ThelA-32 processor architecture

Nicholas FitzRoy-Dale

Document Revision: 1 Date: 2006/05/30 22:31:24

nfd@cse.unsw.edu.au ‘ ,
http://www.cse.unsw.edu.au/~disy/ =R

Operating Systems and Distributed Systems Group
School of Computer Science and Engineering

The University of New South Wales

UNSW Sydney 2052, Australia

nfd@cse.unsw.edu.au
http://www.cse.unsw.edu.au/~disy/

1 Introduction

This report discusses the most common instruction settaothie for desktop microprocessors: |A-
32. From a programmer’s perspective, IA-32 has not changadged significantly since its introduc-
tion with the Intel 80386 processor in 1985. IA-32 implenatinns, however, have undergone dra-
matic changes in order to stay competitive with more modechitectures, particularly in the area of
instruction-level parallelism.

This report discusses the history of I1A-32, and then theitactural features of recent 1A-32 im-
plementations, with particular regard to caching, muttg@ssing, and instruction-level parallelism. An
archtectural description is not particularly useful inl&mn. Therefore, to provide context, each as-
pect is compared with analogous features of other architest with particular attention paid to the
RISC-style ARM processor and the VLIW-inspired Itanium.

2 A brief history of 1A-32

IA-32 first appeared with the 80386 processor, but the archite was by no means completely new.
IA-32's 8-hit predecessor first appeared in the Datapoif03&ogrammable terminal, released in 1971.
Under contract to produce a single-chip version of the tealts multiple-chip TTL design, Intel's im-
plementation, the 8008, was not included in the termindél ireleased the chip in 1972. The first “x86”
chip, the Intel 8086, released in 1978, is almost binary{uatible with programs written for the 8008.
Successors to the 8086, including the 808186 and 80286nedtéhe 8086 instruction set. Figule
shows a brief chronology.

Intel's commitment to backwards compatibility in 1A-32 higét the architecture with a number of
features that appear awkward when compared with more maldsigns. In particular, the CISC nature
of the instruction set, the relative scarcity of registarg] IA-32s complex addressing modes threaten to
reduce the overall performance of I1A-32 implementatiomsl #aus are all overcome in hardware.

2.1 Segmentation

The original memory access mode for IA-32 is calkegmented mode (IA-32 has a number of other
processor modes, the most important of which is protectedienmescribed below).

In this mode, applications refer to memory using a combamatf a 16-bitsegment register and a
16-bit offset register. Segments are overlapped in this mode to give a maximum sshilske memory of
1MB.

Segmentation is preserved in IA-32 protected mode, andei®4hbit extension to 1A-32 known as
AMDG64 or EMT64. In these modes, segment boundaries are fiotedeby the hardware. Instead, the
segment register<§, DS, ES, FS, andGS) serve as an index into thgtobal descriptor table, which
defines the extent of the segment. Segments are defined oirttred address space, and thus segment
translation occurs before paging.

Segments are not generally used. Segmentation cannotatedisbut it may be effectively removed
by creating a single entry in the global descriptor tablesecing the entire 4 gigabyte address space.
Some operating systems take advantage of segmentationitaissptask switching. The L4/Pistachio
operating system can use segmentation to map several pregidress spaces into a special shaneil
space page table.? If several processes are sufficiently small, they can slreise of this page table,
with the benefit that the page table need not be changed ontextewitch between programs which
share it. This optimisation, callesiall spaces, improves IA-32 context switch performance, because
IA-32, unlike ARM, does not have a tagged TLB and is thus aali¢tp flush the TLB when the current
page table changes.

The Intel 8080, released in 1974, has a 16-bit external buis ltherwise identical to the 8086.
2Implementations may use a global portion of the standardgs®page table instead.

2 ABRIEF HISTORY OF IA-32

DP2200, 8008 Precursors to x86

ey

8088, 8086,

x86. 16-bit architecture. Early-form IA-32 features introduced
81016, 80286

with 80286.

Netburst microarchitecture. SSE2 and SSE3 SIMD extensions,
virtualisation, 64-bit support

Pentium 4

Pentium M Pentium M microarchitecture.

Core family SSE4 SIMD extensions.

80386 IA-32. Improved 32-bit mode: paging, flat address
space.
i486)7 On-chip L1. Pipelining.
Pentium)7 Superscalar. Branch prediction. SMP.
Pentium Pro)* P6 microarchitecture. Dynamic execution. Speculation.
Pentium II)* MMX SIMD extensions
Pentium 11)* SSE SIMD extensions

Figure 1: The 80x86 processor succession

2.2 Protected Mode 3

The key features of IA-32, distinguishing it from earliechitectures, arg@rotected mode, 32-bit
registers, a 32-bit address space, paging.

2.2 Protected Mode

Modern 1A-32 processors are capable of operating in a nurabmiodes. All IA-32 implementations
power-up inreal mode, an 8086-compatible segmented mode. The 80286 introducesvarocessor
operating modeprotected mode, that provided access to up to 16MB of memory. The mode was not
successful, primarily because real-mode programs couidumoin protected mode unless they were
written with that goal in mind, and the processor did not pevhe ability to switch back to real mode
once it had entered protected mode.

The 80386 provided a new modertual 8086 mode, in which real-mode programs could run while
the processor was in protected mode. This, combined withre ffftexible segmentation scheme and a
larger addressible memory space (32 bits rather than 2 tite total addressible memory to 4GB from
16MB) has made 80386 protected mode the mode of choice fonadlern operating systems. Later
IA-32 implementations have not made significant changesloagcements to protected mode.

2.3 Paging

The 80386 introduced paging support, with a page size of 4KBadditional 4MB page size was
added with the Pentium processor. All IA-32 implementaiase a hardware-loaded TLB and, thus,
a hardware-walked page table. Only one page table type posigol: a two-level hierarchical type
(note that IA-32 implementations with AMD’s 64-bit exteass running in 64-bit mode use a hardware-
walked four-level hierarchical page table instead). Befosging is enabled, a speca@ntrol register,
CR3, is set to the physical memory address ofpidwe directory, the first level of IA-32's two-level page
table structure. TLB lookup is then performed by the hardwdfigure?2 illustrates the page-lookup
mechanism of IA-32.

2.4 Microarchitectures

Over IA-32’s long history, Intel has introduced a number iffiedlent microarchitectures. Some microar-
chitectures, such as the Netburst microarchitecture oPergium 4, are a complete redesign; others,
such as the Pentium M microarchitecture, are more straighérd evolutions of previous generations.
However, since its introduction in with the Pentium Pro, B& microarchitecture has seen unprecen-
dented success, forming the core for the Pentium Pro, RertjiPentium lll, and (in modified form)
Pentium M and Core processors. This report thus focusessomitbroarchitecture.

The key difference between the Core and Pentium M micro@rctuires and their predecessor, Net-
burst, is lower power consumption and increased thermaiefity.

3 1SA

3.1 Architectural registers

IA-32 has very few architectural registers. Figirshows 1A-32’s integer registers. Registers on the
right-hand side of the figure, with the exception of FS and @&g present in the original 8086. 1A-32
adds theextended registers EAX, ECX, EDX, EBX, EBP, ESP, ESI, EDI, EIP, and BES, as well as
two additional segment registers FS and GS.

Originally all registers were special-purpose. For exanplX was originally an accumulator and
could only be used as such. 1A-32 lifted many of the restiietion register usage, but some remain. For
example, some instrutions assume that a pointer in the EBsteg is relative to the segment indexed
by DS. In practise, 6 registers are available for genergbgme use, far fewer than the number available

4 3 ISA

Linear Address
31 22 21 12 11 0

Directory Table Offset

12 4-KByte Page

10 10 Page Table Physical Address
Page Directory
—>» Page-Table Entry 20>
—>» Directory Entry >
>
30+ 1024 PDE * 1024 PTE = 220 Pages
CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.

Figure 2: 1A-32 paging mechanism (Intel)

in the ARM or 1A-64 architectures. The practical result aktregister pressure is that I1A-32 programs
tend to make more frequent use of the stack for temporarggtor

3.2 Instruction set

Despite its support for a number of legacy instructionstiagstring operations), the number of instruc-
tions used in real IA-32 programs is relatively low. The miigyoof instructions added to the instruction
set after the introduction of the 80386 are special-purpbse example, Intel has introduced four SIMD
extensions to the architecture, discussed later. Theitdasdenefit, therefore, for most general-purpose
programs to target anything other than the instruction setgmted by an 80386.

The 80386 instruction set contains 201 instructions; asrinél check showed that about 150 of those
are used. Interestingly, instruction frequency followsgarithmic scale, with 50 percent of all code
consisting of the three instructioasv, call, andjmp, being a general purpose data-transfer instruction,
a procedure call, and an unconditional jump, respective§.percent of all code consists of just 45
instructions, an architectural feature that Intel no daulakes use of internally to improve processor
efficiency; see the section on the P6 instruction decodembel

Figure4 shows instruction frequency for three architectures.

Instruction encoding is very complicated, particularlyamhcompared with the RISC ARM, for
which all instructions are normally 32 bits((ARM also supggoa different mode of operatiothumb
mode, optimised for code density rather than speed, in whichnaliructions are 16 bits long.)) and the
RISC-like 1A-64, which uses 128-bhundles, each consisting of a header and three 41-bit instructions.
IA-32 instructions can be between 1 and 17 bytes long. Re®densions to the instruction set (such
as the SIMD extensions discussed below) only consume twbreethytes, operands excluded, and
the large instruction length is largely due to IA-32’s supggor prefixes and suffixes which modify the
behaviour of the instruction in some way. For example, 1AsBpports repeated execution of a single

3.2 Instruction set

32 15 7 0
EAX AH AL |~ Accumulator
ECX CH CL |~ Count
EDX DH DL [~ Data
EBX BH BL [~ Base of data
EBP BP — Base of stack
ESP SP — Stack pointer
ESI SI — String source idx
EDI DI — String dest idx
EIP P — Instruction pointer
EFLAGS FLAGS — CPU flags
] CS — Code segment
SS — Stack segment
DS — Data segment
ES — Extra data segment
FS — Extra data segment 2
GS — Extra data segment 3

Figure 3: 1A-32 integer registers

6 3 ISA
102_ T T T T T T]

! ia32]

I R |a64]
101 seee aI'M .
10°]
10°1]
102 .
103}]
10_4. —— _
10-5 1 1 1 1 1 1

0 50 100 150 200 250 300 350

Figure 4: Instruction frequency for IA-32, 1A-64, and ARM

3.3 Hardware-supported stack 7

instruction through the-ep prefix: when encountered, the instruction is executedateply, each time
decrementing thecx register, untilecx is zero. Other prefixes and suffixes allow specificationrof a
alternative operand length to various instructions, océpalternate addressing modes.

3.3 Hardware-supported stack

IA-32 has extensive hardware support for C-style stackse durrent position on the stack is defined
as the location of the ESP register. The stack is alwaysiveltd the segment located through the SS
register. Multiple instructions make use of the stack. Tteeedure-support commandall, ret, enter,
andleave all store data onto, or take data from, the stack, aseddirdct stack-manipulation commands
push,pop, pushf, popf, pusha, angopa, among others.

Hardware support for stacks is not among modern architestuNeither ARM nor I1A-64 include
hardware stack support, but provide the same functionaiity more general-purpose instructions. For
example, theLdmia instruction of the ARM ISA stores any subset of the ARNI& general-purpose
registers to memory addressed by another register. Thisem is often used in a procedure prologue
to save callee-saved registers, and in this way is roughdyagous to ia-32’pusha. Howeverpusha
does not allow the specification of individual registers anithus used less frequently.

3.4 Instruction decoder

As described above, 1A-32 is a CISC instruction set. Infdlynthis means that, compared with RISC,
instruction complexity varies a great deal from one ingtancto the next. P6 implementations solve
this problem by translating individual instructions to aranore RISC-likamicro-ops, each one a fixed
(large) size of 118 bits. Figur@shows the traditional implementation of this decoder.

In the P6 instruction decoder imlementation, the L1 cach@ains IA-32 instructions. Before an
instruction is issued it must be decoded. If it is sufficigrsiimple, it is passed to one of thrdecoders.
The P6 family contains twaimple instruction decoders, capable of producing a single magrgeer
clock cycle, for those IA-32 instructions which correspdod single micro-op. 1A-32 instructions cor-
responding to between 1 and 4 micro-ops are passed tothgex instruction decoder. Instructions that
require more than 4 micro-ops are instead passed toittre-op sequencer, a ROM which essentially
maps CISC instructions to micro-op sequences. If the desatde operating at full efficiency, they can
together produce 6 micro-ops per clock cycle, hence theheofgthe micro-op queue into which they
feed.

The advantages of this arrangement are clear: complex I#&s3guctions are translated into easy-
to-pipeline time-homongeneous operations. Intel hasmeleased any information on micro-ops, and
does not allow external access to them, thus preservingility &bhchange micro-ops whenever required.

3.5 Addressing modes

IA-32 supports seven addressing modes, summarised ineé-iguiThis number is not excessive —
indeed, it is significantly smaller than ARM, which provid&®, though apparently larger than 1A-64 —
but, unlike these two architectures, 1A-32 supports menopgrands for each mode. In contrast, ARM
and Itanium only allow memory operands in load and storeadjmars. 1A-32 implementations deal with
the long latency implied by memory operands by splittingrappate operations into several microcode
operations: logically, one operation to retrieve data &nagdorary register and one to operate on the data.
ARM and |IA-64 both support some form afito-increment addressing for loads and stores, where
a register used to index a memory location is automaticallyemented when the location completes.
ARM supports this scheme very generally, offering bpite-increment and post-increment options, in
several variations. 1A-32 supports several far less gépengose forms of this addressing mode. Firstly,
two instruction prefixesrep andloop, automatically decrement tEEX register after executing their
associated instruction. Thevs instruction, automatically increments or decrememesESI| and EDI

3 ISA

L1 I-cache
\J Y Y L4
Complex Simple Simple o
instruction instruction instruction e /':J err:cer
decoder decoder 0 decoder 1 9

v

' L-0p queue i

Figure 5: The P6 IA-32 instruction decoder

Absolute — 16- or 32-bit displacement
Register indirect — From EAX, ECX, EDX, EBX, ESI, EDI
Based + displacement [~ Register base, 16- or 32-bit displacement
Indexed — Sum of two registers
Based index + disp — Sum plus 8- or 16-bit displacement
Base + scaled index - Register + pscale register
Base + scaled index + disp [~ (Register + zscale X register) + disp

Figure 6: 1A-32 addressing modes

3.6 Floating-point support 9

79

- FP stack

‘ — FP status

Figure 7: 1A-32 floating-point registers

registers after operatiomovs is a variant ohov but, unlikemov, it performs memory-to-memory copy-
ing. Therefore a compact data-copying idiom for 1A-32 isritialise ES| andEDI to point to the source
and destination addresses of data,EeX to the amount of data to copy, and perform the copy using
a singlerep movsd (copy doubleword fromSI to EDI and then decremerCX, until ECX is zero)
instruction, performing fix-up operations if the data isigible by the length of a doubleword.

3.6 Floating-point support

Adding to IA-32’s register problems is its use of an unusuagign for its floating point unit. Unlike
ARM and IA-64, both of which have a dedicated set of floatimiapregisters, 1A-32 uses a stack model.
Floating-point operations making use of the stack takeg@eiargument; the second argument is defined
as the floating-point number on the top of the stack. Themat@behind this design is instruction-set
constraints: originally, floating-point support was implented in a co-processor, the 8087, which only
accepted a single argument. Detecting and recovering ftaok ©verflow in software is difficult on
IA-32 implementations. Therefore, compilers insert umssary loads and stores in floating-point code
to ensure the stack never overflows.

The stack architecture is not strict: in addition to the iiwiploperand on the top of the stack, a
second argument may be specified from below the top of th&.sBµarchitecture-derived imple-
mentations perform register renaming on stack registacsfeav compilers make use of the stack design.
IA-32s floating-point registers are shown in Figéte

An interesting feature of non-SIMD 1A-32 floating-point is wide operation. The floating-point
stack is 80 bits wide internally, and all operations thatiteis data being placed on the stack operate at
this width. Data are truncated to 64 or 32 bits when transfefrom the stack to memory. 1A-64 also
uses this design: floating-point registers are 82 bits waae, floating-point operations operate at that
width.

3.7 SIMD

IA-32 contains a number of optional single-instruction,ltiple-data (SIMD) instruction set extensions.
The first set, named MMX, was introduced with the Pentium P¥MX instructions rename the 8
floating-point registers, ignoring the upper 16 bits of eémlproduce 8 64-biMMX registers MMO
throughMM7.

10 3 ISA

79 63 0
FPR MMO — MMX GP register 0
FPR MMH1 — MMX GP register 1
FPR MM2 — MMX GP register 2
FPR MM3 — MMX GP register 3
FPR MM4 — MMX GP register 4
FPR MM5 — MMX GP register 5
FPR MM6 — MMX GP register 6
FPR MM7 — MMX GP register 7

Figure 8: 1A-32 MMX registers

127 g
XMMO — SSE GP register 0
XMM1 — SSE GP register 1
XMM2 — SSE GP register 2
XMM3 — SSE GP register 3
XMM4 — SSE GP register 4
XMM5 — SSE GP register 5
XMM6 — SSE GP register 6
XMM7 — SSE GP register 7

Figure 9: 1A-32 SSE registers

MMX is an integer-only extension. Integers may be storedmereregister or up to 8 may lpacked
into a single register, depending on size. MMX supports @alvgr-of-two sizes for integers from 8 bits
to 64 bits (refer to Figur@?). There are a number of problems with MMX: it is integer-gniyeaning
that it is not suited to some applications (such as high-ardioaor video processing); it re-uses the
floating-point registers, making it difficult for programs tnake use of both floating point and MMX
operations in the same section of code (fortunately, thi@isa common requirement).

Intel introduced the SSE extensions to address these emc8SE introduces a separate set of 8
128-bit registers (Figur&0) and provides both integer and floating point operationgpstting the same
packed style as MMX. Later enhancements to the SSE ingtruset in the form of SSE2 and SSE3
added support for more operations and encodings. In pktjddSP-like multiply-and-add instructions
were added.

Programming for maximum efficiency of IA-32 SIMD extensipos indeed any SIMD extensions,
requires attention to detail on the part of the programnmepalticular, data must be laid out to minimise
the work required to place the data into an MMX or SSE regiteown aspacking). For example, a
naive implementation of an array of three-dimensional {zomay look like this:

struct point {
uint32_t x, y, z;

11

3
struct point *allpoints;

Now imagine performing a translation ovalipoints. Using MMX, two points could be translated
at once. Using SSE, four points could be translated at onocgvelder, for each integer, the application
must collect and pack the data. A better layout would rembeenteed tewizze the data, by using the
structure of arrays (S0A) arrangement instead:

struct point {
uint32_t *x, *y, *z;

3

4 Cachearchitecture

IA-32 does not define a particular cache architecture. &astie provides mechanisms for applications to
determine the layout and nature of the cache usingpléd architecture-identification instruction. This
lack of information makes the architecture difficult to ope for, but is consistent with IA-32’s general
philosophy of leaving optimisation to the hardware. Foatiety, it is only in very special cases that the
particular architecture matters, though cache size isyawaaconcern.

P6-derived implementations have separate small L1 codalatadcaches, and a unified L2 cache.
Server implementations, such as the Xeon line, include #edniL3 cache. The Netburst architecture
abandoned the L1 instruction cache in favour of a largee cache, but later IA-32 implementations,
such as the Pentium D and Core, revert to the P6-derived &rhallhe trend has been towards imple-
menting cache on-die; L1 is always on-die, and L2 is on-diglinew implementations.

IA-32 supports two page sizes when paging is enabled: 4KB4&hd. Implementations separate
the caches for these sizes, and further separate the TLB=&laug to the type of data stored there (code
or data), making for four TLBs in all.

Given its CISC nature, one might expect I1A-32 to make better af their caches than RISC ma-
chines. After all, its instructions are rather compact. sy and Patterson measured the average
instruction length for several integer programs and, sephy; for several floating-point prografand
found the average instruction lengths to be 2.8 for integegiams and 4.1 for floating-point programs.
Unfortunately, register pressure forcing data to “spiti'the stack increases data traffic to the point that
all benefits from increased code density are negated.

5 Instruction-level parallelism

Hennessy and Patterson describe tist uctions per second (IPS) metric for measuring processor through-
put. Until recently, IA-32 implementations have steaditgrieased in IPS. Recently, however, the per-
processor level of IPS has fallen, as Intel concentratedtiogr @oncerns, notably power consumption
and thread-level parallelism.

51 Pipelining

All IA-32 implementations since the 486 have been pipalinand earlier implementations arguably
contained a rudimentary pipeline. The Pentium Pro intreduthe canonical 12-stage pipeline. The
number of stages has changed slightly with new generatibttsed®6 architecture, but never by more
than one or two stages. This is in dramatic contrast with'snéetburst architecture, which at one stage
had a pipeline over thirty stages long.

3The programs measured were taken from the SPECIint92 andfB@Eenchmark suites

12 6 THREAD-LEVEL PARALLELISM

Reservation station

3 2 * 0 * 1
Store ‘ Store \ ‘ Load \ ‘ \ ‘ I ‘ \
data address address FPU Ciu SIU
| | | |
| T
Memory units Integer units

Figure 10: P6 family execution units

The P6 family supports superscalar execution usingesiution units, up to five of which can
execute simultaneously, reading micro-ops from fieets attached to the reorder buffer's reservation
station (Figurell).

5.2 Register renaming and out-of-order execution

Depiste the relatively-small number of programmer-visiatchitectural registers, 1A-32 implementa-
tions contain a large number of on-chip registers. Thesnat registers are used as substitutes for
architectural registers, and have many optimisationedlases, such as reducing the potentiahfone
dependencies, where an architectural register is re-used not for any-defgendence reason but sim-
ply because there were no other registers available. Thaitgee of mapping architectural registers to
implementation registers, known esgister renaming, is essentially an optimisation detail of an IA-32
implementation. As such, each IA-32 implementation penforegister renaming differently.

In the P6 family, register renaming is performed by tbarder buffer, which is also used to reorder
instructions to maximise instruction-level parallelisntlie face of dependencies. This technique means
that the amount of register renaming that can be performénhied by the amount of instruction re-
ordering that may be performed. The Netburst architecteneored this limitation, adding a separate
register rename stage.

6 Thread-level parallelism

Recently implementations have focused on increasing drieel parallelism (TLP), potentially at the
expense of ILP.

Early support for TLP came in the form of symmetric multipgesor (SMP)-capable machines, such
as the Pentium. The basic SMP model is illustrated in Fidiretwo separate instruction streams are
executed by two entirely-spearate processors. Bus aibitris accomplished using the MESI protocol.
This protocol requires CPUs smoop the bus to ensure that the same memory location is not refiesse
differently in each CPU’s cache (through, for example, ipldtwrites to the location).

More recently, Intel implementations have supported Hyypeading, an Intel trademarked term for
on-chip thread-level parallelism. On a CPU supporting Hjpeading, various on-chip structures (such
as the register rename buffer, the architectural registadsthe TLBS) are partitioned or replicated. Since
it is very rare for all execution units of the CPU to be busy rate the “spare” execution units can be
used to execute another thread of control (FidwBe Intel claims a maximum of 30 percent performance
improvement at a cost of a 10 percent increase in die sizeywh the real-world performance increase
is rumoured to be more modest.

13

Instruction stream

Execution units

Figure 11: SMP

7 Futuredirections

IA-32 is unquestionably with us for years to come. Intel'sds for future implementations seems to
be increasing TLP and providing innovations in the form atinction set enhancements. For example,
a new iteration of SSE, SSE4, should be available mid-2006&I's implementation of AMD’s 64-bit
extensions to 1A-32, EMT64, provides a flat address spacertte32 bits. 1A-32 is not completely
virtualisable; the Vanderpool instruction set (recendpamed to “VT") allows complete virtualisation
of the hardware without JIT recompilation of problematicoges; this technology started with server
chips but is seeing increasing demand on desktops. Firialyjnexorable rise in the importance of
laptop computing has seen Intel abandon a high-power desgggburst, in favour of the lower-power P6
family (though power consumption of Core is at least an oalenagnitude higher than a comparable
ARM processor).

14

7 FUTURE DIRECTIONS

Instruction streams

Execution units

Figure 12: Hyperthreading

	 Introduction
	 A brief history of IA-32
	 Segmentation
	 Protected Mode
	 Paging
	 Microarchitectures

	 ISA
	 Architectural registers
	 Instruction set
	 Hardware-supported stack
	 Instruction decoder
	 Addressing modes
	 Floating-point support
	 SIMD

	 Cache architecture
	 Instruction-level parallelism
	 Pipelining
	 Register renaming and out-of-order execution

	 Thread-level parallelism
	 Future directions

