
1

Instruction Level Parallelism

Software View of Computer

Architecture COMP9244

Godfrey van der Linden

2006-04-06

Introduction

• Definition of Instruction Level Parallelism(ILP)

• Pipelining
– Hazards & Solutions

• Dynamic Scheduling
– Hazards & Solutions

– Limitations of ILP

– Power Consumption

• History

• Conclusion

2

Definition of ILP

• Early processors would use more than

one cycle to execute an instruction.

Instruction per cycle (IPC) < 1

• Pipelines overlap instruction execution

to achieve IPC = 1

• ILP can be defined as - IPC > 1

Background - Pipelining

• RISC style instruction set architectures
allowed hardware designers to vastly
simplify the implementation of CPUs

• For example the MIPS instruction set
architectures uses a maximum 5 cycle
to implement any instruction

• RISC was designed for ease of
pipelining

3

Pipelining (cont)

987654321

RWB

RWBMEMEXEIDIFi+2

MEMEXEIDIFI+4

RWBMEMEXEIDIFi+3

RWBMEMEXEIDIFi+1

RWBMEMEXEIDIFi

• A pipeline overlaps instructions to

complete one instruction per cycle

Pipelining - Hazards

• Pipelines are an easy extension to multi-

cycle processor design, use the cross cycle

latches to cross instruction phase

• There are some problems to be solved, aka

pipeline hazards

– Structural Hazard

– Read after write(RAW) Hazard

– Branch Hazard

4

Pipelining - Hazard Solutions

• Stall pipeline until hazard clears

• RAW Hazard - forwarding from one

output phase direct to input phase

• Structural Hazard - duplicate units, eg.

Split data & instruction caches

• Branch Hazard - predict a branch not

taken and no-op & fetch if wrong

Instruction Level Parallelism (ILP)

• Higher performance means more

instructions per second

• Implies higher clock rate or more

instructions per clock cycle

• More instructions per cycle after a

pipeline is IPC > 1, hence instructions

need to complete in parallel

5

ILP (cont)

• Higher clock rates requires more, simpler &
shallower pipeline stages

• However the simple pipeline hazard solutions
are less efficacious
– Branch mis-predicts require more stalls

– RAW hazards need to be forwarded backwards in
time

– Structural units need to be split and reproduced
for shallower phases

ILP Dependencies & Hazards

• True Data Dependencies
– If inst j needs result of inst i, then j depends on i

• Name Data Dependencies
– If j writes to reg a, and an earlier i reads a then

order must be maintained (WAR)

– If j writes to reg a, and an earlier i writes a then
order must be maintained (WAW)

• Control Dependencies
– Instructions streams are dependant on branch

results

6

Dynamic Scheduling

• Technique to execute instructions as
soon as dependencies are satisfied

• Scoreboarding tracks instructions on a
functional unit scheduling execution
when data dependencies are satisfied

• Tomasulo extends this with dynamic
renaming of registers to clear name
dependencies

Tomasulo Algorithm

• 3 Phase instruction execution

– Issue - ID, if reservation station(RS)
available schedule inst with current
operands and dependencies

– Execute - Operands available schedule
instruction on functional unit

– Write Results - On completion write results
to register file and any RS that depends on
it

7

Superscalar Processors

• Given a Tomasulo architecture can

now add functional units to achieve

even more parallelism

• Power4 has 2 Load/Store, 2 Fixed

Point, 2 Floating Point, Branch and a

CR unit

Branch Prediction

• 1 in 3 - 7 inst’s is a branch. Control
dependency stalls destroy IPC

• Modern unit - tournament between local and
global branch predictors

• Stack of targets and returned addresses

• Branch prediction, today’s typical unit
achieves 95% accuracy

• OO virtual member functions present real
problems to branch predictors without value
prediction

8

Speculation

• Extend Tomasulo approach by adding

a Reorder buffer (ROB)

– Changes issue phase as ROB must be

allocated

– Adds commit phase, current head of the

ROB FIFO is ‘committed’

– On a committing failed branch, flush ROB

• Solves precise exception problem too!

Ideal CPU ILP Limits

• What is maximum ILP achievable on

an ideal machine

150tomcatv

119doduc

75fpppp

18li

63espresso

55gcc

Average Inst. IssuedSPEC Benchmark

9

Realisable CPU ILP Limits

3691422144556tomcatv

347912151617doduc

3581422354752fpppp

346911111212li

246810131515espresso

34689101010gcc

48163264128256Inf.SPEC/

Wdw

Power Consumption

• [Li03] found IPC/Power were correlated

for OS routines on a superscalar

• Using a cycle accurate power simulator

of MIPS R10000, 50% of power used

by data-path & pipeline structure

• The cite 3 other papers that

collaborating their findings

10

History of ILP

• ‘59 IBM 7030 “stretch” - Pipelining

• ‘64 CDC 6600 dynamic scheduling using
scoreboarding

• ‘67 IBM 360/91 for dynamic scheduling
Tomasulo

• ‘94/’95 1st gen superscalars: Pentium, AMD
K6, MIPS 12000, PowerPC620

• End ‘90s 2nd gen: PIII, Athlon, Power4,
Alpha 21264

Conclusions

• Modern superscalar speculative processors

are extremely capable and complex

• Penalties for missed branches are large, OO

language techniques are a problem, until IF

phase can read registers

• Other penalties are also significant, static

scheduling for a processor architecture of

instruction stream is recommended

11

Conclusions (cont)

• Statically scheduling code for processors is
very difficult, use compiler technology from
chip manufacturer

• Software engineers in high level languages
can not influence code scheduling, except
with branch hints

• With profiling help an engineer can achieve
some 5x performance improvement over
generated code in statically scheduled
assembler [Grey05]

