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1 Introduction

This report discusses the most common instruction set architecture for desktop microprocessors: IA-
32. From a programmer’s perspective, IA-32 has not changed changed significantly since its introduc-
tion with the Intel 80386 processor in 1985. IA-32 implementations, however, have undergone dra-
matic changes in order to stay competitive with more modern architectures, particularly in the area of
instruction-level parallelism.

This report discusses the history of IA-32, and then the architectural features of recent IA-32 im-
plementations, with particular regard to caching, multiprocessing, and instruction-level parallelism. An
archtectural description is not particularly useful in isolation. Therefore, to provide context, each as-
pect is compared with analogous features of other architectures, with particular attention paid to the
RISC-style ARM processor and the VLIW-inspired Itanium.

2 A brief history of IA-32

IA-32 first appeared with the 80386 processor, but the architecture was by no means completely new.
IA-32’s 8-bit predecessor first appeared in the Datapoint 2200 programmable terminal, released in 1971.
Under contract to produce a single-chip version of the terminal’s multiple-chip TTL design, Intel’s im-
plementation, the 8008, was not included in the terminal. Intel released the chip in 1972. The first “x86”
chip, the Intel 8086, released in 1978, is almost binary-compatible with programs written for the 8008.1

Successors to the 8086, including the 808186 and 80286, retained the 8086 instruction set. Figure1
shows a brief chronology.

Intel’s commitment to backwards compatibility in IA-32 hasleft the architecture with a number of
features that appear awkward when compared with more moderndesigns. In particular, the CISC nature
of the instruction set, the relative scarcity of registers,and IA-32s complex addressing modes threaten to
reduce the overall performance of IA-32 implementations, and thus are all overcome in hardware.

2.1 Segmentation

The original memory access mode for IA-32 is calledsegmented mode (IA-32 has a number of other
processor modes, the most important of which is protected mode, described below).

In this mode, applications refer to memory using a combination of a 16-bitsegment register and a
16-bit offset register. Segments are overlapped in this mode to give a maximum addressable memory of
1MB.

Segmentation is preserved in IA-32 protected mode, and in the 64-bit extension to IA-32 known as
AMD64 or EMT64. In these modes, segment boundaries are not defined by the hardware. Instead, the
segment registers (CS, DS, ES, FS, andGS) serve as an index into theglobal descriptor table, which
defines the extent of the segment. Segments are defined on the virtual address space, and thus segment
translation occurs before paging.

Segments are not generally used. Segmentation cannot be disabled, but it may be effectively removed
by creating a single entry in the global descriptor table, covering the entire 4 gigabyte address space.
Some operating systems take advantage of segmentation to optimise task switching. The L4/Pistachio
operating system can use segmentation to map several program address spaces into a special sharedsmall
space page table.2 If several processes are sufficiently small, they can share the use of this page table,
with the benefit that the page table need not be changed on a context switch between programs which
share it. This optimisation, calledsmall spaces, improves IA-32 context switch performance, because
IA-32, unlike ARM, does not have a tagged TLB and is thus obliged to flush the TLB when the current
page table changes.

1The Intel 8080, released in 1974, has a 16-bit external bus but is otherwise identical to the 8086.
2Implementations may use a global portion of the standard process page table instead.
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Figure 1: The 80x86 processor succession
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The key features of IA-32, distinguishing it from earlier architectures, areprotected mode, 32-bit
registers, a 32-bit address space, andpaging.

2.2 Protected Mode

Modern IA-32 processors are capable of operating in a numberof modes. All IA-32 implementations
power-up inreal mode, an 8086-compatible segmented mode. The 80286 introduced anew processor
operating mode,protected mode, that provided access to up to 16MB of memory. The mode was not
successful, primarily because real-mode programs could not run in protected mode unless they were
written with that goal in mind, and the processor did not provide the ability to switch back to real mode
once it had entered protected mode.

The 80386 provided a new mode,virtual 8086 mode, in which real-mode programs could run while
the processor was in protected mode. This, combined with a more flexible segmentation scheme and a
larger addressible memory space (32 bits rather than 24, bring the total addressible memory to 4GB from
16MB) has made 80386 protected mode the mode of choice for allmodern operating systems. Later
IA-32 implementations have not made significant changes or enhancements to protected mode.

2.3 Paging

The 80386 introduced paging support, with a page size of 4KB.An additional 4MB page size was
added with the Pentium processor. All IA-32 implementations use a hardware-loaded TLB and, thus,
a hardware-walked page table. Only one page table type is supported: a two-level hierarchical type
(note that IA-32 implementations with AMD’s 64-bit extensions running in 64-bit mode use a hardware-
walked four-level hierarchical page table instead). Before paging is enabled, a specialcontrol register,
CR3, is set to the physical memory address of thepage directory, the first level of IA-32’s two-level page
table structure. TLB lookup is then performed by the hardware. Figure2 illustrates the page-lookup
mechanism of IA-32.

2.4 Microarchitectures

Over IA-32’s long history, Intel has introduced a number of different microarchitectures. Some microar-
chitectures, such as the Netburst microarchitecture of thePentium 4, are a complete redesign; others,
such as the Pentium M microarchitecture, are more straightforward evolutions of previous generations.
However, since its introduction in with the Pentium Pro, theP6 microarchitecture has seen unprecen-
dented success, forming the core for the Pentium Pro, Pentium II, Pentium III, and (in modified form)
Pentium M and Core processors. This report thus focuses on this microarchitecture.

The key difference between the Core and Pentium M microarchitectures and their predecessor, Net-
burst, is lower power consumption and increased thermal efficiency.

3 ISA

3.1 Architectural registers

IA-32 has very few architectural registers. Figure3 shows IA-32’s integer registers. Registers on the
right-hand side of the figure, with the exception of FS and GS,were present in the original 8086. IA-32
adds theextended registers EAX, ECX, EDX, EBX, EBP, ESP, ESI, EDI, EIP, and EFLAGS, as well as
two additional segment registers FS and GS.

Originally all registers were special-purpose. For example, AX was originally an accumulator and
could only be used as such. IA-32 lifted many of the restrictions on register usage, but some remain. For
example, some instrutions assume that a pointer in the EBX register is relative to the segment indexed
by DS. In practise, 6 registers are available for general-purpose use, far fewer than the number available
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Figure 2: IA-32 paging mechanism (Intel)

in the ARM or IA-64 architectures. The practical result of this register pressure is that IA-32 programs
tend to make more frequent use of the stack for temporary storage.

3.2 Instruction set

Despite its support for a number of legacy instructions (such as string operations), the number of instruc-
tions used in real IA-32 programs is relatively low. The majority of instructions added to the instruction
set after the introduction of the 80386 are special-purpose. For example, Intel has introduced four SIMD
extensions to the architecture, discussed later. There is little benefit, therefore, for most general-purpose
programs to target anything other than the instruction set presented by an 80386.

The 80386 instruction set contains 201 instructions; an informal check showed that about 150 of those
are used. Interestingly, instruction frequency follows a logarithmic scale, with 50 percent of all code
consisting of the three instructionsmov, call, andjmp, being a general purpose data-transfer instruction,
a procedure call, and an unconditional jump, respectively.99 percent of all code consists of just 45
instructions, an architectural feature that Intel no doubtmakes use of internally to improve processor
efficiency; see the section on the P6 instruction decoder below.

Figure4 shows instruction frequency for three architectures.
Instruction encoding is very complicated, particularly when compared with the RISC ARM, for

which all instructions are normally 32 bits((ARM also supports a different mode of operation,thumb
mode, optimised for code density rather than speed, in which all instructions are 16 bits long.)) and the
RISC-like IA-64, which uses 128-bitbundles, each consisting of a header and three 41-bit instructions.
IA-32 instructions can be between 1 and 17 bytes long. Recentextensions to the instruction set (such
as the SIMD extensions discussed below) only consume two or three bytes, operands excluded, and
the large instruction length is largely due to IA-32’s support for prefixes and suffixes which modify the
behaviour of the instruction in some way. For example, IA-32supports repeated execution of a single
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Figure 3: IA-32 integer registers
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Figure 4: Instruction frequency for IA-32, IA-64, and ARM
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instruction through therep prefix: when encountered, the instruction is executed repeatedly, each time
decrementing theecx register, untilecx is zero. Other prefixes and suffixes allow specification of an
alternative operand length to various instructions, or specify alternate addressing modes.

3.3 Hardware-supported stack

IA-32 has extensive hardware support for C-style stacks. The current position on the stack is defined
as the location of the ESP register. The stack is always relative to the segment located through the SS
register. Multiple instructions make use of the stack. The procedure-support commandscall, ret,enter,
andleave all store data onto, or take data from, the stack, as do the direct stack-manipulation commands
push,pop,pushf,popf, pusha, andpopa, among others.

Hardware support for stacks is not among modern architectures. Neither ARM nor IA-64 include
hardware stack support, but provide the same functionalitywith more general-purpose instructions. For
example, theldmia instruction of the ARM ISA stores any subset of the ARM’s16 general-purpose
registers to memory addressed by another register. This command is often used in a procedure prologue
to save callee-saved registers, and in this way is roughly analagous to ia-32’spusha. However,pusha
does not allow the specification of individual registers andis thus used less frequently.

3.4 Instruction decoder

As described above, IA-32 is a CISC instruction set. Informally, this means that, compared with RISC,
instruction complexity varies a great deal from one instruction to the next. P6 implementations solve
this problem by translating individual instructions to oneor more RISC-likemicro-ops, each one a fixed
(large) size of 118 bits. Figure6 shows the traditional implementation of this decoder.

In the P6 instruction decoder imlementation, the L1 cache contains IA-32 instructions. Before an
instruction is issued it must be decoded. If it is sufficiently simple, it is passed to one of threedecoders.
The P6 family contains twosimple instruction decoders, capable of producing a single micro-op per
clock cycle, for those IA-32 instructions which correspondto a single micro-op. IA-32 instructions cor-
responding to between 1 and 4 micro-ops are passed to thecomplex instruction decoder. Instructions that
require more than 4 micro-ops are instead passed to themicro-op sequencer, a ROM which essentially
maps CISC instructions to micro-op sequences. If the decoders are operating at full efficiency, they can
together produce 6 micro-ops per clock cycle, hence the length of themicro-op queue into which they
feed.

The advantages of this arrangement are clear: complex IA-32instructions are translated into easy-
to-pipeline time-homongeneous operations. Intel has never released any information on micro-ops, and
does not allow external access to them, thus preserving an ability to change micro-ops whenever required.

3.5 Addressing modes

IA-32 supports seven addressing modes, summarised in Figure 7. This number is not excessive —
indeed, it is significantly smaller than ARM, which provides30, though apparently larger than IA-64 —
but, unlike these two architectures, IA-32 supports memoryoperands for each mode. In contrast, ARM
and Itanium only allow memory operands in load and store operations. IA-32 implementations deal with
the long latency implied by memory operands by splitting appropriate operations into several microcode
operations: logically, one operation to retrieve data to a temporary register and one to operate on the data.

ARM and IA-64 both support some form ofauto-increment addressing for loads and stores, where
a register used to index a memory location is automatically incremented when the location completes.
ARM supports this scheme very generally, offering bothpre-increment andpost-increment options, in
several variations. IA-32 supports several far less general-purpose forms of this addressing mode. Firstly,
two instruction prefixes,rep andloop, automatically decrement theECX register after executing their
associated instruction. Themovs instruction, automatically increments or decrements the ESI and EDI
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Figure 5: The P6 IA-32 instruction decoder

Figure 6: IA-32 addressing modes
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Figure 7: IA-32 floating-point registers

registers after operation.Movs is a variant ofmov but, unlikemov, it performs memory-to-memory copy-
ing. Therefore a compact data-copying idiom for IA-32 is to initialiseESI andEDI to point to the source
and destination addresses of data, setECX to the amount of data to copy, and perform the copy using
a singlerep movsd (copy doubleword fromESI to EDI and then decrementECX, until ECX is zero)
instruction, performing fix-up operations if the data is divisible by the length of a doubleword.

3.6 Floating-point support

Adding to IA-32’s register problems is its use of an unusual design for its floating point unit. Unlike
ARM and IA-64, both of which have a dedicated set of floating-point registers, IA-32 uses a stack model.
Floating-point operations making use of the stack take a single argument; the second argument is defined
as the floating-point number on the top of the stack. The rationale behind this design is instruction-set
constraints: originally, floating-point support was implemented in a co-processor, the 8087, which only
accepted a single argument. Detecting and recovering from stack overflow in software is difficult on
IA-32 implementations. Therefore, compilers insert unnecessary loads and stores in floating-point code
to ensure the stack never overflows.

The stack architecture is not strict: in addition to the implicit operand on the top of the stack, a
second argument may be specified from below the top of the stack. P6-microarchitecture-derived imple-
mentations perform register renaming on stack registers, and few compilers make use of the stack design.
IA-32s floating-point registers are shown in Figure8.

An interesting feature of non-SIMD IA-32 floating-point is its wide operation. The floating-point
stack is 80 bits wide internally, and all operations that result in data being placed on the stack operate at
this width. Data are truncated to 64 or 32 bits when transferred from the stack to memory. IA-64 also
uses this design: floating-point registers are 82 bits wide,and floating-point operations operate at that
width.

3.7 SIMD

IA-32 contains a number of optional single-instruction, multiple-data (SIMD) instruction set extensions.
The first set, named MMX, was introduced with the Pentium Pro.MMX instructions rename the 8
floating-point registers, ignoring the upper 16 bits of eachto produce 8 64-bitMMX registers MM0
throughMM7.
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Figure 9: IA-32 SSE registers

MMX is an integer-only extension. Integers may be stored one-per-register or up to 8 may bepacked
into a single register, depending on size. MMX supports all power-of-two sizes for integers from 8 bits
to 64 bits (refer to Figure??). There are a number of problems with MMX: it is integer-only, meaning
that it is not suited to some applications (such as high-end audio or video processing); it re-uses the
floating-point registers, making it difficult for programs to make use of both floating point and MMX
operations in the same section of code (fortunately, this isnot a common requirement).

Intel introduced the SSE extensions to address these concerns. SSE introduces a separate set of 8
128-bit registers (Figure10) and provides both integer and floating point operations, supporting the same
packed style as MMX. Later enhancements to the SSE instruction set in the form of SSE2 and SSE3
added support for more operations and encodings. In particular, DSP-like multiply-and-add instructions
were added.

Programming for maximum efficiency of IA-32 SIMD extensions, or indeed any SIMD extensions,
requires attention to detail on the part of the programmer. In particular, data must be laid out to minimise
the work required to place the data into an MMX or SSE register(known aspacking). For example, a
naive implementation of an array of three-dimensional points may look like this:

struct point {

uint32_t x, y, z;
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};

struct point *allpoints;

Now imagine performing a translation overallpoints. Using MMX, two points could be translated
at once. Using SSE, four points could be translated at once. However, for each integer, the application
must collect and pack the data. A better layout would remove the need toswizzle the data, by using the
structure of arrays (SoA) arrangement instead:

struct point {

uint32_t *x, *y, *z;

}

4 Cache architecture

IA-32 does not define a particular cache architecture. Instead, it provides mechanisms for applications to
determine the layout and nature of the cache using thecpuid architecture-identification instruction. This
lack of information makes the architecture difficult to optimise for, but is consistent with IA-32’s general
philosophy of leaving optimisation to the hardware. Fortunately, it is only in very special cases that the
particular architecture matters, though cache size is always a concern.

P6-derived implementations have separate small L1 code anddata caches, and a unified L2 cache.
Server implementations, such as the Xeon line, include a unified L3 cache. The Netburst architecture
abandoned the L1 instruction cache in favour of a largetrace cache, but later IA-32 implementations,
such as the Pentium D and Core, revert to the P6-derived smallL1. The trend has been towards imple-
menting cache on-die; L1 is always on-die, and L2 is on-die inall new implementations.

IA-32 supports two page sizes when paging is enabled: 4KB and4MB. Implementations separate
the caches for these sizes, and further separate the TLBs according to the type of data stored there (code
or data), making for four TLBs in all.

Given its CISC nature, one might expect IA-32 to make better use of their caches than RISC ma-
chines. After all, its instructions are rather compact. Hennessy and Patterson measured the average
instruction length for several integer programs and, separately, for several floating-point programs3 and
found the average instruction lengths to be 2.8 for integer programs and 4.1 for floating-point programs.
Unfortunately, register pressure forcing data to “spill” to the stack increases data traffic to the point that
all benefits from increased code density are negated.

5 Instruction-level parallelism

Hennessy and Patterson describe theinstructions per second (IPS) metric for measuring processor through-
put. Until recently, IA-32 implementations have steadily increased in IPS. Recently, however, the per-
processor level of IPS has fallen, as Intel concentrated on other concerns, notably power consumption
and thread-level parallelism.

5.1 Pipelining

All IA-32 implementations since the i486 have been pipelined, and earlier implementations arguably
contained a rudimentary pipeline. The Pentium Pro introduced the canonical 12-stage pipeline. The
number of stages has changed slightly with new generations of the P6 architecture, but never by more
than one or two stages. This is in dramatic contrast with Intel’s Netburst architecture, which at one stage
had a pipeline over thirty stages long.

3The programs measured were taken from the SPECint92 and SPECfp92 benchmark suites
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Figure 10: P6 family execution units

The P6 family supports superscalar execution using sixexecution units, up to five of which can
execute simultaneously, reading micro-ops from fiveports attached to the reorder buffer’s reservation
station (Figure11).

5.2 Register renaming and out-of-order execution

Depiste the relatively-small number of programmer-visible architectural registers, IA-32 implementa-
tions contain a large number of on-chip registers. These internal registers are used as substitutes for
architectural registers, and have many optimisation-related uses, such as reducing the potential forname
dependencies, where an architectural register is re-used not for any data-dependence reason but sim-
ply because there were no other registers available. The technique of mapping architectural registers to
implementation registers, known asregister renaming, is essentially an optimisation detail of an IA-32
implementation. As such, each IA-32 implementation performs register renaming differently.

In the P6 family, register renaming is performed by thereorder buffer, which is also used to reorder
instructions to maximise instruction-level parallelism in the face of dependencies. This technique means
that the amount of register renaming that can be performed islimited by the amount of instruction re-
ordering that may be performed. The Netburst architecture removed this limitation, adding a separate
register rename stage.

6 Thread-level parallelism

Recently implementations have focused on increasing thread-level parallelism (TLP), potentially at the
expense of ILP.

Early support for TLP came in the form of symmetric multiprocessor (SMP)-capable machines, such
as the Pentium. The basic SMP model is illustrated in Figure12: two separate instruction streams are
executed by two entirely-spearate processors. Bus arbitration is accomplished using the MESI protocol.
This protocol requires CPUs tosnoop the bus to ensure that the same memory location is not represented
differently in each CPU’s cache (through, for example, multiple writes to the location).

More recently, Intel implementations have supported Hyperthreading, an Intel trademarked term for
on-chip thread-level parallelism. On a CPU supporting Hyperthreading, various on-chip structures (such
as the register rename buffer, the architectural registers, and the TLBs) are partitioned or replicated. Since
it is very rare for all execution units of the CPU to be busy at once, the “spare” execution units can be
used to execute another thread of control (Figure13). Intel claims a maximum of 30 percent performance
improvement at a cost of a 10 percent increase in die size, although the real-world performance increase
is rumoured to be more modest.
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Figure 11: SMP

7 Future directions

IA-32 is unquestionably with us for years to come. Intel’s focus for future implementations seems to
be increasing TLP and providing innovations in the form of instruction set enhancements. For example,
a new iteration of SSE, SSE4, should be available mid-2006. Intel’s implementation of AMD’s 64-bit
extensions to IA-32, EMT64, provides a flat address space beyond 32 bits. IA-32 is not completely
virtualisable; the Vanderpool instruction set (recently renamed to “VT”) allows complete virtualisation
of the hardware without JIT recompilation of problematic opcodes; this technology started with server
chips but is seeing increasing demand on desktops. Finally,the inexorable rise in the importance of
laptop computing has seen Intel abandon a high-power design, Netburst, in favour of the lower-power P6
family (though power consumption of Core is at least an orderof magnitude higher than a comparable
ARM processor).
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Figure 12: Hyperthreading
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