THE MEMORY HIERARCHY

Slide 1

gelato.org

This work supported by UNSW and HP through the Gelafo Federation

MEMORY HIERARCHY OVERVIEW

Registers

Why a memory hierarchy?: M

] 0 Fast == Expensive
Slide2 - Exploit locality
e Spatial
e Temporal

L3 Cache

Memory

CACHE DESIGN

CACHE DESIGN

0 Cache Levels
® L1/L2 usually on chip
® L2 usually unified
Slide 3 e L3 r.nuch larger . .
@ L1 tied to clock rate, lower levels tied to miss cost of L1
0 Cache Lines
O Split cache
o Insfruction cache
e Data cache

CACHE ORGANISATION

Where can a cache line live?:
0 Direct Mapped
0 Fully Associative
0 Set Associative
® n-way set associative is to divide total cache into n
compartments.
@ Line may live anywhere in seft total _blocks mod n

Slide 4

How do we find a cache line?:
O Index
O Tag

cache_size
® index_bits = logx (e )

WHERE IS THAT LINE - TAGS AND INDEXES



WHERE IS THAT LINE - TAGS AND INDEXES

Virtual Address Way 1 ~
1 £
TAG INDEX 5
Way 2
Less set-associativity means more index bits i
slide 5 Less Associative
] Way 1
Way 2
Virtual Address ] i | z
&
TAG INDEX T wars -
More set-associativity means more tag bits
I Way 4
More Associative

QUICKLY - OTHER CACHE PARAMETERS
0 Replacement Policy
® LRU/Random/FIFO
Slideé [ write policy
e Through
e Back
O Inclusive or Exclusive?

POWER

1/2 CPU Clock 12 way-set associative
h 256 byte line size
\

L3

512 byte line size
8 way-set associative

Memory Controller

RAM

POWER4
b
>
<
POWERS5

CHRONOLOGY OF A CACHE HIT

O Processor loads from an address

0 Address is requested in the cache

0 Index selects offset within (all) ways

0 Tag selects correct entry from set
Slide 8 0 Data is retrieved from selected line

Cache addressing: This address is a virtual address
O Virtual addresses may alias
@ Cache must be coherent
x Synonyms : A VA, = page
x Homonyms : = page, A VA

PHYSICALLY INDEXED AND TAGGED CACHE



PHYSICALLY INDEXED AND TAGGED CACHE

‘ Virtual Page ‘ Offset ‘
TLB Extra Pipeline Stage
‘ Physical Page ‘ Offset ‘

0 TLB franslates VA to PA ‘
Slide 9 v No aliases
x Extra overhead

PHYSICALLY TAGGED, VIRTUALLY INDEXED

‘ Virtual Page ‘ Offset

. ]
O Tagis based on PA s : ! Parallel Lookup
0 Index based on untrans- ST Ve e sie

lated offset bits Physical Page
v TLB lookup happens in 1
. arallel Tag
Slide 10 P

x Index limited to system )
page size }
[0 Unless bits are shared. ..

X ...which infroduces alias-

ing
Physically Tagged
Virtually Indexed
VIRTUALLY TAGGED, VIRTUALLY INDEXED 5

VIRTUALLY TAGGED, VIRTUALLY INDEXED
v TLB less involved
v No size limitations
x Synonyms and homonyms

VPN - Physical Tag Index

‘ 0x40008100

ox1 0x14

0x0

Virual Address 0x40008140

Protection:
Slide 11 0 TLB still required for
protection
O Active research area
[ Protection details in cache
0 pPLB
[0 Capabilities
[0 Segmentation

Both addresses refer
same physical page

Virual Address 0x30006480

0x80006400 0x4 0x48 0x0

VPN - Physical Tag Index

But result in different
indexes.

DEALING WITH ALIASING

x Flush cache on context switch (Sledgehammer)

Software Approaches:
Slide 12 0 SASOS
0 Mungi
0 Colouring
0 Make shared items align in the cache (SunOS)
0 Globally visible shared region (OS/2)

DEALING WITH ALIASING 6



DEALING WITH ALIASING

Hardware Approaches:

0 Reverse Maps

0 Back Pointers (MIPS R6000, Alpha?)
Slide 13 O Dual Directories

0O ASID or segmentation
v Add bits to distinguish VAs
x Makes sharing harder
o [tfanium Region Registers

ITANIUM2 - PREVALIDATED CACHE

T T S —TT

[arse]

1 TLB

S EEEELEEEEERE =
) LD bbb b v ]
[0 Tie TLB and L1 closely fo-L2% | Tshroome ool o ToToTo Lo oz

gether Tagh [

0 Cache tagged with TLB lo-

y
y
y

y

slide 14 cation Prevalidated Cache Tags

[0 No need to find physical
tag

>
z
o

[0 Simple AND s way 1
1 cycle latency

[}

Way N

Cache Ways

H Ao

MUX [ Data

DEALING WITH MISSES

DEALING WITH MISSES

So far, everything has been about hit latency

Slide 15 Types of misses:
0 Compulsory

0 Capacity
0 Conflict
MORE CACHE?
v Less compulsory misses
x $8$
Slide 16 @ cache size = line size set_index * assocativity
® 1{ cache means more what?

0 Greater line size
0 Greater associativity
0 Greater index size

OTHER MISS PENALTY REDUCTION SCHEMES



PREFETCHING EXAMPLE

Walk an array in cache sized lines

| Metric | Icc \ [ \ Description
Run Time (seconds) 0.824 1.507 Program execution time
OTHER MISS PENALTY REDUCTION SCHEMES LiDREADM SsESAL | 1261483 | 12605200 | L1 Dot Cache Read Missss
BE_EXE BUBBLE GRALL 129.629.838 737.891.717 Full Pipe Bubbles in Main Pipe due to Execution Unit
0 Critical word first stalls
Slide 17 0 Vietim caches Slide 19 BE_EXE.BUBBLE.GRGR 0 0 zZit-yend was stalled by exe due fo GR/GR depen-
0 Way prediction Why?:
0 Trace Cache
4000000000000940: [MI1] (p16) Id4 r32=[r3],64
4000000000000946: (pl7) add r34=r35,r33
400000000000094c: nop.i 0x0
4000000000000950: [MB] (p16) Ifetch.ntl [r2],64
4000000000000956: nop. m 0x0
400000000000095c: br. ctop. sptk. f ew 4000000000000940 <wal k+0x80>; ;

PREFETCHING

0 Requires non-blocking cache

IF YOU ARE STILL AWAKE, | OWE YOU A BEER

i Concept Hide latency by overlapping execution with i
Slide 18 P Yy oy pping Slide 20 QUESTIONS?

fetching.
0O Very useful for loops
0 stride is distance a loop jumps in memory
0 Hardware or Software based

PREFETCHING EXAMPLE 9 QUESTIONS?



