
Slide 1

THE MEMORY HIERARCHY

This work supported by UNSW and HP through the Gelato Federation

Slide 2

MEMORY HIERARCHY OVERVIEW

Why a memory hierarchy?:

➜ Fast == Expensive

➜ Exploit locality
• Spatial

• Temporal

CACHE DESIGN 1

Slide 3

CACHE DESIGN

➜ Cache Levels

• L1/L2 usually on chip

• L2 usually unified

• L3 much larger

• L1 tied to clock rate, lower levels tied to miss cost of L1

➜ Cache Lines

➜ Split cache

• Instruction cache

• Data cache

Slide 4

CACHE ORGANISATION

Where can a cache line live?:

➜ Direct Mapped

➜ Fully Associative

➜ Set Associative

• n-way set associative is to divide total cache into n

compartments.

• Line may live anywhere in set total blocks mod n

How do we find a cache line?:

➜ Index

➜ Tag

• index bits = log2(
cache size

associativity

line size )

WHERE IS THAT LINE - TAGS AND INDEXES 2



Slide 5

WHERE IS THAT LINE - TAGS AND INDEXES

M
U

X

Way 1

Way 2

Offset

TAG INDEX

Virtual Address

Less Associative

Less set−associativity means more index bits

M
U

X

Way 1

Way 2

Way 3

Way 4

Offset

TAG INDEX

Virtual Address

More Associative

More set−associativity means more tag bits

Slide 6

QUICKLY - OTHER CACHE PARAMETERS

➜ Replacement Policy

• LRU/Random/FIFO

➜ Write policy

• Through

• Back

➜ Inclusive or Exclusive?

POWER 3

Slide 7

POWER

CPU CPU

L2

RAM

L3

CPU CPU

RAM

Interconnect

L2

Memory Controller

L3

P
O

W
E

R
5

12 way−set associative
256 byte line size

1/2 CPU Clock

Memory Controller

Interconnect

P
O

W
E

R
4

512 byte line size
8 way−set associative

1/3 CPU Clock

Slide 8

CHRONOLOGY OF A CACHE HIT

➀ Processor loads from an address

➁ Address is requested in the cacheAddress is requested in the cache

➂ Index selects offset within (all) ways

➃ Tag selects correct entry from set

➄ Data is retrieved from selected line

Cache addressing: This address is a virtual address

➜ Virtual addresses may alias

! Cache must be coherent

X Synonyms : ∆ VA, ≡ page

X Homonyms : ≡ page, ∆ VA

PHYSICALLY INDEXED AND TAGGED CACHE 4



Slide 9

PHYSICALLY INDEXED AND TAGGED CACHE

➜ TLB translates VA to PA

V No aliases

X Extra overhead

OffsetVirtual Page

OffsetPhysical Page

Line
O

ffset

Tag Index

Index

Matched Tag

Missed Tag

MUX

TLB Extra Pipeline Stage

Way 1

Way 2

Way 3

Way N

Slide 10

PHYSICALLY TAGGED, VIRTUALLY INDEXED

➜ Tag is based on PA

➜ Index based on untrans-

lated offset bits

V TLB lookup happens in

parallel

X Index limited to system

page size
➜ Unless bits are shared. . .

X . . . which introduces alias-

ing

OffsetVirtual Page

Line
O

ffset

Tag

Index

Matched Tag

Missed Tag

MUX

Physical Page

Index

TLB
Maximum index size

Parallel Lookup

Physically Tagged
Virtually Indexed

is page size

Way 1

Way 2

Way 3

Way 4

V IRTUALLY TAGGED, V IRTUALLY INDEXED 5

Slide 11

VIRTUALLY TAGGED, VIRTUALLY INDEXED

V TLB less involved

V No size limitations

X Synonyms and homonyms

Protection:

➜ TLB still required for

protection

➜ Active research area

➜ Protection details in cache

➜ PLB

➜ Capabilities

➜ Segmentation

32 bit virtual address

4K Page Size (12 bit)

16 byte line size (4 bits)

32KB Cache, 8−way set associative

RAM

VPN − Physical Tag

0x40008100 0x14

0x80006400 0x48

VPN − Physical Tag

0x1

0x4

Index

Index

Physical Tag

Physical Tag

0
x
1
2

0
x
4
8

S
h

ared
 B

its

Aliased Tags in Cache Set

Virtual Address 0x40008140

Virtual Address 0x80006480

0x0

0x0

Both addresses refer

But result in different

same physical page

indexes.

Slide 12

DEALING WITH ALIASING

X Flush cache on context switch (Sledgehammer)

Software Approaches:

➜ SASOS

➜ Mungi

➜ Colouring

➜ Make shared items align in the cache (SunOS)

➜ Globally visible shared region (OS/2)

DEALING WITH ALIASING 6



Slide 13

DEALING WITH ALIASING

Hardware Approaches:

➜ Reverse Maps

➜ Back Pointers (MIPS R6000, Alpha?)

➜ Dual Directories

➜ ASID or segmentation

V Add bits to distinguish VAs

X Makes sharing harder

• Itanium Region Registers

Slide 14

ITANIUM2 - PREVALIDATED CACHE

➜ Tie TLB and L1 closely to-

gether

➜ Cache tagged with TLB lo-

cation

➜ No need to find physical

tag

➜ Simple AND

➜ 1 cycle latency
O

R

A
N

D

0 0 0 0 0 0 0 0 0 0 0 0 0 000 1

0 0 0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 0 0 00

1

1

1

0 0 0 0 0 0 0 0 0 0 0 0 0 00 VA0 1

0 0 0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 0 0 00

0

01

1

(Virtual) Tag OffsetIndex

MUX Data

Prevalidated Cache Tags

Way 2

Way 1

Way 2

Way 1

0 0

0 0

0 0

0

0

VA

VA

TLB

W
ay H

it

Index

Cache Ways

Way N

Way 2

Way 1

TLB Hit

Tag Hit

DEALING WITH MISSES 7

Slide 15

DEALING WITH MISSES

So far, everything has been about hit latency

Types of misses:

➀ Compulsory

➁ Capacity

➂ Conflict

Slide 16

MORE CACHE?

V Less compulsory misses

X $$$

• cache size = line size ∗ set index ∗assocativity

• ⇑ cache means more what?

➜ Greater line size

➜ Greater associativity

➜ Greater index size

OTHER MISS PENALTY REDUCTION SCHEMES 8



Slide 17

OTHER MISS PENALTY REDUCTION SCHEMES

➜ Critical word first

➜ Victim caches

➜ Way prediction

➜ Trace Cache

Slide 18

PREFETCHING

➜ Requires non-blocking cache

Concept Hide latency by overlapping execution with

fetching.

➜ Very useful for loops

➜ stride is distance a loop jumps in memory

➜ Hardware or Software based

PREFETCHING EXAMPLE 9

Slide 19

PREFETCHING EXAMPLE

Walk an array in cache sized lines

Metric ICC GCC Description

Run Time (seconds) 0.824 1.507 Program execution time

L1D READ MISSES ALL 12,514,832 12,505,200 L1 Data Cache Read Misses

BE EXE BUBBLE GRALL 129,629,838 737,891,717 Full Pipe Bubbles in Main Pipe due to Execution Unit

Stalls

BE EXE BUBBLE GRGR 0 0 Back-end was stalled by exe due to GR/GR depen-

dency

Why?:

4000000000000940: [MII] (p16) ld4 r32=[r3],64

4000000000000946: (p17) add r34=r35,r33

400000000000094c: nop.i 0x0

4000000000000950: [MMB] (p16) lfetch.nt1 [r2],64

4000000000000956: nop.m 0x0

400000000000095c: br.ctop.sptk.few 4000000000000940 <walk+0x80>;;

Slide 20
IF YOU ARE STILL AWAKE, I OWE YOU A BEER

QUESTIONS?

QUESTIONS? 10


