Shared memory multiprocessors

Leonid Ryzhyk
<leonidr@cse.unsw.edu.au>

April 21, 2006

1 Introduction

The hardware evolution has reached the point where it becomes extremely dif-
ficult to further improve the performance of superscalar processors by either
exploiting more instruction-level parallelism (ILP) or using new semiconductor
technologies. The effort to increase processor performance by exploiting ILP
follows the law of diminishing returns: new, more complex optimisations tend
to cost more in terms of silicon as well as design effort and provide smaller and
smaller performance gains. In addition, aggressive use of speculative caching
and execution techniques in modern superscalars leads to poor energy efficiency
— an important concern in both embedded systems with limited battery ca-
pacity and in server systems, where heat dissipation is a problem of growing
importance.

The natural solution is to rely on thread-level parallelism (TLP) rather than
ILP to further increase the computational power of computer systems. The fol-
lowing forms of TLP are currently being used: explicit multithreading, chip-level
multiprocessing (CMP), symmetric multiprocessing (SMP), asymmetric multi-
processing (ASMP), non-uniform memory access multiprocessing (NUMA), and
clustered multiprocessing.

With the exception of clustered multiprocessors, all of the above architec-
tures provide all cores in the system with access to a shared physical address
space. The shared memory organisation has three major advantages over simpler
private memory organisation. First, because in shared-memory systems com-
munication does not have to interfere with computation and because access to
shared memory can be streamlined using hardware caching, shared memory pro-
vides an extremely efficient low-latency high-bandwidth communication mech-
anism. Second, shared memory provides a natural communication abstraction
well understood by most developers. Third, the shared memory organisation
allows multithreaded or multiprocess applications developed for uniprocessors
to run on shared-memory multiprocessors with minimal or no modifications.

The goal of this report in to give an overview of issues and tradeoffs involved
in memory hierarchy design for shared memory multiprocessors.

Figure 1: The Intel Core Duo processor layout.

The report is largely based on the material from Hennessy and Patter-
son [HP03], Culler, Singh, and Gupta [CSG99], and Adve and Gharachor-
loo [AG95]. Other sources are referenced throughout the report.

2 Memory hierarchy organisation: a high-level
overview

This section presents a high-level overview of alternatives involved in memory
hierarchy design of a shared memory multiprocessor. The most fundamental
question to be answered by the memory system designer is: On what level
of the memory hierarchy should physical sharing of memory occur? Moving
sharing closer to processor cores enables faster inter-processor communication
but typically slows down regular non-shared memory accesses, while moving
sharing to lower levels of the memory hierarchy allows faster non-shared accesses
at the cost of more expensive inter-processor communication. Another general
trend is that architectures that share fewer layers of the memory hierarchy scale
better. The available design alternatives are:

e Shared L1 cache. This approach is only used in chips with explicit
multithreading, where all logical processors share a single pipeline.

e Shared L2 cache. Some CMP systems are built with shared L2 caches.
This design minimises on-chip data replication and makes more efficient
use of cache capacity. For example, Figure 1 shows the physical layout of
the Intel Core Duo processor with shared L2 cache. Unfortunately, shared
L2 caches have longer access times; therefore, many existing CMP systems
use private L2 caches.

e Shared main memory. In this memory system organisation, every pro-
cessor or core has its own private L1 and L2 caches, but all processors share
the common main memory. For example, in the dual-core Itanium 2 Mon-
tecito processor (Figure 2), every core has 3 levels of private on-chip cache
connected to a shared off-chip memory controller. Until recently, this was

[Core 0 Tore 1

Branch L1 Instruction Instruction | Branch L1 Instrucion Instruction
Prediction Gachel 16KE) TLE. Predicton Cache(18KE) -TLE

GiTd [omere i

Floatin Psint = Fisaiing Foi |
e i Do
*: " E] it iy
SMD SMD |
3 FMAG . = . | FMAC
Branch & 5 ¢ Branch & >
Intager Fiogting Point. Imager Flogting Poit:
| Predate A piehed ‘ ok Registors Regriars
1 =,
Dats | I Datn
| L1 Diata Gacheli BKE) e | AT | L1 Data Cochal | KB} S | aLaT:
L2 Istrucioon Gache L2 Data Cache L2 Instruction Gache L2 Data Gache
{ime) {256K8) (M) (256KE)
= - g T . . ¢
o P L3 Gache: & L3 Cache
Quoisn/ Control — {12MB) ‘ é Queuss/ Contro! ‘,, (1 2MB)

: |
]

System letarface = - System Intarface.

Figure 2: The Montecito processor with 3 levels of private on-chip cache.

the dominating architecture for small-scale multiprocessors. However, as
the gap between processor and memory speeds is increasing and as the
number of threads per chip is growing, memory bandwidth is becoming a
bottleneck even for small-scale systems. Therefore, some of the recent ar-
chitectures, such as AMDG64, abandoned the shared memory organisation
and switched to the NUMA organisation (see Figure 3).

e No physical sharing. In this memory system organisation, every pro-
cessor (or node consisting of more than one processors) has it own private
main memory and can access remote memory connected to other nodes
through interconnection fabric. Of course, the cost of access to local mem-
ory is much lower than for remote memory access; therefore this architec-
ture is known as the non-uniform memory access architecture or NUMA.
One example of the NUMA architecture are Sun WildFire servers (Fig-
ure 4) that can include up to 4 symmetric multiprocessors, each consisting
of up to 28 UltraSparc 4 processors.

Once the overall memory hierarchy layout is fixed, the next step is design
of interconnects between different levels of the hierarchy. The two major types
of interconnects are bus-based and network-based interconnects. The main dif-
ference is that a bus is a shared resource that can be used by a single client
at a time, and thus supports a single flow of data, while an interconnection
network provides larger bandwidth by allowing multiple simultaneous flows of
data. Buses connect communicating entities directly and therefore are generally
faster under moderate loads. In contrast, messages in an interconnection net-
work travel from the source to the destination through a number of switches,
which leads to higher latencies but allows much better scalability. Section 3
discusses interconnection networks design in more detail.

DDR
44-bit

DDR
144-bic

DDR
[44-bic

DDR
j 44-bic

Figure 3: A 4-way AMDG64 multiprocessor with private memories.

E6000

Figure 4: The Sun WildFire architecture.

The next major issue in memory hierarchy design is selection of a consis-
tency model. In a multiprocessor system data can be replicated across multiple
locations, including the main memory, private and shared caches, memory write
buffers, and processor registers. As a result, the problem of maintaining data
consistency arises. In addition, modern processors execute instructions out of
order. This does not constitute a problem in a uniprocessor system, as long as
no data or control dependencies are violated. For example, in a uniprocessor
system, reads and writes to different memory locations can be safely reordered.
In contrast, as we will see in Section 5, reordering memory accesses to shared
memory locations in a multiprocessor system can have dramatic impact on pro-
gram behaviour. A memory consistency model defines what properties should
be enforced among reads and writes issued by different processors in the sys-
tem. Two related notions are used to reason about memory access consistency
in multiprocessor systems. Cache coherence describes ordering of memory reads
and writes to the same location, while memory consistency describes ordering
of memory accesses to different locations. Section 4 will describe algorithms for
enforcing cache coherence, while Section 5 will study the tradeoffs involved in
the design of a memory consistency model.

3 Interconnection networks
The interconnection network design space has four dimensions:

e Topology defines the physical interconnection structure of the network
graph. Some standard topologies are described below.

¢ Routing algorithm determines which routes messages can follow through
the network graph.

e Switching strategy determines how the data in a message traverses its
route. The switching strategy can be either circuit switching, in which
a path from the source to the destination is established and reserved be-
fore the actual data transfer, or packet switching, in which packets are
individually routed from source to destination.

e Flow control mechanism determines how the network deals with mul-
tiple data flows requiring access to the same network resource (e.g., a
channel).

From the performance point of view, two most important characteristics
of interconnection networks are message latency and bandwidth. Latency is
the time required to transfer n bytes of information from its source to the
destination. The following formula describes the four components of message
latency:

Time(n)s—p = Overhead+ RoutingDelay + Channel Occupancy + Contention

—=

N

oy
i
=y

NS
O
Nk
SN
N
4

>

/
\

t

=
S

T+

]
o

V/haVih
Hor

Figure 5: The hypercube topology.

Overhead is the time of getting the message into and out of the network
on the ends of the transmission. Channel occupancy is the actual time used to
transfer the packet along communication channels within the network. Routing
delay is the sum of delays that occur at each switch on the way of the packet
when selecting the right output port for the packet. Contention delay is the
time the packet spends queued at each switch waiting for the output channel to
become available.

Network bandwidth can be studied from two points of view. Local band-
width is the bandwidth available to individual node, while global bandwidth
characterises the aggregate amount of data that can be transmitted through
the network in a unit of time. The most common measure of aggregate band-
width is bisection bandwidth — the sum of the bandwidths of the minimum set
of channels which, if removed, partition the network into two equal unconnected
sets of nodes.

The primary factor that determines network performance and scalability is
the topology of the network. In particular, the network diameter and the average
routing distance determine message latencies, while the number of channels
connecting two halves of the network determines the bisection bandwidth. Some
of the most popular network topologies are crossbar, hypercube, torus, and fat
tree.

A crossbar is a fully connected network that directly connects all its inputs
to all outputs. Of course, this topology does not scale very well. Therefore,
crossbars are mainly used to connect systems with small numbers of nodes and
as building blocks for larger networks.

A d-cube (or a d-dimensional hypercube) is a d-dimensional array of nodes,
where every node is directly connected to its grid neighbours that differ by one
in precisely one coordinate (see Figure 5). A d-cube with k elements along each
dimension has the diameter of d(k — 1) and the bisection of k%~!. A torus is
a hypercube whose faces are connected in such a way that every node in the
network has 2d edges coming out of it (Figure 6).

/

Figure 7: The fat tree topology.

A fat tree is an interposition of multiple regular trees, each of which contains
all computational nodes in the system in its leaves (see Figure 7). The diameter
of a fat tree is equal to 2(h — 1), where h is the height of the tree. The bisection
is equal to the number of regular trees interposed to form the fat tree.

4 Cache coherence protocols

The term “cache coherence” refers to the ability of a memory system to synchro-
nise access to individual memory locations by different processors. The cache
coherence property adds two additional constraints to conventional uniproces-
sor memory ordering semantics. First, it requires that all processors in the
system observe all writes in the same order. This property is known as write
serialisation. Second, it requires that all writes eventually become visible to
all processors. However, it does not define any constraints on when this should
happen. The issue of exactly when a written value must be seen by a reader is
defined by a memory consistency model.

In bus-based and some small-scale interconnect-based shared memory sys-
tems, cache coherence is implemented using a technique known as bus snooping:

each processor on the bus monitors bus transactions issued by other processors
and updates the status of data in its cache according to this information. This
involves looking for a cache line on every memory access issued by any processor
in the system. Performing this lookup in the L1 cache could severely interfere
with processor operation. Therefore, cache coherence controller is usually in-
serted between the memory bus and the L2 cache, so cache coherence is enforced
across L2 caches. For this to work properly, the L2 cache must be inclusive,
that is it should contain L1 cache as its subset.

There exist 2 major types of snooping protocols: update-based and invalidate-
based protocols. Update protocols immediately put writes performed by a pro-
cessor on the bus, thus updating all copies of the data. In invalidate protocols,
a processor performs an invalidate bus transaction before writing the data in
order to ensure that it has the only valid copy of the data block. After exclu-
sive access to the data is obtained, subsequent writes can be safely performed
locally. Obviously, update protocols raise much more bus traffic, while the lazy
nature of invalidate protocols allows batching multiple writes in a single bus
transaction. Given that the memory bus is a very limited resource, invalidate
protocols are much more popular nowadays.

A cache coherence protocols can be specified as a finite state machines (FSM)
defined for each individual cache line. Figure 8a shows the FSM for the simplest
snooping protocol with 3 states: modified, shared, and invalid. The modified
state means that the only valid copy of the data block is stored in the local
cache. The local processor is the exclusive owner of the data and can freely
read and write it locally, until another processor requests access to the same
block. The shared state means that a valid copy of the data is contained in the
local cache and, probably, in some of the other processors’ caches. This data
can be read locally, but before modifying the data, it must be upgraded to the
shared state by issuing an invalidate request on the bus. Finally, the invalid
state means that the local cache does not have a valid copy of the data. The
data can be either in the main memory or in other processors’ caches. To access
the data, the appropriate request must be issued on the bus. Note that this
protocol relies on the atomicity of bus transactions to enforce strict ordering of
memory accesses. That is, write serialisation is enforced by the bus arbitration
mechanism.

Numerous improvements to this simple protocol have been developed. One
simple improvement known as the MESI protocol is illustrated in Figure 8b. The
basic observation behind this protocol is that, in the MSI protocol, if a processor
first reads a data block from memory and then writes it, two bus transactions
are required even if there is no sharing: one to upgrade the block from invalid to
shared state and another one to upgrade from shared to modified. To overcome
this inefficiency, a new state is introduced to indicate that the cache line is
exclusively owned by the local processor and is unmodified. This state is called
ezxclusive clean. The advantage of having this additional state is that it can be
upgraded to the modified state locally, without issuing additional bus requests.
Alternatively, it can be downgraded to shared or invalid if another processor
issues read or write request to this block. In order to determine whether a

i i
BusRdX/FI
BusRdFlush Y, oSS

\

Prwr/BusRdX

|
BusRdX/Flush Prwr/BusRdX.
I

%
BusRdX/— !
\ I
PrRd/BusRd
PrRd/—

BusRd/— |
Prwr/BusRdX

(a) The FSM of the MSI protocol (b) The FSM of the MESI protocol

Figure 8: Snooping protocols for cache coherence.

A

Processor Processor
+ cache + cache

Figure 9: The layout of a multiprocessor with directory-based cache coherence.

Processor
+ cache

Processor
+cache

cache line must be in shared or exclusive clean state, a new line is added to the
memory bus.

In a large-scale multiprocessor, broadcasting memory accesses to all nodes
becomes impractical; therefore a different mechanism for maintaining cache co-
herence is used. Directory-based protocols maintain information about sharing
status of every memory line in a directory. Instead of broadcasting memory
accesses to all nodes in the system, processors send corresponding requests to
the directory. The directory “knows” which nodes store the memory line in
their caches and forwards the request to those nodes only. The directory acts as
the point that orders memory accesses and thus enforces serialisation of writes.
The directory is located in the same node as the memory that it describes (see
Figure 9). Clients can compute the home processor of a memory block from its
address in order to forward their requests to this node.

The basic FSM of directory-based protocols is the same as the one in Fig-
ure 8a, except now it is replicated across individual processor caches and the

directory. Caches contain only the status bits that describe whether the cache
line is invalid, shared or modified. The directory also stores a bit vector describ-
ing which processors have copies of the memory line. Therefore, the directory
size grows linearly with the memory size and the number of nodes in the sys-
tem and can become very large for large-scale multiprocessors. Such systems
use various techniques for directory size reduction. One popular technique is to
replace the directory with a cache that describes the status of the most recently
used memory blocks only, rather than the entire memory.

5 Memory consistency models

The cache coherence property described in the previous section constraints pos-
sible orders in which different processors in the system observe writes to a single
memory location. A memory consistency model is a broader definition of the
memory system behaviour, which specifies ordering constraints imposed on all
memory accesses in the system.

The strictest memory consistency model used in practice is sequential consis-
tency proposed by Lamport [Lam79]. According to Lamport, a multiprocessor
system is sequentially consistent if the result of any execution is the same as
if the operations of all the processors were executed in some sequential order
and the operations of each individual processor appear in this sequence in the
order specified by its program. The main benefit of this model is that it allows a
programmer to reason about a multiprocessor system as if it was a uniprocessor
system, which enormously simplifies implementation of concurrent algorithms.

The problem with sequential consistency is that it disallows most of hard-
ware and software (compiler) optimisations that exploit instruction-level paral-
lelism. In a system that executes all instructions strictly in the program order
and blocks on all memory accesses, cache coherence protocols described in the
previous section are sufficient to ensure sequential consistency. However, most
existing systems do not follow these restrictions. Below, I enumerate possible
types of sequential consistency violations and give examples of ILP optimisa-
tions that can lead to these violations. The “X—Y” notation refers to a program
order relaxation which leads to operation Y that follows X in the program order
being executed before X.

W—=R relaxation

Relaxation of the program order between a write and a following read from a dif-
ferent location can violate sequential consistency by returning a read value that
would be stale in any global sequential order. For example, if in the program
in Figure 10 both processors perform flag reads before writing new flag values,
then both reads can return zeros and, as a result, both processors will enter
the critical section simultaneously, which would not be possible in a sequen-
tially consistent system. In the majority of modern processors, such reordering
can happen for several reasons. First, from the point of view of an individual

10

Initially Flagl = Flag2 = 0
P1 P2

Flagl = 1 Flag2 =1
if (Flag2 == 0) if (Flagl == 0)
critical section critical section

Figure 10: Example for sequential consistency.

processor, memory accesses to different locations do not constitute a data haz-
ard and can be safely reordered to achieve better pipeline utilisation. Even if
two operations are separated by a branch instruction, they can still be reordered
during speculative execution. Second, most modern processors use write buffers,
which means that the write operation can complete before the value actually
reaches the memory bus. The following read operation can bypass the queued
write, which effectively reorders the effects of the two operations. A similar
effect can be observed in systems with non-blocking caches: the write operation
can complete before the corresponding request is put on the memory bus, and
the following read can be satisfied from the cache. Finally, reordering can be
introduced statically by an optimising uniprocessor compiler that assumes the
sequential memory model.

W—W relaxation

Reordering writes performed by a processor to different memory locations can
lead to another processor observing the order of writes that is different from the
one defined by the programmer and hence violates sequential consistency. For
example, if the program executed by processor P1 in Figure 11 is reordered in
such a way that the Head is modified before the Data field of the Task structure
is initialised, than one of the other processors may observe an invalid state of the
Task structure. Similarly to the previous case, such reordering can be caused by
either out-of-order pipeline or can be introduced by a compiler. In a bus-based
system, writes are typically executed in the order in which they are issued by
the pipeline. However, in a system based on an interconnection network, writes
can be reordered by the network. For example, a write to a nearby memory
module can complete before a write to a remote module even if the latter was
issued first.

R—W and R—R relaxations

Reordering a read with one of the following reads or writes can result in reading
stale or otherwise incorrect data. For example, if processor P2 in Figure 11
reads the Data field before reading Head, the obtained value of Data can be
stale. In this example, reordering can happen as a result of overlapping of the
two reads operations in a system with multiple memory modules.

11

Pl BZ, PF, www; Pn

while (there are more tasks) { while (MyTask == null) {
Task = GetFromFreeList () ; Begin Critical Section
Task — Data = ...; if (Head != null) {
insert Task in task quete MyTask = Head;

1 Head = Head — Next;

Head = head of task queue;
End Critical Section

}

= MyTask — Data;

Figure 11: Example for sequential consistency.

Initially A=B =0

P1 p2 P3
A=1
if (A ==1)
B=1
if (B==1)

register] = A

Figure 12: Example for sequential consistency.

Reading own writes early

A system with non-blocking caches can return a value of a write in a subsequent
read before the write propagates to all processors in the system. Luckily, this
important optimisation does not compromise sequential consistency.

Reading others’ writes early

A more serious problem is that of maintaining a global ordering of writes issued
by different processors. While writes to the same memory location are serialised
by a cache coherence protocols, writes issued to different addresses can arrive to
different processors in different orders in a multiprocessor with an interconnec-
tion network. For example, if in Figure 12 the write of variable A reaches P3
after the write of B by P2, then the value read by P3 will be stale. This problem
does not exist in systems that use invalidate-based cache coherence protocols,
where the new data value can only be sent to a remote processor after the in-
validation has been acknowledged by all processors in the system that stored a
copy of the memory block in their caches.

As can be seen from the above discussion, a straightforward implementa-
tion of sequential consistency would defeat many optimisations used in modern
processors and thus destroy the performance of the resulting system. Two so-
lutions to this problem have been proposed. The first solution implemented in
the MIPS R10000 architecture is to maintain sequential consistency but hide
the resulting latency using speculative execution. The processor executes the

12

Table 1: Relaxed consistency models.

Relaxation W—-R [W—W | R—RW [ReadOthers’ | Read Own [Safety net
‘l Order Order Order ” Write Early | Write Early
SC [16] Vi
IBM 370 [14] N serialization instructions
TSO [20] Vi Vi RMW
PC [13, 12] V/ Vi \/ RMW
PSO [20] N v N RMW, STBAR
WO [5] Vv Vi W/ Vi synchronization
RCsc [13, 12] v v v v release, acquire, nsync,
RMW
RCpc[13, 12] V4 V4 v Vi v release, acquire, nsync,
RMW
Alpha [19] N v v Vi MB, WMB
RMO [21] N N v/ N various MEMBAR's
PowerPC |17, 4] v Vi v v Vi SYNC

program using usual ILP optimisations but does not commit the results until
it becomes clear that they do not violate sequential consistency. If the pro-
cessor detects a memory consistency violation, it rolls back and restarts the
uncommitted computation.

The second solution is to sacrifice the convenient sequential view of memory
in order to enable some of the ILP optimisations. Such a tradeoff is provided by
relaxed consistency models. Relaxed consistency models rely on programmer’s
knowledge of the program logic to determine situations where the consistency
guarantees supported by the model are insufficient for correct program execu-
tion and to explicitly issue serialisation instructions to enforce stronger memory
ordering at these specific points in the instruction stream. Table 1 summarises
relaxations supported by several consistency models.

The set of serialisation instructions supported by a specific architecture is
called the safety net of this architecture. Serialisation instructions (or mem-
ory barriers) can be either fine grained or coarse grained. One example of a
coarse grained barrier is the PPC sync instruction, which guarantees that all
instructions preceding it complete their execution before any of the following
instructions starts executing. In contrast, fine-grained barriers enforce only par-
tial ordering of instructions. For example, the TA-32 1fence instruction ensures
that any memory loads issued before it will complete their execution before any
of the following instructions starts executing. A memory barrier may require
global synchronisation among all processors in the system. Therefore, barrier
instructions are quite expensive and should be used with care, especially in
large-scale systems.

6 Operating systems for shared-memory multi-
processors

This section highlights some interesting interactions between shared memory
organisation and operating system architecture. In a multiprocessor computer,

13

an operating system is a shared resource and, therefore, a potential bottleneck.
There are three main sources of contention that can be found in a multiprocessor
operating system:

e Locks. In order to provide safe access to resources shared among mul-
tiple processors, they need to be protected by locks. The purpose of a
lock is to serialise accesses to the protected resource by multiple proces-
sors. Undisciplined use of locking can severely degrade performance of the
system or even cause a livelock. This form of contention can be reduced
by using fine-grained locks, avoiding long critical sections, replacing locks
with lock-free algorithms, or, when possible, avoiding sharing altogether.

e Shared data. Accesses to a shared data item by multiple processors
(with one or more of them modifying the data) are serialised by the cache
coherence protocol. Even in a moderate-scale system, serialisation delays
can have significant impact on the system performance. In addition, bursts
of cache coherence traffic saturate the memory bus or the interconnection
network, which also slows down the entire system. This form of contention
can be eliminated by either avoiding sharing or, when this is not possible,
by using replication techniques to reduce the rate of write accesses to the
shared data. One example of such techniques is the scalable spin lock
algorithm proposed in [MCS91]. This approach has been generalised in
the Tornado system, which supports a general-purpose clustered objects
mode [GKAS99).

e False sharing. This form of contention arises when unrelated data items
used by different processors are located next to each other in memory and,
therefore, share a single cache line. The effect of false sharing is the same
as that of regular sharing — bouncing of the cache line among several
processors. Fortunately, once it is identified, false sharing can be easily
eliminated by padding each data item to the cache line size or otherwise
adjusting the memory layout of non-shared data.

A perfectly scalable operating system should increase its throughput linearly
with the number of processors. There exist two conceptual approaches to devel-
oping a scalable operating system. The first, evolutionary, approach is to take
an existing OS and modify it to support a large number of processors by iden-
tifying and eliminating all points of contention. However, scaling an existing
system turned out to be much more difficult than it may appear [CW05, BH03],
which prompted some researchers to design a scalable OS from scratch. This ap-
proach was followed by Hurricane, Tornado, and K42 systems [GKAS99]. These
systems use techniques like replication and per-CPU data structures to achieve
near-linear scalability.

Apart from eliminating bottlenecks in the system itself, a multiprocessor
operating system developer should provide support for efficiently running user
applications on the multiprocessor. Some of the aspects of such support include

14

mechanisms for task placement and migration across processors, physical mem-
ory placement in NUMA systems (the OS should guarantee that most of the
memory pages used by an application are located in the local memory), and
scalable multiprocessor synchronisation primitives.

References

[AGY5]

[BHO3]

[CSG99]

[CWO05]

[GKAS99]

[HP03]

[Lam79]

[MCS91]

Sarita Adve and Kourosh Gharachorloo. Shared memory consis-
tency models: A tutorial. Technical Report 9512, Rice University,
Electrical and Computer Engineering Department, September 1995.

Ray Bryant and John Hawkes. Linux scalability for large NUMA
systems. In Proceedings of the Ottawa Linuz Symposium, 2003.

David E. Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel
Computer Architecture: o Hardware/Software Approach. Morgan
Kaufmann, 1999.

Peter Chubb and Darren Williams. Linux scalability — from the
micro to the HUGE. In Proceedings of the 6th Linuz.Conf.Au, Can-
berra, ACT, April 2005.

Ben Gamsa, Orran Krieger, Jonathan Appavoo, and Michael
Stumm. Tornado: Maximising locality and concurrency in a shared
memory multiprocessor operating system. In Proceedings of the
3rd USENIX Symposium on Operating Systems Design and Imple-
mentation, pages 87-100, New Orleans, LA, USA, February 1999.
USENIX.

John L. Hennessy and David A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 3rd edition, 2003.

Leslie Lamport. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs. IEEE Transactions on Com-
puters, C-28:690-1, 1979.

John M. Mellor-Crummey and Michael L. Scott. Algorithms for
scalable synchronisation on shared-memory multiprocessors. ACM
Transactions on Computer Systems, 9:21-65, 1991.

15

