[tanium

cs9244

Outline

* History of Itanium
« Itanium Architecture Features
— Registers
— Instructions
— Speculation
— Predication and Hints
e [tanium 2 vs. Itanium
— Execution Units
— Cache system
— Pipeline

History

1994: Intel and HP began working on Merced

2001: released Itanium processor at 733, 800MHz
2002: released Itanium 2 processor at 900MHz and
1GHz, codenamed McKinley

2003:

— Madison was introduced with three version

— Hondo was announced as the HP mx2 dual-processor module
— Deerfield was released as the first low voltage Itanium processor
2004:

— released first processor in Madison 9M series

— Fanwood core debuted

Upcoming: Montecito

Application Register Set
vl St Fogrpordepans Predese Borch Peptes Appbeaton Regatens

) 0 WaTa &1 [ & [
T M =

InE]
-

|

¥ K

¥ L)

ERE
[

HR R wwe
-

R

1T

]

EOREE M R M E K RENNMRRN WNKE

i —
Adcanced Load . Priormaness Mot
Address Tatia i‘:""’ Hantars Dafogaien "

oo pm |
i i e, | - i

Application Register State

« 128 General Registers

— GRO = 0 (read-only)

— GRO0-GR31 are static, GR32-GR127 are stacked
« 128 Floating-point Registers

— FRO = 0.0 (read-only), FR1 = 1.0 (read-only)

— FRO-FR21 are static, FR32-FR127 are rotating
* 64 Predicate Registers

— PRO =1 (read-only)

— PRO-PR15 are static, PR16-PR63 are rotating
« 8 Branch Registers

— Holds target address for indirect branches
« 128 Application Registers




Application Register State (cont)

¢ Current Frame Marker

37 32 31 25 24 18 17 14 13 7 6 0

‘ rrb.pr‘ rrb.fr ‘ rrb.gr ‘ sor‘ sol ‘ sof ‘
6 7 7 4 7 7

 Instruction Pointer
« User Mask rv: Reserved

5 4 3 2 1 0 be:lA-64big-endian memory access enable
up: User performance monitor enable
fl ﬂﬂ ac: Alignment check for data memory references
mfl: Lower floating-point registers written
mfh: Upper floating-point registers written

Register Stack

Instrucsion Exscution Stacked GRs Frame Markers

a2 A - ol sol, sl sl
aber's Frame (procA) ocal & g A 14 2| |

Register Stack (cont)

* Register stack frame can be resized using
alloc instruction
* Register Stack Engine (RSE)

— Automatically save and restore register stack
without explicit software intervention

— Use spare memory bandwidth in the
background

— Spill and fill may cause RSE traffic
— RSE traffic degrades performance

Register Rotation

¢ Register renaming mechanism that enables the
concurrent execution of multiple iterations of a
loop

« Rotating register

— PR32-PR127, FR32-FR127, programmable sized GR
starting from GR32

— Size of rotating area in GR file determined by alloc
instruction (size either be 0 or 8x)

— Rotate toward larger register number

— Renaming register number = rotate register number +
value of rrb

Register Rotation (cont)

r32 r33 r34
cyc\eﬂe\d\c\ rb\a\b\c

L1: 1d8 r32=[ral, 8 ra [alb[cld[e[f[g[h[i]j]
st8 [rb]=r34, 8

awp_branch LL: w [ [TTTTTTTT]
r32 r33 134

oo [ [ [ ] oo [TTTTTTTTT]
132 r33 134

oerfal [ | oo [T TTTTT]T]
r32 r33 r34

oe2 [b[a] w [ [TTTTTTTT]
r32 r33 134

oees [c[bla]  w [al [[T[T[T]T]]
r32 r33 134

oces [d]c[b] b [alo] [ [T [[]]]

[T TTTT]

Instruction Types

Instruction Type Lxecution Unit Type
A T-unit or M-unit
I | Tunit
M M-unit
F Floating-point F-unit
B Branch B-unit

L+X Extended L-unit /B-unit
Example:
A add, or F: fadd
I : mov, shl B : br, brp
M: load L+X: brl




Bundle and Template

« Three instructions are grouped together into a
128-bit container called bundle

127 87 86 46 45 5 4 o
‘ instruction slot 2 ‘ instruction slot 1 ‘ instruction slot 0 ‘ template ‘
41 41 41 5
¢ Template

— 12 basic types: Mil, Mi|l, MLX, MMI, M|MI, MFI,
MMF, MIB, MBB, BBB, MMB, MFB

— Mapping of instruction to execution unit

— Stop

Control Speculation

¢ Overlap long load latency
« NaT/NaTVal support

............ recovery:
if(a>b){ Id.s target, addr Id target, addr
Id target, addr if(a>b){ br next
...... chk.s target, recovery
} next:
}

Id.s — control speculative load
chk.s — check instruction

Data Speculation

«Advanced load (Id.a, Idf.a and Idfp.a)
other instruction| 1d8.a 16 = r[8]; -compute ALAT register tag
Ilother instruction -if ALAT entry exists, removes it
lsdlg [va4] :[;1]2 Zﬂdhvs =16, 17;; -allocate a new ALAT entry
6 = r[8];; /other instruction i i
add 15 =16, 17; | st8 [rd] = r12 -load the value into target register
St8 [r18] = 15 chk.a.clr 6, recovery back: +Advanced load check

st8 [r18] =15 -looks for a matching ALAT entry, if

J somewhere else in program|  found, falls through to next instruction

Recovery: otherwise branches to the recovery
ha o= 8l «Two kinds of compiler-generated recovery
brback -check load instructions: Id.c, Idf.c or Idfp.c

-Advanced load check: chk.a

¢ ALAT (advanced load address table)

— Invalidating ALAT entries: by advanced load, certain
instructions ,or events that alter memory state

Predication

« Conditional execution of an instruction
base on a qualifying predicate

— Convert branch conditions to predicate
registers

— Convert control dependences to data
dependences

* Most instructions can be predicated

Branch Hints

¢ Mechanism to decrease the branch
misprediction rate

* Do not affect the functional behavior of the
program and may be ignored by the processor

Ignore this branch, do not allocate prediction resources
spnt | static Not-Taken for ths branch,
sptk | static Taken Always predict taken, do not allocate prediction

resources for this branch

Use dynamic prediction hardware. I no dynamic history
exists for this branch, predict not-taken.

- Use dynamic prediction hardware. If no dynamic history

dptk | Dynamic Taken exists for this branch, predict taken.

dpnt | Dynamic Not-Taken

WRB| DET! EXE

e




Execution Resources

Itaninm 2 Proc. Exeention Units | # Units Latency
Memwory Load Ports 2 1 eyele (L1}
Memory Store Ports 2 NA
ALUs (integer) G 1 eyele
Tnteger Units 2 1 cyele
Integer Shift 1 1 cyele
Multimedia ALUs G
Parallel Multiply Units 1
Parallel Shift-Mask Units 2 )
FP FMAC {multiply-accumulate) 2 4 eyches
FP FMISC {compares, merge, ele) 2 4 eyeles
Branch Unit K -2 cveles

Issue Combinations for 2 Bundles

Cache System Distinction

Cache Latency

— L1i/lLld 2 cycles =>1cycle

— L2(l, FP) 6, 9 cycles =>5, 6 cycles

— L3 (I, FP) 21, 24 cycles => 12, 13 cycles
Virtual address and physical address
— 50-bit => 64-bit for virtual address

— 44-bit => 50-bit for physical address
Cache line size

— Doubled for every level of cache

Page size

— Up to 4GB, used to be up to 256MB
Cache line transfer bandwidth

— Doubled

Pipeline

@ 800 MHz = 12.5 s

f@'ﬂ'ﬂf’f

« In-order pipeline
« Pipeline deduction leads to 4-6% performance improvement

IPG=instruction pointer, FET=Fetch, ROT=Rotate, EXP=Expand,
REN=Rename, WLD=Word-line decode, REG=Register read,
EXE=Execute, DET=Exception detect, WRB=Write-back




