
 1

Multithreading

cs9244

 2

Outline

• Why multithreading (MT)
– Performance and utilization

• Three approaches
– Fine-grained multithreading
– Coarse-grained multithreading
– Simultaneous multithreading

• Crosscutting issues
– Resource contention
– SMT vs. CMP
– Speculative multithreading (SpMT)

 3

Why multithreading

• Performance
– Throughput (IPC)

– Speedup for individual threads

• Utilization
– Average sustained IPC: 1.5-2 on a moderate

superscalar (e.g. 4-way)
�

 < 50%

– Switch between multiple threads to overlap stalls

 4

Three MT approaches

• Fine-grained multithreading

• Coarse-grained multithreading

• Simultaneous multithreading

 5

Three MT approaches (cont)

 6

Similarities in MT implementations

• How do multiple threads share a single processor?
– Different mechanism for different structures
– Depend on the context of the structure

• Three sharing mechanism
– Replicate: PC, Architectural register
– Partition: re-order buffer, Load/store buffer, queues

• Statically partitioning vs. dynamically partitioning

– Share: caches, physical register, execution units
• The more resources that can be shared, the more efficient MT can be

 7

Two MT resource partitioning
categories

• Statically partitioning
– Fixed partitioning

– Decomposed equally

• Fairness
– Ensures that low-IPC

threads don’t starve
high-IPC threads

 8

Two MT resource partitioning
categories (cont)

• Dynamically partitioning
– Has same effect as fixed

partitioning

– Confines each thread the
number of entries they can
use

– Can use any entry

 9

Differences in MT implementations

• Thread scheduling policy
– When to switch from one thread to another

• Switch every fixed number of cycles

• Switch when stalls with long latency

• Pipeline sharing
– How exactly threads share the pipeline

• Dynamically sharing

• Varying interleaved instructions from multiple threads vs.
instructions from one thread

 10

Fine-grained multithreading

• Switch on a fixed fine-grained schedule (usually on every
cycle, in round-robin fashion)

• Dynamically sharing pipelining
• Advantage:

– Tolerate all latencies

• Disadvantage:
– Sacrifice the performance of individual threads
– Need a lot of threads to hide stalls
– Many threads means many register files

• Example: Denelcor HEP, Tera MTA

 11

Coarse-grained multithreading

• Switch when reaches certain situations (e.g. L2 misses)
• Thread-switch penalty
• No pipeline sharing
• Advantages:

– Sacrifice very little individual thread performance

• Disadvantages:
– Need short in-order pipeline to gain performance
– Cannot tolerate short latency

• Example: Northstar, Pulsar Power PC from IBM

 12

Simultaneous multithreading

• Fine-grained, dynamically share the pipeline

• Can multithread an out-of-order processor
• Advantages:

– Tolerate all latencies

– Higher utilization

– Sacrifice some individual threads’ performance

• Example: Pentium 4 Xeon (5 issues, 2 threads)

 13

Pipeline supporting SMT

• An earlier version from UCSB called DISC [[NemirovskyNemirovsky et al. et al. ‘91] ‘91]

 14

Xeon: case study of implementing SMT

• Adding Hyper-threading to Xeon precessor adds
only 5% die area

• Experience 30% gain in performance

 15

Xeon’s front-end detailed pipeline

 16

Xeon’s out-of-order execution engine
detailed pipeline

 17

Crosscutting issues

• Resource contention
• SMT vs. CMP

• Speculative multithreading (SpMT)

 18

Resource contention

• Cache contention
• No cache coherency problems as in SMP

• Cache can be monopolized by one thread
• May increase cache conflicts � may degrade

performance seriously

 19

SMT vs. CMP

• Chip Multiprocessor (CMP)
– Integrate multiple processor cores on a single chip

– Less sensitive to poor data layout and poor inter-core
communication

– Simple core � short cycle time

– Wasted resources when lack of TLP

• SMT
– Multiple “logical” processors

– More flexible

– Increasing die area & require longer cycle time

 20

Speculative multithreading

• Relax threads execution order from semantic order
• Changes

– How to detect mis-speculation?
– How to rollback: fully or partially?
– How to identify effective threads?
– How to weight benefits?

• Thread start-up overhead
• Mis-speculation cost

