
IA-32
Nicholas FitzRoy-Dale

“At the forefront of the computer revolution”
- Intel

“Difficult to explain and impossible to love”
- Hennessy and Patterson

Datapoint 2200

! Released 1970

! 2K shift register
main memory

! CPU: ~100 TTL
components

! Instruction set
implemented by
Intel in the 8008

8088, 8086,
81016, 80286

80386

Before IA-32: "x86". Rather dull.

IA-32. 32-bit addressing. Paging.

i486 On-chip L1. Pipelining.

DP2200, 8008 Precursors to x86

Pentium Superscalar! Branch prediction. SMP.

Pentium Pro P6 microarchitecture. Dynamic execution. Speculation.

History History
Pentium II SIMD extensions.

Pentium III SIMD extensions #2.

Pentium 4
Netburst microarchitecture. SIMD extensions #3 and #4,

virtualisation, 64-bit support

Pentium M

Core family

Pentium M microarchitecture.

SIMD extensions try #5.

Legacy

! CISC ISA

! Lack of registers

! Four modes of operation

! Segmentation

! Superscalar

! Complex addressing modes

Microarchitectures

! New one “every two years”

! Focus on P6

P6 microarchitecture

2

3. The sources and destinations of up to 3 uops are

renamed every cycle to a set of 40 physical registers

by the Register Alias Table (RAT), which eliminates

register re-use artifacts, and are forwarded to the 20-

entry Reservation Station (RS) and to the 40-entry

ReOrder Buffer (ROB).

4. The renamed uops are queued in the RS where they

wait for their source data - this can come from several

places, including immediates, data bypassed from

just-executed uops, data present in a ROB entry, and

data residing in architectural registers (such as EAX).

5. The queued uops are dynamically executed according

to their true data dependencies and execution unit

availability (integer, FP, address generation, etc.).

The order in which uops execute in time has no

particular relationship to the order implied by the

source program.

6. Memory operations are dispatched from the RS to the

Address Generation Unit (AGU) and to the Memory

Ordering Buffer (MOB). The MOB ensures that the

proper memory access ordering rules are observed.

7. Once a uop has executed, and its destination data has

been produced, that result data is forwarded to

subsequent uops that need it, and the uop becomes a

candidate for "retirement".

8. Retirement hardware in the ROB uses uop timestamps

to reimpose the original program order on the uops as

their results are committed to permanent architectural

machine state in the Retirement Register File (RRF).

This retirement process must observe not only the

original program order, it must correctly handle

interrupts and faults, and flush all or part of its state

on detection of a mispredicted branch. When a uop is

retired, the ROB writes that uop’s result into the

appropriate RRF entry and notifies the RAT of that

retirement so that subsequent register renaming can be

activated. Up to 3 uops can be retired per clock cycle.

The Pentium Pro processor implements a 14-stage

pipeline capable of decoding 3 instructions per clock

cycle. The in-order front end has 8 stages. The out-of-

order core has 3 stages, and the in-order retirement logic

has 3 stages. For an integer op, say a register-to-register

add, the execute phase is just one cycle. Floating point

adds have a latency of 3 cycles, and a throughput of 1 per

cycle. FP multiply has a latency of 5 cycles and a

repetition rate of 1 every 2 cycles. Integer multiply has a

latency of 4 cycles and a throughput of 1 every cycle.

Loads have a latency of 3 cycles on a Dcache hit. FDIV is

not pipelined; it takes 17 cycles for single, 32 cycles for

double, and 37 cycles for extended precision. The

processor includes separate data and instruction L1 caches

(each of which is 8KB). The instruction cache is 4-way set

associative, and the data cache is dual ported, non-

blocking, 2-way set associative supporting one load and

one store operation per cycle. Both instruction and data

cache line sizes are 32 byte wide. More details of the

microarchitecture can be found elsewhere [2].

Bus Interface Unit

Instruction Fetch Unit

Branch
Target

Buffer

In
s
tr

u
c
ti
o
n

 D
e
c
o
d

e
r

Micro-
instruction
Sequencer

Register
Alias Table

R
e

s
e

rv
a

ti
o
n
 S

ta
ti
o
n

Memory Reorder
Buffer

Data Cache Unit

Memory Interface

Unit

Address

Generation Unit

Integer Execution

Unit

Floating Point

Execution Unit

Reorder Buffer
and

Retirement
Register File

L2 CacheExternal Bus

Figure 1 Pentium
!

 Pro Processor Block Diagram

The secondary cache (L2 cache), which can be either

256KB or 512KB in size, is located on a separate die (but

within the same package). The L2 cache is 4-way set

associative unified non-blocking cache for storage of both

instructions and data. It is closely coupled with a

dedicated 64-bit full clock-speed backside cache bus. The

L2 cache line is also 32 bytes wide. The L2 cache fills the

L1 cache in a full frequency 4-1-1-1 cycle transfer burst

transaction. The processor connects to I/O and memory

via a separate 64-bit bus that operates at either 60 or 66

MHz. The bus implements a pipelined demultiplexed

design with up to 8 outstanding bus transactions.

3. Performance Monitoring Facility

The Pentium
"
 Pro processor implements two performance

counters[3]. Each performance counter has an associated

event select register that controls what is counted. The

counters are accessed via the RDMSR and WRMSR

instructions. Table 1 shows a partial list of performance

metrics that can be measured by selecting the two events

to be monitored.

Image from http://tams-www.informatik.uni-hamburg.de/lehre/ss2001/ps-mikroprozessoren/papers/pentium-pro-performance.pdf

P6 microarchitecture

! As RISC as possible

! Register renaming

! Superscalar

! Out-of-order execution

! Speculation

P6: As RISC as possible

Complex

instruction

decoder

Simple

instruction

decoder 0

Simple

instruction

decoder 1

µ-op

sequencer

L1 I-cache

µ-op queue

P6 family instruction decoder

Instruction decode

! Pentium 4: Trace cache

! Pentium M, Core: µ-op fusion

! ARM: Single instruction per clock

! IA-64: Two identical decoders (currently)

P6: “Register renaming”

! Performed by ROB

! 40 physical registers in RAT

! ARM: Lots of GPRs

! IA-64: Lots of GPRs and register rotation

Avoiding stalls

! Out-of-order execution

! Branch prediction

! Speculation

Out-of-order execution

µ-op queue

Reservation station

6 µ-ops

20 entries

Reorder buffer 40 entries

P6 family OOO architecture

P6: Superscalar

Reservation station

Store

data

Store

address

Load

address
FPU CIU SIU

4 3 2 0 1

Memory units Integer units

Superscalar: Netburst
“They can fricassee or roast a duck in half the

time!” - Intel

 A Detailed Look Inside the Intel® NetBurst™ Micro-Architecture of the Intel Pentium® 4 Processor

Page 14

! selecting IA-32 instructions that can be decoded into less than 4 µops and/or have short latencies

! ordering IA-32 instructions to preserve available parallelism by minimizing long dependence chains and

covering long instruction latencies

! ordering instructions so that their operands are ready and their corresponding issue ports and execution units

are free when they reach the scheduler.

This subsection describes port restrictions, result latencies, and issue latencies (also referred to as throughput) that

form the basis for that ordering. Scheduling affects the way that instructions are presented to the core of the

processor, but it is the execution core that reacts to an ever-changing machine state, reordering instructions for faster

execution or delaying them because of dependence and resource constraints. Thus the ordering of instructions is

more of a suggestion to the hardware.

The Intel® Pentium® 4 Processor Optimization Reference Manual lists the IA-32 instructions with their latency,

their issue throughput, and in relevant cases, the associated execution units. Some execution units are not pipelined,

such that µops cannot be dispatched in consecutive cycles and the throughput is less than one per cycle.

The number of µops associated with each instruction provides a basis for selecting which instructions to generate. In

particular, µops which are executed out of the microcode ROM involve extra overhead. For the Pentium II and

Pentium III processors, optimizing the performance of the decoder, which includes paying attention to the 4-1-1

sequence (instruction with four µops followed by two instructions each with one µop) and taking into account the

number of µops for each IA-32 instruction, was very important. On the Pentium 4 processor, the decoder template is

not an issue. Therefore it is no longer necessary to use a detailed list of exact µop count for IA-32 instructions.

Commonly used IA-32 instructions, which consist of four or less µops, are provided in the Intel
®

 Pentium
®

 4

Processor Optimization Reference Manual to aid instruction selection.

Execution Units and Issue Ports

Each cycle, the core may dispatch µops to one or more of the four issue ports. At the micro-architectural level, store

operations are further divided into two parts: store data and store address operations. The four ports through which

µops are dispatched to various execution units and to perform load and store operations are shown in Figure 4. Some

ports can dispatch two µops per clock because the execution unit for that µop executes at twice the speed, and those

execution units are marked “Double speed.”

Port 0 . In the first half of the cycle,

port 0 can dispatch either one

floating-point move µop (including

floating-point stack move, floating-

point exchange or floating-point

store data), or one arithmetic

logical unit (ALU) µop (including

arithmetic, logic or store data). In

the second half of the cycle, it can

dispatch one similar ALU µop.

Port 1 . In the first half of the cycle,

port 1 can dispatch either one

floating-point execution (all

floating-point operations except

moves, all SIMD operations) µop

or normal-speed integer (multiply,

shift and rotate) µop, or one ALU

(arithmetic, logic or branch) µop.

In the second half of the cycle, it can dispatch one similar ALU µop.

Port 2 . Port 2 supports the dispatch of one load operation per cycle.

Note:
FP_ADD refers to x87 FP, and SIMD FP add and subtract operations

FP_MUL refers to x87 FP, and SIMD FP multiply operations
FP_DIV refers to x87 FP, and SIMD FP divide and square-root operations

MMX_ALU refers to SIMD integer arithmetic and logic operations
MMX_SHFT handles Shift, Rotate, Shuffle, Pack and Unpack operations

MMX_MISC handles SIMD reciprocal and some integer operations

Figure 4 Execution Units and Ports of the Out-of-order Core

Memory

Store

Store

Address

Port 3

Memory

Load

All Loads

LEA
Prefetch

Port 2

ALU 1
Double
speed

ADD/SUB

Integer

Operation
 Normal

speed

Shift/Rotate

Port 1

FP

Execute

 FP_ADD

 FP_MUL
 FP_DIV

 FP_MISC
 MMX_SHFT

 MMX_ALU
 MMX_MISC

Port 0

FP Move

FP Move
FP Store Data

FXCH

ALU 0
Double
speed

ADD/SUB
Logic

Store Data
Branches

Source: http://www.people.virginia.edu/~zl4j/CS854/netburst_detail.pdf

Superscalar

! ARM:

! Varies per-core:

! None

! Separate ALU, MAC and LS (ARM11)

! IA-64:

! 2 I-units, 2 F-units, 3 B-units

! But very few templates avoid “split issue”

P6: Branch prediction

! Branch target buffer: 512 entries

! Branch history and predicted address

! Mispredicts: 10-15 cycles

! Static prediction

! ~90% hit rate

! Pentium M: Loop detection

P6: Speculation

Reservation station

ROB

Execution units

ROB

Write

P6 speculative execution

Registers
ALAHEAX

CLCHECX

DLDHEDX

BLBHEBX

EBP BP

ESP SP

ESI SI

EDI DI

EIP IP

EFLAGS FLAGS

CS

SS

DS

ES

FS

GS

Accumulator

Count

Data

Base of data

Base of stack

Stack pointer

String source idx

String dest idx

Instruction pointer

CPU flags

Code segment

Stack segment

Data segment

Extra data segment

Extra data segment 2

Extra data segment 3

15 732 0

Source: Hennessy and Patterson

Floating-point

Source: Hennessy and Patterson

79

FP stack

FP status

MMX

MM0

79

FPR

63 0

MMX GP register 0

MM1FPR MMX GP register 1

MM2FPR MMX GP register 2

MM3FPR MMX GP register 3

MM4FPR MMX GP register 4

MM5FPR MMX GP register 5

MM6FPR MMX GP register 6

MM7FPR MMX GP register 7

SSE, SSE2, SSE3, SSE4

XMM0

127 0

SSE GP register 0

XMM1 SSE GP register 1

XMM2 SSE GP register 2

XMM3 SSE GP register 3

XMM4 SSE GP register 4

XMM5 SSE GP register 5

XMM6 SSE GP register 6

XMM7 SSE GP register 7

IA-32 Instructions

0

110

220

330

440

550

8086 80186 80286 80386 i486 PentiumPPro P. MMX P2 P3 P4

516

372

302
271

245
214209201

118

5848

Instructions (x86)

What everyone (usually) targets

Instruction counts

$ python2.4 instrcount.py /bin/* `which gcc` `which vim`

! "! #!! #"! $!! $"! %!! %"!
#!&"

#!&'

#!&%

#!&$

#!&#

#!!

#!#

#!$

()%$
)*+
(),'

Instruction counts

0

25

50

75

100

mov call jmp je test lea push nop cmp pop

2.73.23.23.74.64.85.05.1
7.1

39.3

Percentage

IA-32 vs ARM

0

80

160

240

320

400

health power perimeter em3d em3d core

4950

129

318

174

52
67

353

296

212

56
69

175

311

240

61
75

173

373

222

62

88

148

347

264

IA-32 gcc4.1
IA-32 gcc3.3 P4
IA-32 gcc4.1 P4
IA-32 icc9.0 P4
ARM

compute_nodes()

The code ARM IA-32
other_value =
 localnode->from_values[i];

ldr r4, [r0, #12]
ldr r2, [r4, lr, lsl #2]

mov ecx,DWORD PTR [eax+12]
mov eax,DWORD PTR [ecx+ebx*4]

cur_value -= coeff * value; mufd f0, f2, f1
sufd f3, f3, f0

mulsd xmm1,xmm2
subsd xmm0,xmm1

<function prologue> stmdb sp!, {r4, r5, lr} push ebp
mov ebp, esp
and esp, 0xfffffff8
sub esp, 0x10
mov DWORD PTR [esp], esi
mov DWORD PTR [esp+4], edi
mov DWORD PTR [esp+8], ebx

<function epilogue> ldmia sp!, {r4, r5, pc} mov esi, DWORD PTR [esp]
mov edi, DWORD PTR [esp+4]
mov ebx, DWORD PTR [esp+8]
mov esp, ebp
pop ebp
ret

SIMD
“These instructions tend to be solutions,

not primitives...” - H&P

! MMX: Integer only. Renames the FP
registers

! SSE: 8 new registers, each with 4 ints or 4
single-precision floats. Cache control.

! SSE2: Lots more data types

! SSE3: Horizontal operations

! SSE4: Unknown

Floating point

! 8087: Stack architecture

! P III, P4, Core: SSE, SSE2, SSE3, SSE4

Thread-level parallelism

! SMP

! Pentium Extreme Edition

! Core Duo

! Hyperthreading

SMP

! P III, 4, Core: MESI (Athlon: MOESI)

! Bus arbitration via dedicated lines

! Interrupts: Whichever gets them

Instruction stream

Execution units

Image: arstechnica.com

Hyperthreading

! Replicate register
renaming, architectural
registers

! Partition re-order buffer

! Share caches and
execution units

! Relatively large
performance gain

Instruction streams

Execution units

Image: arstechnica.com

Performance

! “Speed demon” P4 was disappointing

! Focus on ILP / TLP

! Dual-core designs

! Hyperthreading
120 ,

a,
100-

I
25 50 63 75 a7 io0 125 200 i

Relative area (percentage)

Figure 2. Performance versus die area for different

decoder designs.

The load port would operate about 30 percent of the time

and the store port at about 10 percent of the time. This

proved to be the case, with less than a 1 percent performance

loss for this change.

Changing from a 4-2-2-2 decode template (four instruc-

tions per clock) to a 4-2-2 template (three instructions per

clock) also was a no-brainer, with no detectable performance

change on 95 percent of programs examined.

We also changed the renaming and retirement ports from

fourxmicro-ops per clock to three, which resulted in a slight-

ly larger, but still manageable 2 percent performance loss.

Finally, we reduced the L 1 cache size from 16 to 8 Kbytes.

In doing this, we took advantage of the full-frequency ded-

icated bus we had already chosen. Since the L1 cache is back-

stopped by a full bandwidth, three-clock L2 cache, the extra

L 1 misses that result from cutting the L1 cache size cause a

relatively minor 1.5 percent performance loss.

The reduction from four- to three-way superscalar opera-

tion and the reduction in L 1 cache size had some negative

impact on chest-thumping bragging rights, but we could not

justify the extra capacity by the delivered performance.

Further, tenaciously holding on to extra logic would have

resulted in significant negative consequences in die area,

clock speed, and project schedule.

As the design progressed, we eventually found that even

the first round of trimming was not enough. We had to make

further reductions to keep die size in a comfortable range,

and, as it turned out later, maintain clock frequency. This

required making further cuts, which resulted in detectable

performance loss, rather than the truly negligible losses from

the earlier changes.

We made two major changes. We cut back the decoder to

a 4-1-1 template from a 4-2-2 template. This amounted to

about a 3 percent performance loss. We also cut back the

branch target buffer from 1,024 to 512 entries, which barely

affected SPECint92 results (1 percent) but did hurt transac-

tion processing (5 percent). It was emotionally difficult (at the

time) for the microarchitecture team to accept the resulting

performance losses, but these results turned out to be criti-

cal to keeping the die area reasonable and obtaining a high

clock frequency. This kind of careful tuning and flexibility in

product goals was essential to the ultimate success of the

program.

It is important to consider the actual shape of the area-

performance curve. Most high-end CPU designs operate well
past the knee of this curve. Efficiency is not a particularly

critical goal. For example, the market demands as much per-

formance as possible from a given technology, even when

that means using a great deal of silicon area for relatively

modest incremental gains

Figure 2 illustrates this effect. This graph charts the per-

formance of various instruction decoder schemes coupled

to a fixed execution core. All of the architectures discussed

earlier are clearly well past the knee of the performance

curve. Moving from point A (a 4-2-2-2 template) to point B

(4-2-2) is clearly the right choice, since the performance

curve is almost flat. Moving down to point C (4-1-1) shows

a detectable performance loss, but it is hardly disastrous in

the grand scheme of things. Point D (4-2-one we actually

considered at one time) occupies an awkward valley in this

curve, barely improved over point E (4-1) for significantly

more area and noticeably lower performance than point C.

As we converted the microarchitecture to transistors and

then to layout, execution quality became critical. All mem-

bers of the project team participated in holding the line on

clock frequency and area. Some acted as firefighters, han-

dling the hundreds of minor emergencies that arose.

This phase is very critical in any major project. If a project

takes shortcuts and slips clock frequency or validation to

achieve earlier silicon, the design often contains bugs and

suffers unrecoverable performance losses. This design phase

determines a project’s ultimate success. The best planned

and most elegant microarchitechire will fail if the design team

does not execute implementations well. As CPU architects,

we were very fortunate to work with a strong design and

layout team that could realize our shared vision in the result-

ing silicon.

THE PENTIUM P R O PROCESSOR ran DOS, Windows,

and Unix within one week of receiving first silicon. We had

most major operating systems running within one month.

We made a series of small metal fixes to correct minor bugs

and speed paths. The A2 material, manufactured using a 0.6-

micron process, ran at 133 MHz with a production-quality

test program, including 85 degree case temperature and 5

percent voltage margins).

The BO steppingincorporated several microcode bug and

speed path fixes for problems discovered on the A-step sil-

icon, and added frequency ratios to the front-side bus. Our

success with early Pentium Pro processor silicon, plus pos-

itive early data on the 0.35-micron process, encouraged us

to retune the L2 access pipeline. Retuning allowed for ded-

icated bus frequencies in excess of 200 MHz. We added one

clock to the L2 pipeline, splitting the extra time between

address delivery and path while retaining the full-core clock

frequency and the pipelined/nonblocking data access capa-

bility. The 0.6-micron BO silicon became a lSO-MHz, pro-

duction-worthy part and met our goals for performance and

frequency using 0.6-micron Pentium processor technology.

We optically shrank the design to the newly available 0.35-

14 IEEEMicro

Source: IEEE Micro

The future of IA-32

! EMT64

! Virtualisable

! Multicore

seuQnoit!!?s

