith
Diane Lebel
David Hitz

Performance suffers under NFS Version 2 be-
cause the protocol requires servers to write data and
file system metadata to stable storage (usually disk)
synchronously, before replying successfully to a client

WRITE

 request

[Ousterhout90]

. The performance
problem with synchronous writes was recognized ear-
ly. NFS Version 2 has an artifact of a proposed inter-
face for asynchronous writes (the undefined

WRITECACHE

 procedure).

Implementations have attacked this problem in
several ways.

[Moran90]

 describes the Prestoserve
product, which interposes a software driver between
the file system and disk driver to accelerate writes by
using nonvolatile RAM.

[Juszczak94]

 describes a
technique called

write gathering,

which exploits the
tendency of more-capable clients to send write re-
quests in clusters to gain parallelism. The author im-
plemented a server that gathers several writes before
synchronously committing the data to disk, thereby
amortizing the cost of synchronous writes over several
requests.

[Hitz94]

 describes an integrated file server
design that combines a log-based file system and non-
volatile RAM to solve the synchronous write bottle-
neck.

Some implementations provide an “unsafe” op-
tion in their NFS Version 2 server that disables com-
mitting modified data to stable storage. While improv-
ing performance, this option violates the stable storage
guarantee in the NFS Version 2 protocol and can result
in data loss. This option has resulted in heated debate.

Lack of consistency guarantees was cited as the
cause of excessive requests over-the-wire resulting in
increased server loading and response time

[Howard88]

.

[Reid90]

 and

[Arnold91]

 describe addi-
tional problems with NFS Version 2.

3. The NFS Version 3 protocol

Engineers from several companies gathered for a two-
week series of meetings in July, 1992, in Boston, MA.
to develop an NFS Version 3 specification. The

Abstract

This paper describes a new version of the Network File
System (NFS) that supports access to files larger than
4GB and increases sequential write throughput seven-
fold when compared to unaccelerated NFS Version 2.
NFS Version 3 maintains the stateless server design
and simple crash recovery of NFS Version 2, and the
philosophy of building a distributed file service from
cooperating protocols. We describe the protocol and
its implementation, and provide initial performance
measurements. We then describe the implementation
effort. Finally, we contrast this work with other dis-
tributed file systems and discuss future revisions of
NFS.

1. Introduction

“It is common sense to take a method and try it.
If it fails, admit it frankly and try another. But
above all, try something.”

Roosevelt, 1932

The NFS protocol is a collection of remote procedures
that allow a client to transparently access files stored
on a server

[Joy84a]

. It is independent of architecture

[RFC1014]

, operating system, network, and transport
protocol. The protocol does not exactly match the se-
mantics of any existing system. Instead, it provides a
basis for portability and interoperability.

NFS Version 1 existed only within Sun Microsys-
tems and was never released. NFS Version 2 was im-
plemented in 1984 and released with SunOS 2.0, in
1985

[Sandberg85]

. NFS Version 2 implementations
exist for a variety of machines, from personal comput-
ers to supercomputers.

2. NFS Version 2 protocol problems

Several problems in NFS Version 2 could only be
solved through a new version of the protocol. The 4GB
file size limitation has recently become a pressing
problem, although implementations of NFS on larger
machines such as Cray supercomputers exposed this
limitation years ago.

Presented June 9, 1994
USENIX Summer 1994 — Boston, Massachusetts

copyright



 1994 The USENIX Association
reproduced by permission

group’s goal was to address compelling issues in the
current protocol that could not be solved by implemen-
tation practice. The only absolute requirement was 64-
bit file size support.

Other issues under consideration included the fol-
lowing:

• Solving the write throughput bottleneck
• Minimizing the work needed to create an NFS

Version 3 implementation given an existing NFS
Version 2 implementation

• Ensuring that implementation of the new protocol
is feasible on less-capable client operating sys-
tems (for example, DOS)

• Completely documenting the resulting protocol
and annotating it with implementation examples
to aid developers

• Deferring new features to subsequent revisions of
NFS due to time constraints

Above all, the driving principles were the following:

• Keep it simple
• Get it done in a year
• Avoid anything controversial

Although it wasn’t an absolute requirement, we
felt that solving the write throughput bottleneck would
provide the most compelling feature.

3.1. Changes introduced

NFS Version 3 represents an evolution of the existing
NFS Version 2 protocol. Most of the original design
features described in

[Joy84a]

,

[Sandberg85]

, and

[RFC1094]

 persist. This revision introduces the fol-
lowing major changes:

• Sizes and offsets are widened from 32 bits to 64
bits.

• The

WRITE

 and

COMMIT

 procedures allow reliable
asynchronous writes.

• A new

ACCESS

 procedure fixes known problems
with super-user permission mapping and allows
servers to return file access permission errors to
the client at file open time to provide better sup-
port for systems with Access Control Lists
(ACLs).

• All operations now return attributes to reduce the
number of subsequent

GETATTR

 procedure calls.
• The 8KB data size limitation on the

READ

 and

WRITE

 procedures is relaxed.
• A new

READDIRPLUS

 procedure returns both file
handle and attributes to eliminate

LOOKUP

 calls
when scanning a directory.

• File handles are of variable length, up to 64 bytes,
as needed by some implementations

[Pawlowski89]

. (We kept the file handle size
small enough to allow efficient DOS implementa-
tions.)

• Exclusive

CREATE

 requests are supported.
• File names and path names are now specified as

strings of variable length, with the maximum
length negotiated between the client and server
(with the

PATHCONF

[POSIX90]

 procedure).
• The errors the server can return are enumerated in

the specification—no others are allowed.
• The notion of blocks is discarded in favor of

bytes.
• The new

NFS3ERR_JUKEBOX

 error informs cli-
ents that a file is currently off-line and that they
should try again later.

Appendix 1 provides a summary of the protocol differ-
ences between NFS Version 2 and NFS Version 3. Re-
fer to

[NFS3]

 for more details.

At least eight new versions of NFS have been pro-
posed to fix NFS Version 2, none of which has ever
been completely implemented. Public reviews of the
draft versions of new protocol specifications have oc-
curred continuously since early 1987. Several changes
included in NFS Version 3 first appeared in those eight
drafts.

3.2. What was avoided

“Let joy and innocence prevail.”

Toys, 1993

In the years since the NFS protocol was first described,
implementation practice solved several problems orig-
inally thought to require a protocol revision, although
minor, undocumented changes were made to the pro-
tocol without a formal revision. In practice, NFS Ver-
sion 2 mostly works, and we tried not to break it. Ac-
cepting common implementation practice reduced the
number of changes needed to produce NFS Version 3.
Minor protocol changes were cleaned up and incorpo-
rated into this work.

We decided to maintain the current stateless de-
sign of NFS and not include strict cache consistency.
When we defined NFS Version 3, research work on
consistent versions of NFS was incomplete. Delaying
support for 64-bit file sizes to explore adding stateful
consistency was unacceptable. In addition, it seemed
clear that supporting strict data consistency introduces
complexities that would preclude implementation on
less-capable clients. Finally, the recovery benefits of a
stateless server were clear, while the issues of stateful
recovery were not.

The stateless server design of NFS creates a prob-
lem with the replaying of nonidempotent requests. An
idempotent request such as

LOOKUP

 can be successful-

ly executed any number of times. A nonidempotent re-
quest such as

REMOVE

 can be successfully executed
only once. Primarily a correctness problem, this condi-
tion has been solved through the use of a reply cache
of recently serviced requests on the server

[Juszczak89]

. Proposed protocol extensions to NFS at-
tempted to fix this but were essentially misguided. The
Boston group simply acknowledged the effectiveness
of this implementation technique and left the protocol
alone.

Many other changes to NFS Version 2 were pro-
posed in the eight protocol revisions, including the fol-
lowing:

• The

ZERO

 procedure to punch holes in a file
• Append mode writes
• Record-oriented I/O support
• File name to include versions
• User and group fields as strings
• Extended attributes (arbitrary key/value pairs)
• Well-defined UID mapping procedures
• Advisory close procedure
• Resource fork support for the Macintosh
• Multiple OS-dependent name spaces
• A get server statistics procedure

Most of the above proposed features were rejected
because by 1992 implementers had worked around
purported “protocol limitations” that would prevent
implementations on non-UNIX platforms. Other pro-
posed features above were rejected because they were
specific to a single operating system. The remaining
proposed features were discarded because they at-
tempted to solve a problem simplistically that was best
solved correctly (for example, append mode writes
versus a full consistency protocol).

4. Design and implementation

NFS Version 3 defines a revision to NFS Version 2; it
does not provide a new model for distributed file sys-
tems. Because of this, NFS Version 3 resembles NFS
Version 2 in design assumptions, file system and con-
sistency model, and method of recovering from server
crashes. For a general description of the implementa-
tion issues of NFS, see

[Sandberg85]

,

[Israel89]

,

[Juszczak89]

,

[Pawlowski89]

,

[Macklem91]

, and

[Juszczak94]

.

4.1. NFS design

NFS achieves architecture and operating system inde-
pendence through a strict separation of the protocol
and its implementation. The protocol is the interface
by which clients access files on a server. A client or
server implements the protocol by mapping local file

system actions into the file system model defined by
NFS. The NFS protocol does not dictate how a server
implements the interface or how a client should use the
interface

[Satyanarayanan89]

. For example, the NFS
Version 3 protocol does not define how a client should
manage cached data, but it does provide information to
improve cache management.

Although implementations have been used to il-
lustrate aspects of the NFS protocol, the specification
itself is the final description of how clients should ac-
cess servers. Semantic details that were not fully de-
scribed in the NFS Version 2 specification

[RFC1094]

have proven, in practice, not to be a problem and have
been worked out through interoperability testing. Most
problems are flaws in implementations, instead of the
protocol design.

The NFS protocol is stateless; that is, each request
contains sufficient information to be completely pro-
cessed without regard to other requests. The server
does not need to maintain state about any previous re-
quests

1

 other than file data on stable storage, and a
map of file handles (opaque tokens used by clients to
access files) to files derived from file system data. Of
course, most servers cache file data that has been syn-
chronized to disk to improve performance. However,
this cached data is not needed for correct operation.

Server crash recovery is simple. A client need
only retry a request until the server responds; the client
does not know that the server has rebooted (although
the user may notice delayed responses). Experience at
Sun with

network disk (nd

), an earlier method of shar-
ing disk storage on a network, led to the stateless serv-
er requirement in the initial design of NFS

[Joy84b]

.

The NFS Version 3 protocol requires that modi-
fied data on the server be flushed to stable storage be-
fore replying. Only asynchronous writes are excepted.
NFS clients block on

close(2)

 until all data is flushed
to stable storage on the server, to return any errors to
the application that might occur during delayed writes
(for example, out of space).

NFS clients are decidedly not stateless. NFS cli-
ents hold modified data that has not been flushed to the
server as well as cache file handles and attributes. Cli-
ents typically use attribute information, such as file
modification time, to validate cached information.
When a client crashes no recovery is necessary for ei-
ther the client or the server.

1

To be precise, the reply cache on a server contains volatile state
needed for correctness

[Kazar94]

. See

[Bhide91]

 for further discus-
sion on the reply cache and its implications for server correctness.
TCP-based implementations of NFS still need a reply cache to pre-
vent destructive replay following connection re-establishment.

Thus, NFS servers are stupid and NFS clients are
smart. NFS Version 3 offers the possibility of poten-
tially smarter clients.

4.2. Multiple version support

The Remote Procedure Call (RPC) protocol provides
explicit support for multiple versions of a service

[RFC1057]

. The client and server implementations of
NFS Version 3 provide backward compatibility with
NFS Version 2 by supporting

both

 NFS Version 2 and
NFS Version 3. By default, an RPC client and server
bind using the highest version number they both sup-
port. Client or server implementations that cannot sup-
port both versions (for example, due to memory re-
strictions) should support NFS Version 2.

4.3. Implementation issues

A primary goal in restricting the changes between NFS
Version 2 and NFS Version 3 was to minimize new
implementation issues. Implementation issues exist in
the following areas:

• 64-bit file sizes and offsets
• Asynchronous writes
•

READDIRPLUS

—read directory with attributes
•

NFS3ERR_JUKEBOX

• Weak cache consistency
• Other issues

4.3.1 64-bit file sizes and offsets

The 64-bit extensions in NFS Version 3 introduce
problems with mismatched clients and servers, such as
a 32-bit client and a 64-bit server, or a 64-bit client and
a 32-bit server.

A 64-bit client will never encounter a file that it
cannot handle when using a 32-bit server. If it sends a
request that the server cannot handle, the server should
return

NFS3ERR_FBIG

.

The problems posed by a 32-bit client and a 64-bit
server are more difficult. The server can handle any-
thing that the client can generate. However, the client
cannot handle a file whose size can not be expressed in
32-bits, and will not properly decode the size of the file
into its local attributes structure. One solution is for the
client to deny access to any file whose size cannot be
expressed in 32 bits. This introduces anomalous be-
havior when a file is extended by the client beyond its
limit, thus rendering the file inaccessible.

Another solution is for the client to map any size
greater than it can handle to the maximum size that it
can handle, effectively “lying” to the application pro-
gram. This allows the application access to as much of
the file as possible given the 32-bit offset restriction.

Although this solution eliminates the anomalous be-
havior described in the first solution, it introduces the
problem that a client might be able to access only part
of a file. However, other solutions exist.

4.3.2 Asynchronous writes

NFS Version 3 asynchronous writes eliminate the syn-
chronous write bottleneck in NFS Version 2. When a
server receives an asynchronous

WRITE

 request, it is
permitted to reply to the client immediately. Later, the
client sends a

COMMIT

 request to verify that the data
has reached stable storage; the server must not reply to
the

COMMIT

 until it safely stores the data.

Asynchronous writes as defined in NFS Version 3
are most effective for large files. A client can send
many

WRITE

 requests, and then send a single

COMMIT

to flush the entire file to disk when it closes the file.
This allows the server to do a single large write, which
most file systems handle much more efficiently than a
series of small writes. For very large files, the server
can flush data in the background so that most of it will
already be on disk when the

COMMIT

 request arrives.

Asynchronous writes are optional in NFS
Version 3, and specific client or server implementa-
tions can choose not to support this feature. A server
can choose to flush asynchronous write requests to sta-
ble storage. In this case, the server indicates this in the

WRITE

 reply. Clients with insufficient memory to sup-
port the necessary buffering required for server crash
recovery can always request synchronous writes.

4.3.2.1 Crash recovery

The design of asynchronous writes is consistent with
the stupid server and smart client philosophy of NFS.
The client is required to keep a copy of all uncommit-
ted data to support recovery following a server crash.
The replies for

WRITE

 and

COMMIT

 requests include a

write verifier

 that clients use to detect server crashes.
The write verifier is an 8-byte value that the server
must change whenever it crashes. Servers commonly
use their boot time as a write verifier, because it is
guaranteed to be unique after each crash. The client
must save the write verifier returned by each asynchro-
nous

WRITE

 request and compare it to the write verifi-
er returned by a later

COMMIT

 request. If the write ver-
ifiers do not match, then the client assumes that the
server has crashed and rebooted.

The client must then rewrite all uncommitted da-
ta. Clients can push data with synchronous writes fol-
lowing server failure. The client can delay rewriting
data when it detects a crash to avoid flooding a newly
rebooted server with

WRITE

 requests. Figure 1 shows

page is clean
page is dirty

① application write(2)
page is writtenfile normal

page is dirty

② asynchronous WRITE
client

file in recovery❸ unsuccessful

④ synchronous WRITE

③ successful COMMIT

Figure 1. Client page states with asynchronous writes (The Digital OSF/1 implementation). This diagram shows the state changes that
occur as a page of memory containing file data is modified, written, and then committed. ① A local application modifies the page, and it
is marked dirty. ② The client asynchronously writes the data to the server. The client stores the write verifier from the asynchronous write
request with each page. An explicit msync(2), fsync(2) or close(2) from the application, a file system sync, or page reclamation will trigger
a COMMIT. The write verifier returned from the COMMIT request is compared against those stored with the written pages. ③ The page’s
write verifier matches the returned verifier, and the commit succeeds. ❸ The write verifier for the page does not match the returned write
verifier, triggering recovery. ④ The client synchronously writes the data to the server.

COMMIT

the state changes that occur as a page of memory con-
taining file data is modified, written to the server, and
then committed.

4.3.2.2 Server details

An NFS Version 3 server makes the following three
guarantees:

• For a synchronous WRITE request, the server will
commit to stable storage all data and modified
metadata.

• The server will not discard uncommitted data
without changing the write verifier.

• The server will commit the file’s data and modi-
fied metadata to stable storage for the range spec-
ified in the COMMIT request before reporting suc-
cess.

Other conditions arise in which the write verifier
must change. For example, the server must change the
write verifier on failover if NFS Version 3 forms the
basis of a non-shared memory, highly available imple-
mentation of NFS [Bhide91]. The unsynchronized
data is not available to the backup processor, and there
is no guarantee that the primary processor was able to
flush uncommitted data to stable storage before going
down.

If a server is shut down cleanly, it could be advan-
tageous to save the write verifier for reuse when the
server is brought back on line. This avoids triggering
client rewrites of already committed data.

4.3.2.3 Data sharing

Asynchronous writes make write sharing without us-
ing a higher-level application synchronization proto-
col even less attractive than with NFS Version 2. NFS
Version 3 clients preserve close-to-open consistency:
clients typically block on a close(2) until all data is
flushed to server stable storage and revalidate cached
data with an attribute check on open(2). Strictly speak-
ing, close-to-open consistency is only an implementa-
tion practice. Data sharing semantics of NFS
Version 3 differ from those of NFS Version 2 if an
NFS Version 3 server reboots and loses uncommitted
data. Because write sharing between NFS Version 2
clients was never supported in the absence of locking,
changes in essentially undefined behavior is not con-
sidered a major issue.

4.3.3 READDIRPLUS

NFS Version 3 contains a new operation called
READDIRPLUS, which returns file handles and at-
tributes in addition to the directory information re-
turned by READDIR.

READDIRPLUS exploits observed request se-
quences generated by NFS Version 2 clients. For ex-
ample, when a UNIX user types “ls -F dir” to
browse a directory containing 20 entries, the ls com-
mand opens the target directory, reads it, and then calls
stat(2) 20 times. In NFS Version 2, a READDIR request
would be followed by 20 sequential LOOKUP requests
to retrieve attributes (and file handles). In NFS Ver-
sion 3, a single READDIRPLUS retrieves the name list
and attributes for the 20 entries, significantly reducing
the command execution time.

There are some drawbacks to READDIRPLUS,
however. A READDIRPLUS is more expensive than a
corresponding READDIR. Results from an implementa-
tion that generates exclusively READDIRPLUS requests
show a performance drop because attributes for all en-
tries in a directory are fetched repeatedly for every ac-
cess to a directory.

The READDIRPLUS operation can be viewed as a
way to get the contents of a directory and to populate
name and attribute caches for the entries in that direc-
tory at the same time. The READDIRPLUS operation
should be used only when reading a directory for the
first time or when rereading a directory whose cache
entry was invalidated because the directory was mod-
ified. A READDIRPLUS should not be issued when a
valid cache entry for a directory exists, because it is
likely that a READDIRPLUS operation was recently is-
sued to populate the various caches with directory en-
try attributes and file handles.

4.3.4 NFS3ERR_JUKEBOX

NFS3ERR_JUKEBOX2 lets servers inform clients that a
file is temporarily inaccessible (archived offline or
locked against modification for backup) and that they
should retry the request later. It is intended to improve
the behavior of NFS in hierarchical storage manage-
ment applications.

In NFS Version 2, a server performs one of three
actions if a file is temporarily inaccessible. The first
action is to drop the request, which forces the client
into normal back-off and retransmission. The request
will be satisfied at some later time on a retry. The sec-
ond action is to have the server block a service thread
until the file again becomes accessible. The second ac-
tion is often implemented inadvertently; because cli-
ents employ mechanisms like biods to gain parallelism
and will emit several related requests to one file,
blocking server threads can hang the server. The third
action is to return some error to the client, thus reject-
ing the request.

An NFS Version 3 server returns
NFS3ERR_JUKEBOX when a file is temporarily inac-
cessible. The client operating system does not return
the error to the application but handles it internally by
aggressively delaying reissue of the request, thereby
reducing server load due to request retransmission. Af-
ter a tunable delay, the request is reissued. The client

2 The term “JUKEBOX” is a long standing joke in the NFS commu-
nity. We kept the historical error name even though it incorrectly im-
plies a binding to a particular HSM mechanism. Given the generic
intent of the error, NFS3ERR_TMP_INACCESSIBLE would be
more appropriate.

should reissue the request with another transmission
id.

4.3.5 Weak cache consistency

Many NFS Version 2 clients cache file and directory
data to improve performance. To determine whether
cached data is valid, a client sends a GETATTR request.
If the new modification time from the server matches
the modification time in the client’s cached attributes,
then the client assumes its cache is up-to-date. If the
modification times don’t match, then the file must
have changed, and the client invalidates its cache.

This method fails when the client itself modifies
the file being cached. For example, if a client writes to
one part of a file, cached data for other parts is proba-
bly still valid. But it is impossible for the client to be
sure, because the client’s own WRITE request updated
the file’s modification time. A reckless client might
keep the cache data (which is dangerous), and a cau-
tious client might invalidate the cache (which is slow).

Weak cache consistency offers an alternative by
helping clients determine more accurately when to in-
validate their cache. The reply for each NFS Version 3
request that can modify data includes two versions of
the file’s attributes: pre-operation attributes from just
before the server performed the operation and post-op-
eration attributes from just after the operation. If the
modification time in the pre-operation attributes from
the server matches the cached attributes on the client,
then the client’s cache is valid. The client should up-
date its attribute cache with the new post-operation at-
tributes.

Weak cache consistency does not provide true
consistency such as found in Sprite [Nelson88]. With
weak cache consistency, clients might see an inconsis-
tent view of server data. For example, one client might
have modified a file locally but not yet flushed the new
data to the server. Even if it has, a second client will
only verify modification times when a file is first
opened or when the cached attributes time out. As a re-
sult, a second client’s cache may be out of date.

Some servers may be unable to generate pre-oper-
ation attributes, so clients should be prepared to fall
back to NFS Version 2 behavior. Since weak cache
consistency is just a hint, client implementations are
free to use it or ignore it.

4.3.6 Other issues

Two changes in NFS Version 3 impose extra work on
the client. For many NFS Version 3 requests, it is op-
tional to return file handle and attribute information
that is mandatory in NFS Version 2. For example, in

NFS Version 2, the CREATE request must return the
file handle and attributes for the newly created file, but
in NFS Version 3, their return is optional. As a result,
an NFS Version 3 client must be prepared to issue a
LOOKUP after each CREATE, in case the server does not
return a file handle for the new file. Furthermore, in
NFS Version 3, it is optional for LOOKUP to return at-
tributes, so the client must also be prepared to issue a
GETATTR.

NFS Version 2 servers are required to accept all or
none of the data in a WRITE request. In NFS Version 3,
a server can accept only some of the data in a write,
and the client is expected to send the rest a second
time. For example, a client might send an 8192 byte re-
quest, but a server might choose to accept only 1 byte.
The client must be prepared to send the remaining
8191 bytes a second time, and again, the server might
choose not to accept the entire request.

In practice, these features are unlikely to be a
problem because most server implementations will al-
ways return optional information and accept the entire
contents of WRITE requests.

4.4. Changes to related protocols

NFS Version 3 continues the philosophy of building a
network file service from a collection of cooperating
protocols. The mount protocol (MOUNT) allows an
NFS client to gain access to an exported directory on a
server, and the network lock manager protocol (NLM)
supports remote file locking for NFS.

Changes to the file handle and file size fields in
NFS Version 3 required corresponding changes in
MOUNT and NLM, so new versions of both protocols
have been released. The new MOUNT specification
allows a successful mount to return a list of acceptable
RPC authentication flavors (such as DES or Kerberos)
for the client to use. Automounter facilities can use
this information to correctly access servers which re-
quire certain flavors of authentication. The new
MOUNT protocol is also slightly cleaner than the pre-
vious one. For example, legal error values have been
enumerated instead of allowing any UNIX error num-
ber.

5. Performance

A major goal of NFS Version 3 was to improve perfor-
mance, especially in write throughput. Performance
was improved by the following:

• Providing reliable asynchronous writes
• Removing the 8KB data size limitation for READ

and WRITE requests
• Providing a READDIRPLUS procedure that returns

file handles and attributes with directory names
• Returning attribute information in all replies
• Providing weak cache consistency data to allow a

client to more effectively manage its caches

5.1. Test setup

We measured Digital’s OSF/1 implementation of NFS
Versions 2 and 3. The local file system employed for
these tests was the Berkeley Fast File System with en-
hanced clustering [McVoy91]. Except where noted,
the following configuration was used to generate the
performance results:

• Two Digital Model 3000/600 96MB workstations
• Private FDDI network
• Server running 16 nfsds (multiple threads of exe-

cution used on an NFS server to gain parallelism).
• Client running 7 nfsiods (or biods—multiple

threads of execution used on an NFS client to gain
parallelism)

• With and without Prestoserve on server, using
1MB NVRAM

• With and without write gathering on server
• Server configured with one 1GB RZ26 SCSI disk,

2.3 MB/sec raw transfer rate.

The tests ran with NFS running on top of UDP
with a maximum transfer size of 8KB. The larger
transfer sizes permitted by NFS Version 3 were not ex-
ploited. Measurements at SunSoft on a system using
larger than 8KB transfer sizes showed improved write
throughput, presumably from the reduced file system
overhead resulting from fewer separate I/O requests
and fewer RPC messages over-the-wire.

5.2. Sequential write throughput

Figure 2 shows the results of writing a 10MB file over
a private FDDI network using NFS Version 2 and NFS
Version 3 protocols and varying the server configura-
tion to enable/disable Prestoserve acceleration and
server write gathering. We consider the NFS
Version 2, no write gathering, no Prestoserve configu-
ration to be the average NFS write throughput avail-
able today. We believe that the NFS Version 2, write
gathering, Prestoserve configuration provides compet-
itive NFS write throughput. We observe the following:

• NFS Version 2 with Prestoserve and NFS
Version 3 delivers the maximum raw device rate
to the remote client.

• NFS Version 3 with asynchronous writes at
2323 KB/s delivers only 1% less throughput than
NFS Version 2 with Prestoserve and write gather-
ing at 2346 KB/s, but it consumes 36% less server
CPU.

V2, no WG, V2, WG, V2, no WG, V2, WG, V3, V3,

T
hr

ou
gh

pu
t K

B
/s

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 %

 U
tilization

 Write throughput

 Server CPU utilization

 Client CPU utilization

WG = write gathering
V2 = Version 2
V3 = Version 3

Figure 3. Comparisons of 40MB file write over FDDI, Digital OSF/1, Digital 3000/600

no Presto Presto no Prestono Presto Presto

0

1000

2000

3000

4000

5000

6000

Presto

404 KB/s

2263 KB/s

4929 KB/s
5022 KB/s

6105 KB/s 6425 KB/s

• At 2323 KB/s, NFS Version 3 is seven times fast-
er than NFS Version 2 at 320 KB/s for a typical
configuration with no write gathering and no
Prestoserve.

The NFS Version 3 client emitted only asynchro-
nous writes in these tests; therefore, server write gath-
ering had no effect. This configuration is not shown.
Prestoserve further improves NFS Version 3 asyn-
chronous writes because there is a synchronous com-
ponent to writing metadata during local file system
clustering. NFS Version 2 with Prestoserve provides
higher throughput on a single disk system than NFS
Version 3, because Prestoserve masks the cost of re-
duced cluster transfer sizes and missed rotations seen
in its absence. Multiple spindles can help mask these
effects in the absence of accelerator hardware.

It was clear that the disk was the bottleneck for the
above test, given the low CPU utilizations, available
network bandwidth on FDDI (100 Mbit/s), and the raw
speed of the disk. To remove the disk bottleneck, we
made a second set of runs, sequentially writing a
40MB file, with the following configuration changes:

• Server configured with four 2GB RZ28 SCSI
disks, each 4.8 MB/sec raw transfer rate, four-way
striped

• Client running 15 nfsiods (or biods)

The results in Figure 3 show that for sufficiently
large files on a non-disk bound server, NFS Version 3
delivered 6105 KB/s, compared to an NFS Version 2
server with Prestoserve and write gathering that deliv-
ered 5022 KB/s. NFS Version 3 delivered 22% more
throughput at a similar server CPU utilization. The

V2, no WG, V2, WG, V2, no WG V2, WG, V3, V3,
0

1000

2000

3000

4000

5000

6000

T
hr

ou
gh

pu
t K

B
/s

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 %

 U
tilization

 Write throughput

 Server CPU utilization

 Client CPU utilization

no Presto no Presto Presto Presto no Presto Presto

WG = write gathering
V2 = Version 2
V3 = Version 3

Figure 2. Comparisons of 10MB file writes over FDDI, Digital OSF/1, Digital 3000/600

320 KB/s
885 KB/s

2368 KB/s 2346 KB/s 2323 KB/s 2370 KB/s

maximum throughput of 6425 KB/s was achieved with
NFS Version 3 and Prestoserve. Throughput increased
with this configuration change, but not to the point of
the disk bandwidth limitation or CPU exhaustion. The
bottleneck moved to the network because of the limit-
ed number of stations, limited application parallelism,
and FDDI token holding time characteristics of the
network interfaces.

We conclude that asynchronous writes improve
both client throughput and server efficiency. They pro-
vide most of the benefits associated with running an
NFS Version 2 server in “unsafe” mode, while ensur-
ing data reliability after server failure3. Prestoserve
should still accelerate small file writes, as well as other
modifying requests like CREATE and REMOVE.

5.3. Connectathon test suite results

Because the LADDIS benchmark generates NFS Ver-
sion 2 RPC calls directly to measure server perfor-
mance [Wittle93], it cannot measure NFS Version 3
without modification. As an alternative, we ran the
Connectathon test suite, which was developed to test
the interoperability of NFS implementations. It runs

3 [Nelson88b] suggests that unsafe writes would provide greater
throughput than asynchronous writes with close-to-open consisten-
cy. That is, assuming that COMMIT blocks until all remaining data is
on disk when a file is closed, unsafe mode implementations which
do not block would clearly perform better. For large files, this effect
should be minimal.

on the client on a remotely mounted directory and ex-
ercises both client and server NFS code. It consists of
three passes that cover the basic functionality of a file
system. The Basic pass isolates specific features of the
client file system, and consists of ten separate tests.
Testing a single client file system feature typically
generates a mix of NFS requests. The General pass
runs multiple simultaneous large compiles, as well as
nroff(1). The Special pass exercises boundary cases in
NFS operations.

Table 1 contains the results of running the Con-
nectathon test suite. We conclude the following from
these results:

• Again, NFS Version 3 asynchronous writes are
clearly a win (see test 5a).

• Prestoserve remains useful on the server for other
metadata operations (CREATE, REMOVE, etc.), as
shown by tests 1, 2, 4, 6, 7 and 8. Test 6 performs
file deletions in addition to reading directory en-
tries, which explains the improvement with Pres-
toserve.

• NFS Version 3 reduces the total number of RPC
messages by 18% compared to NFS Version 2.
The reduction is due entirely to the increased fre-
quency of returned attributes and better cache
management through weak cache consistency da-
ta. This reduction more than offsets the calls to the
new ACCESS and COMMIT RPC procedures.

Test Basic test description Version 2 NFS
no Presto

Version 3NFS
no Presto

Version 2 NFS
with Presto

Version 3 NFS
with Presto

1 File and directory creation
create 155 files 62 directories 5 levels deep 8.39 8.21 0.87 0.77

2 File and directory removal
remove 155 files 62 directories 5 levels deep 3.71 3.66 1.60 1.20

3 lookups across mount point
500 getwd and stat calls 0.81 0.81 0.74 0.71

4 setattr, getattr, and lookup
1000 chmods and stats on 10 files 11.18 11.18 0.94 1.00

5a write 1MB file 10 times 12.00 5.35 4.68 4.69
throughput 869 KB/s 1957 KB/s 2238 KB/s 2234 KB/s

5b read 1MB file 10 times 1.48 1.48 1.49 1.47
throughput 7056 KB/s 7052 KB/s 7019 KB/s 7128 KB/s

6 readdir
20500 entries read, 200 files 2.87 2.79 1.40 0.96

7 link and rename
200 renames and links on 10 files 6.71 6.71 1.22 1.10

8 symlink and readlink
400 symlinks and readlinks on 10 files 6.73 6.70 1.25 0.98

9 statfs
1500 statfs calls 0.92 1.50 0.92 1.40

Basic tests NFS RPC count 13166 11032 13166 11032
Total NFS RPC count for Basic, General and Special tests 21865 17764 21865 17764

Table 1: Connectathon Basic test suite results, 7 biods, single disk spindle, (results in seconds, except as noted)

Table 2: find(1) results

NFS Version 2
NFS Version 3

w/ READDIRPLUS
NFS Version 3

w/o READDIRPLUS

real time 9.9s 6.3s 12.3s

client system time 4.8s 3.1s 4.6s

GETATTR count 155 1% 155 13% 155 1%

LOOKUP count 10076 95% 155 13% 10076 92%

ACCESS count n/a 310 27% 310 2%

READDIR count 173 1% 0 0% 181 1%

READDIRPLUS count n/a 358 31% 0 0%

STATFS/FSSTAT count 155 1% 155 13% 155 1%

Total count 10559 100% 1133 100% 10877 100%

bytes sent 2108523 225209 2214575

bytes received 1973952 2088284 3270824

total bytes over the wire 4082475 2313493 5485399

client CPU utilization 53% 42% 44%

server CPU utilization 37% 32% 31%

Figure 4. Detail of RPC counts for all three passes of the Connectathon Test Suite

NFS Version 2

NFS Version 3
calls

calls
21865
null getattr setattr root lookup readlink read
0 0% 4058 18% 1168 5% 0 0% 6954 31% 250 1% 1779 8%
wrcache write create remove rename link symlink
0 0% 1881 8% 675 3% 1175 5% 352 1% 250 1% 250 1%
mkdir rmdir readdir statfs
173 0% 173 0% 972 4% 1755 8%

17764
null getattr setattr lookup access readlink read
0 0% 1282 7% 1168 6% 5499 30% 309 1% 250 1% 1731 9%
write create mkdir symlink mknod remove rmdir
1881 10% 675 3% 173 0% 250 1% 0 0% 1175 6% 173 0%
rename link readdir readdir+ fsstat fsinfo pathconf
352 1% 250 1% 758 4% 18 0% 1755 9% 0 0% 0 0%

commit
65 0%

The read throughput results from test 5b reflect
over-the-wire data transfers. Test 5b was modified to
use the mmap(2) system call to invalidate the client’s
data cache, forcing the requests to go over-the-wire.
However, the data was cached on the server. The de-
tailed RPC counts for the NFS Version 2 and Version
3 results are shown in Figure 4.

5.4. find(1) results

The find(1) command was used to measure the effect
of READDIRPLUS. find(1) scanned a remote file tree
containing 9612 files distributed over 155 directories
that were up to seven levels deep. The results are
shown in Table 2. The over-the-wire byte counts in-
clude all protocol headers.

Using READDIRPLUS to fetch file handles and at-
tributes of entries in a directory reduces the find(1) ex-
ecution time by 36%, compared to NFS Version 2. Re-

duced execution time can be attributed primarily to the
tenfold reduction in over-the-wire messages. The 155
GETATTR requests are generated to ensure close-to-
open consistency when opening a directory. Using the
READDIRPLUS procedure in NFS Version 3 reduced
the total bytes transferred over-the-wire by 43% and
the cumulative server CPU (percent utilization ×
elapsed time) by 46%, compared to using the READDIR
and LOOKUP procedures in NFS Version 2.
READDIRPLUS is clearly a win in this example.

The test was rerun with READDIRPLUS disabled in
NFS Version 3. The last column in Table 2 shows
these results. Disabling READDIRPLUS increases exe-
cution time by 95%, compared to the NFS Version 3
result with READDIRPLUS enabled. More disturbing,
execution time increased by 24%, compared to the
NFS Version 2 results. We attribute this to the new
ACCESS procedure and to larger message sizes in NFS
Version 3, which increased the total bytes transferred

by 34% when compared to NFS Version 2. Message
sizes increased because new fields were added and old
fields were widened.

This result illustrates a fundamental tradeoff in
the NFS Version 3 design: increased RPC request and
reply sizes are to be offset by new features in the pro-
tocol. Naive implementations that fail to use the new
features will perform worse for some benchmarks than
NFS Version 2, but effective use of new features will
increase overall performance.

6. Cost of porting

The Digital OSF/1 implementation illustrates the ef-
fort and cost to port the SunSoft NFS Version 3 refer-
ence source into an existing Version 2 implementa-
tion. The source code size of an implementation that
supports both protocols is roughly 30,000 lines (C
code + comments + white space). The Version 2 and
Version 3 specific portions of the total are about
12,000 lines each, with 6,000 lines of shared subrou-
tines. Assuming engineers familiar with NFS Version
2, the effort needed to produce an implementation that
supports both versions of the NFS protocol for initial
testing is the following:

Digital’s OSF/1 based kernel uses a unified page
cache managed by the virtual memory subsystem for
both program text and file data. This complicated the
client implementation of asynchronous writes because
of dependencies on data structures and interfaces in
the virtual memory system.

7. Related work
“Look on my works, ye Mighty, and despair!”

Ozymandias, Shelley, 1817

The NFS Version 3 protocol mitigates the need for
NFS-specific write gathering techniques on clients
that support asynchronous writes, because a server can
now simply process clusters of related asynchronous
writes as part of its local buffered file system activity
[McVoy91]. However, NFS-specific write-gathering
on servers is still useful in supporting less-capable
NFS Version 3 clients that do not support asynchro-
nous writes or more-capable clients that resort to syn-
chronous behavior during recovery. The stable storage
semantics for metadata modifying operations, such as
CREATE, remain unaffected by NFS Version 3. Thus, a
server can still benefit from fast stable storage. To a
lesser extent, fast stable storage techniques still im-

server 1 person-month

client (excluding
asynchronous writes)

2 person-months

client asynchronous writes 1 person-month

prove asynchronous WRITE performance, especially
for small files.

Adaptive retransmission strategies to improve the
behavior of NFS over UDP (as described in
[Nowicki89], derived from [Jacobson88]) and the use
of TCP to improve performance over wide area net-
works [Macklem91], are applicable to NFS Version 3.
NFS Version 3 relaxes the 8KB limitation on the data
portion of a READ or WRITE request, permitting more
efficient use of TCP.

Three efforts to revise the NFS protocol are relat-
ed to this work. The first is Spritely NFS, described in
[Srinivasan89], [Mogul92], and [Mogul93]. Spritely
NFS uses a stateful server that controls client caching
behavior to ensure consistency. State recovery follow-
ing a crash is server-driven. The server keeps a nonvol-
atile list of old clients that are contacted during a grace
period following reboot to initiate the rebuilding of
state on the server. Spritely NFS employs consistency
to address performance issues in NFS Version 2 by al-
lowing clients to defer writes and by eliminating the
need for clients to poll the server to detect file changes.

The second effort is NQNFS [Macklem94], which
defines extensions to NFS Version 2 that are similar to
those found in NFS Version 3. Size and offset fields
were widened to 64 bits, and a READDIRPLUS proce-
dure was added. Time-based leases provide a mecha-
nism for data consistency and cache coherence among
clients. Clients need to anticipate lease expiration. Cli-
ents do not have special recovery code. Instead, leases
are short enough to expire while the server is reboot-
ing, forcing clients to request renewals (thereby driv-
ing recovery) from the newly rebooted server. On re-
boot, a server accepts only writes during a grace peri-
od, after which it will grant new leases.

While the results of both NQNFS and Spritely
NFS looked promising at the time we defined NFS
Version 3, both were unfinished. We decided that add-
ing consistency to NFS was contrary to our minimalist
goals and best left for a subsequent revision.

The third effort, [Fadden92] and [Glover92], de-
scribed Trusted NFS (TNFS), which defines a method
for handling ACLs and data labels that conserves
space. Acknowledging that security data can be large,
TNFS maps the data into opaque tokens and requires a
separate token mapping service to convert to and from
a canonical over-the-wire format. We decided not to
incorporate this work into NFS Version 3 because of
instability in the POSIX ACL specification and the rel-
ative immaturity of extant implementations of TNFS.

DCE DFS [Kazar90] is related to NFS Version 3
only in that it describes an amount of effort that we

clearly did not want to undertake. Our primary goals
were to improve NFS Version 2 and deploy a new ver-
sion quickly. We preferred to retain the ease of server
crash recovery, at the expense of not supporting some
of the more valuable features of DCE DFS.

8. Future work

The strategy for using READDIRPLUS needs further re-
search. Reading the contents of a very large directory
with READDIRPLUS can eject potentially more valu-
able entries from client caches. Finding heuristics to
guide choosing between READDIR and READDIRPLUS
is hard because an NFS client cannot tell whether an
application will need attribute information for a direc-
tory’s children or not. More experience could lead to
better heuristics than the simple ones used now.

An NFS Version 3 client trying to do effective
cache management with weak cache consistency re-
quires that the server guarantee atomicity of modifying
operations and pre- and post-operation attribute gener-
ation. The performance cost of supporting such atom-
icity on the server is not fully understood, particularly
for multiprocessor server implementations where ex-
tensive locking could result in unwanted serialization.
More analysis is needed. Weak cache consistency with
the WRITE procedure provides no useful sharing se-
mantic.

Additional characterization and tuning of NFS
Version 3 under more complex workloads is needed.
An NFS Version 3 LADDIS benchmark is needed.
Tuning NFS Version 3 implementations should not
pose insurmountable problems.

We did not expect the NFS Version 3 specifica-
tion to be perfect. Our hope is that the protocol speci-
fication will grow to reflect common practice and pro-
vide guidelines on conforming behavior. The develop-
ment of an NFS Version 3 Validation Suite by SunSoft
will aid interoperability. Finally, interoperability test-
ing of implementations at Connectathon remains the
cornerstone of successful file sharing with NFS.

8.1. NFS Version 4

In defining NFS Version 3, we assumed that other pro-
tocol revisions would follow, allowing us to defer fea-
tures. Improved data and cache consistency is an obvi-
ous candidate for NFS Version 4. POSIX write-shar-
ing semantics exist today on a single NFS client. NFS
Versions 2 and 3 support a client-driven bounded
time-based model for write sharing [Kazar88], with
close-to-open consistency. This model does not pro-
vide sufficient guarantees for concurrent write-sharing
between cooperating clients in the absence of explicit

locking. The fact that write-sharing is infrequent even
in those distributed file systems that support it
[Welch90] is a reason NFS has been successful despite
this limitation. Both Spritely NFS and NQNFS dem-
onstrate how to provide stronger consistency guaran-
tees with a provision for server and client crash recov-
ery. Both approaches depend on the clients to re-estab-
lish state after server reboots.

Disconnected operation of fixed and nomadic cli-
ents is a potential area for future work. More investi-
gation is required on how consistency guarantees
work, if at all, in the presence of clients disconnected
longer than the lease terms or callback timeouts used
by NQNFS or Spritely NFS, respectively.

Stronger security models in NFS are another area
for future work. More research is needed on whether to
pursue trusted system support in general.

The problems of consistent name space construc-
tion and increased availability are areas of research for
future protocol revisions and are perhaps best solved
with innovative implementations using existing proto-
cols.

9. Conclusions

The constrained NFS Version 3 effort addressed the
following concerns with NFS Version 2:

• 64-bit file sizes are now supported.
• Asynchronous writes increased throughput seven-

fold over unaccelerated NFS Version 2 imple-
mentations.

• Over-the-wire traffic measured both by RPC
counts and network loading has been reduced.

• Directory browsing is faster, with less network
loading and lower CPU utilization.

• Performance improvements were achieved de-
spite the size increase of the file attribute struc-
tures resulting from 64-bit file size support.

• Many “minor annoyances” of the NFS Version 2
protocol have been corrected.

NFS Version 3 was specified, reviewed, proto-
typed, verified, and supplied by multiple vendors for
external testing in less than 24 months from the initial
Boston meetings. At Connectathon in 1993, prototype
implementations interoperated successfully. We
achieved the goal of providing measurable improve-
ments over NFS Version 2 with little effort required to
create an implementation.

There is more work to be done. NFS Version 3 of-
fers the potential for better name and attribute cache
management than is possible with NFS Version 2. Re-
alization of this potential is a current and future effort.

9.1. Availability

The NFS Version 3 protocol specification draft can be
obtained from bcm.tmc.edu, gatekeep-

er.dec.com and ftp.uu.net using anonymous
FTP.

NFS Version 3 will be available in the next major
release of Digital’s OSF/1. Servers will fully support
NFS Version 3, as well as provide NFS Version 2 for
interoperability with older clients. At SunSoft, a So-
laris 2 implementation of NFS Version 3 that supports
TCP and large transfer sizes is in early deployment and
will shortly go to external field test. In addition, a ref-
erence implementation of NFS Version 3 with TCP
support is undergoing final testing. Early access to the
reference implementation from SunSoft will occur this
summer. Other implementations are in progress. Con-
tact your vendor for further information.

SunSoft is developing an NFS Version 3 Protocol
Validation Suite to provide a tool to help ensure in-
teroperability of clients and servers. This validation
suite will be made available for licensing.

10. Acknowledgments

Rusty Sandberg was the author of the earliest NFS
Version 3 proposal. Eight specifications intervened
between then and now; in many ways we returned to
the simplicity of the original. Peter Staubach designed
the versions of asynchronous writes,
NFS3ERR_JUKEBOX, and READDIRPLUS described in
this paper. Peter also introduced the notion of weak
cache consistency in NFS. The Boston group included
Cathe Ray, Carl Smith, Peter Staubach, and Brian
Pawlowski of SunSoft, Inc., Fred Glover, and Chet
Juszczak of Digital, Mark Wittle of Data General,
John Gillono of Cray Research, Tom Talpey of OSF,
and Geoff Arnold of SunSelect, Inc. Spencer Shepler
of IBM would have joined us but for his wedding; he
did participate in the post-Boston discussion. Chris
Duke has been very supportive in his role as the Sun
NFS engineering manager. Charlie Briggs at Digital
reviewed early drafts and suggested the state diagram.
Eric Werme at Digital worked on the server imple-
mentation. Michael Kupfer implemented the Network
Lock Manager reference source. Brent Callaghan im-
plemented the original MOUNT reference source.
Glen Dudek at VGI, our paper shepherd for USENIX,
provided invaluable detailed reviews beyond the call
of duty. Jeffrey Mogul commented on a very rough
early draft. Chris Duke, Byron Rakitzis, Rob Salmon,
Dana Treadwell, Rusty Sandberg, Kim Pawlowski,
Olga Koudalides, Ellie Koudalides, Michael Eisler,
Brian Ehrmantraut, Michael Nelson, Tom Talpey, Bob

Lyon, Cheena Srinivasan, Eric Werme, Michael
Kupfer and Tom Tierney reviewed various drafts of
this paper on an outrageously compressed schedule.
Chad Davies, Richard Binder, and Karla Sorenson
greatly improved the readability of this paper. Mike
Kazar kept the paper honest.

11. Bibliography
[Arnold91] Arnold, Geoff., “Change and Non-change in
NFS,” Proc. of European Sun Users Group, 1991.
Discusses changes requiring a protocol revision in NFS.

[Bhide91] Bhide, A., Elnozahy, E., Morgan, S., “A Highly
Available Network File Server,” Winter USENIX
Conference Proceedings, USENIX Association, Berkeley,
CA, January 1991. Describes an NFS server
implementation using redundant servers and dual-ported
disks that logs volatile reply cache information to disk.

[Fadden92] Fadden, Fran, “Token Mapping Service,”
Trusted System Interest Group, TSIG document TSIG-
TNFS-006.01.01, May 24, 1992. Description of the security
token mapping scheme proposed in TNFS.

[Glover92] Glover, Fred, “Request for Comments on a
Specification of Trusted NFS (TNFS) Protocol Extensions,”
Trusted System Interest Group, TSIG document TSIG-
TNFS-001.02.02, May 24, 1992. Proposed draft standard
for security extensions to NFS for a trusted environment.

[Hitz94] Hitz, D., Lau, J., Malcolm, M., “File System
Design for an NFS File Server Appliance,” Winter USENIX
Conference Proceedings, USENIX Association, Berkeley,
CA, January 1994. Describes a highly integrated approach
using a log-based file system and nonvolatile RAM to solve
the write bottleneck on NFS Version 2.

[Howard88] Howard, J.H., M.L. Kazar, S.G. Menees, D.A.
Nichols, M. Satyanarayanan, R.N. Sidebotham, and M.J.
West, “Scale and Performance in a Distributed File
System,” ACM Transactions on Computer Systems 6(1).
February, 1988. Primary reference on the Andrew File
System—contrasts the performance and scalability of AFS
and NFS—cites the lack of consistency guarantees as the
cause of poor scalability of NFS file servers.

[Israel89] Israel, Robert K., Sandra Jett, James Pownell,
George M. Ericson, “Eliminating Data Copies in UNIX-
based NFS Servers,” Uniforum Conference Proceedings,
San Francisco, CA, Feb. 27 - Mar. 2, 1989. Describes two
methods for reducing data copies in NFS server code.

[Jacobson88] Jacobson, V., “Congestion Control and
Avoidance,” Proc. ACM SIGCOMM ‘88, Stanford, CA,
August 1988. Describes TCP performance improvements
over WANs and gateways. This work was a starting point
for the NFS Dynamic Retransmission work.

[Joy84a] Joy, Bill, “Sun Network File Protocol Design
Considerations,” Internal Sun Microsystems technical note,
January 1984. A description of the basic design principles in
the NFS protocol, rationale and implementation, including
the use of a reply cache for correctness.

[Joy84b] Joy, Bill, “Design of the Sun Network File
System,” Internal Sun Microsystems technical note, January
1984. Design of the implementation, relationship to VFS,
comparison to ND, omissions in design and reasons, and
related work.

[Juszczak89] Juszczak, Chet, “Improving the Performance
and Correctness of an NFS Server,” USENIX Conference
Proceedings, USENIX Association, Berkeley, CA, January
1989, pages 53-63. Describes a server reply cache
implementation for work avoidance. Listed as a side-effect,
the reply cache avoids the destructive re-application of
nonidempotent operations—improving correctness.

[Juszczak94] Juszczak, Chet, “Improving the Write
Performance of an NFS Server” USENIX Conference
Proceedings, USENIX Association, Berkeley, CA, January
1994. Describes a write gathering technique that exploits
NFS client implementation parallel write behavior to
improve write throughput in NFS Version 2.

[Kazar88] Kazar, Michael Leon, “Synchronization and
Caching Issues in the Andrew File System,” USENIX
Conference Proceedings, USENIX Association, Berkeley,
CA, Dallas Winter 1988, pages 27-36. Describes cache
consistency in AFS and contrasts it with other distributed
file systems.

[Kazar90] Kazar, Michael Leon, Leverett et al., “DEcorum
File System Architectural Overview,” USENIX Conference
Proceedings, USENIX Association, Berkeley, CA,
Anaheim June 1990. Describes the DCE DFS file system.

[Kazar94] Kazar, Michael, private communication April 1,
1994. Mike is right—the reply cache is volatile state.

[Macklem91] Macklem, Rick, “Lessons Learned Tuning the
4.3BSD Reno Implementation of the NFS Protocol,” Winter
USENIX Conference Proceedings, USENIX Association,
Berkeley, CA, January 1991. Describes performance
improvement (reduced CPU loading) through elimination of
data copies in tuning the 4.3BSD Reno NFS
implementation, and the performance and use of TCP as a
transport.

[Macklem94] Macklem, Rick, “Not Quite NFS, Soft Cache
Consistency for NFS,” Winter USENIX Conference
Proceedings, USENIX Association, Berkeley, CA, January
1994. Describes a cache consistent NFS protocol, with
extensions similar to the work described here.

[McVoy91] McVoy, L., Kleiman, S., “Extent-like
Performance from a UNIX File System,” Winter USENIX
Conference Proceedings, USENIX Association, Berkeley,
CA, January 1991. Describes a write clustering technique
for UNIX local file system writes to improve throughput.

[Mogul92] Mogul, Jeffrey C., “A Recovery Protocol for
Spritely NFS,” USENIX File System Workshop
Proceedings, Ann Arbor, MI, USENIX Association,
Berkeley, CA, May 1992. Second paper on Spritely NFS
proposes a scheme for recovering state in a consistency
protocol.

[Mogul93] Mogul, Jeffrey C., “Recovery in Spritely NFS,”
Research Report 93/2, Digital Equipment Corporation
Western Research Laboratory, June 1993. Third paper on
Spritely NFS describes the implementation of recovery.

[Moran90] Moran, J., Sandberg, R., Coleman, D., Kepecs,
J., Lyon, B., “Breaking Through the NFS Performance
Barrier,” Proceedings of the 1990 Spring European UNIX
Users Group, Munich, Germany, pages 199-206, April
1990. Describes the application of nonvolatile RAM in
solving the synchronous write bottleneck in NFS Version 2.

[NFS3] Sun Microsystems, Inc., “NFS Version 3 Protocol
Specification,” February 16, 1994.

[Nelson88a] Nelson, Michael N., Brent B. Welch and John
K. Ousterhout, “Caching in the Sprite Network File
System,” ACM Transactions on Computer Systems 6(1).
February, 1988. Also Computing Reviews, Vol. 30, No. 3,
March 1989. Caching strategies, consistency protocol and
performance results.
[Nelson88b] Nelson, M.N., “Physical Memory
Management in a Network Operating System,” Ph.D.
Thesis. Univ. of Calif., Berkeley. November, 1988.
[Nowicki89] Nowicki, Bill, “Transport Issues in the
Network File System,” ACM SIGCOMM newsletter
Computer Communication Review, April 1989. A brief
description of the basis for the dynamic retransmission
work.
[Ousterhout90] Ousterhout, John K., “Why aren’t Operating
Systems Getting Faster as Fast as Hardware,” Proceedings
of the 1990 Summer USENIX Conference, Anaheim, June
11-15, 1990. A description, in part, of the synchronous write
bottleneck in NFS Version 2.
[POSIX90] Portable Operating System Interface (POSIX),
Part 1: System Application Program Interface (API) [C
Language] ISO/IEC 9945-1: 1990, IEEE Std 1003.1-1990.
[Pawlowski89] Pawlowski, Brian, Ron Hixon, Mark Stein,
Joseph Tumminaro, “Network Computing in the UNIX and
IBM Mainframe Environment,” Uniforum ‘89 Conf. Proc.,
(1989). Description of an NFS server implementation for
IBM’s MVS operating system.
[Presto93] Digital Equipment Corporation. “Guide to
Prestoserve,” DEC OSF/1 Prestoserve Product
Documentation, Order number AA-PQTOA-TE, March
1993.
[RFC1014] Sun Microsystems, Inc., “External Data
Representation Specification,” RFC-11014, DDN Network
Information Center, SRI International, Menlo Park, CA.
Describes canonical data exchange format for use with
RPC.
[RFC1057] Sun Microsystems, Inc., “Remote Procedure
Call Specification,” RFC-1057, DDN Network Information
Center, SRI International, Menlo Park, CA.
[RFC1094] Sun Microsystems, Inc., “Network Filesystem
Specification,” RFC-1094, DDN Network Information
Center, SRI International, Menlo Park, CA. NFS Version 2
protocol specification.
[Reid90] Reid, Jim, “N(e)FS: the Protocol is the Problem,”
Proc. of the UKUUG Conference, London, July 1990.
Describes problems in NFS Version 2.
[Sandberg85] Sandberg, R., D. Goldberg, S. Kleiman, D.
Walsh, B. Lyon, “Design and Implementation of the Sun
Network Filesystem,” USENIX Conference Proceedings,
USENIX Association, Berkeley, CA, Summer 1985. The
basic paper describing the SunOS implementation of NFS
Version 2.
[Satyanarayanan89] Satyanarayanan, M., “A Survey of
Distributed File Systems,” Annual Review of Computer
Science, Annual Reviews, Inc. Volume 4, 1989. Also
available as Technical Report CMU-CS-89-116, Dept. of
Comp. Sci., Carnegie Mellon University. A survey of NFS,
AFS and other distributed file systems with a comprehensive
bibliography.
[Srinivasan89] Srinivasan, V., Jeffrey C. Mogul, “Spritely
NFS: Implementation and Performance of Cache
Consistency Protocols”, WRL Research Report 89/5,

Digital Equipment Corporation Western Research
Laboratory, 100 Hamilton Ave., Palo Alto, CA, 94301, May
1989. Also in Proc. of the Twelfth ACM Symposium on
Operating Systems Principals. Analysis of a Sprite-like
consistency protocol applied to NFS.

[Welch90] Welch, Brent, “Measured Performance of
Caching in the Sprite Network File System” Computing
Systems, Volume 3, Number 4, Summer 1991, pages 315-
342. Analyzes the effectiveness of caching in the Sprite
network file system, and the frequency of concurrent write
sharing.

[Wittle93] Wittle, Mark, Bruce Keith, “LADDIS: The Next
Generation in NFS File Server Benchmarking” Proc.
Summer 1993 USENIX Conference, USENIX Association,
Cincinnati, OH, June 1993, pages 111-128. Describes a
synthetic, parallel benchmark used to evaluate NFS Version
2 server performance.

[X/OpenNFS] X/Open Company, Ltd., X/Open CAE
Specification: Protocols for X/Open Internetworking:
XNFS, X/Open Company, Ltd., Apex Plaza, Forbury Road,
Reading Berkshire, RG1 1AX, United Kingdom, 1991.
Describes the NFS version 2 protocol and accompanying
protocols, including the Lock Manager and the Portmapper.

[X/OpenPCNFS] X/Open Company, Ltd., X/Open CAE
Specification: Protocols for X/Open Internetworking:
(PC)NFS, Developer’s Specification, X/Open Company,
Ltd., Apex Plaza, Forbury Road, Reading Berkshire, RG1
1AX, United Kingdom, 1991.

Author information

Chet Juszczak is a Consultant Engineer in the UNIX Soft-
ware Group at Digital where he works on distributed file sys-
tems for commercial servers. He has worked on NFS and file
server performance at Digital since 1985. Before that he
worked on relational database technologies at AT&T. Chet
got his M.S. in C.S. at the University of Michigan in 1983.
Reach him electronically at chet@zk3.dec.com or via U.S.
Mail at Digital Equipment Corp., 110 Spit Brook Rd.,
Nashua, NH 03062.

Brian Pawlowski now resides at Network Appliance Corp.,
where he works on performance and new architectures for
appliances. Brian did the work described here while at Sun
Microsystems, Inc., where for six years he worked on dis-
tributed file systems. He led the MVS/NFS project, slummed
with AFS and DCE DFS, worked on LADDIS and finally
became aware while watching the pretty colors during a mul-
tiprocessor file server performance project that provided a
convenient excuse to use some sophisticated performance
visualization tools. Brian has never castrated nor slaughtered
cattle. Reach him electronically at beepy@netapp.com or via
snail mail at Network Appliance, 295 N. Bernardo Ave.,
Mountain View, CA 94043.

Peter Staubach is a staff engineer at SunSoft Inc. He is the
project leader, principal designer and engineer on the NFS
Version 3 and NFS over TCP projects. Peter has been in-
volved with the design and implementation of SunSoft’s dis-
tributed file system since 1991. Prior to joining Sun, Peter
worked at Lachman Associates where he was involved with
the implementation of NFS for System V and sundry NFS
ports. He can be reached electronically at
staubach@eng.sun.com or via U.S. Mail at SunSoft Inc.
2550 Garcia Ave. MS MTV05-40, Mountain View, CA

94043.

Carl Smith has been a member of the technical staff at Sun
for six years. During this time he has been the NFS project
lead, NFS Version 3 co-conspirator, and worked on various
aspects of NFS, RPC, and TCP/IP. His friends have observed
that he is working his way down the protocol stack. Prior to
Sun he was a jack-of-all-trades at UniSoft Corporation and
the technical manager and a principal engineer of the Berke-
ley PDP-11 Software Distribution. He has been involved
with UNIX since Version 6. His current interests are net-
working, security, and retiring early to visit the bookstores of
the world. He can be reached electronically at
cs@eng.sun.com or via U.S. Mail at SunSoft Inc. 2550 Gar-
cia Ave. MS MTV05-44, Mountain View, CA 94043

Diane Lebel is an engineer in the UNIX Software Group at
Digital where she is the principal designer of the DEC OSF/1
NFS client. Diane has worked at Digital since 1987. Reach
her electronically at lebel@zk3.dec.com or via U.S. Mail at
Digital Equipment Corp., 110 Spit Brook Rd., Nashua, NH
03062.

David Hitz is a co-founder and director of system architec-
ture at Network Appliance Corp. Dave has focused on de-
signing and implementing the WAFL file system, and on the
overall design of their file server. He also worked at Auspex
Systems in the file system group, and at MIPS in the System
V kernel group. He received his computer science BSE from
Princeton University in 1986. Reach him electronically at
hitz@netapp.com or via snail mail at Network Appliance,
295 N. Bernardo Ave., Mountain View, CA 94043.

Trademarks

NFS is a trademark of Sun Microsystems, Inc. UNIX is a
registered trademark of UNIX System Laboratories, a whol-
ly-owned subsidiary of Novell, Inc. Prestoserve is a trade-
mark of Legato Systems, Inc.

