
1

Itanium

cs9244

Outline
• History of Itanium
• Itanium Architecture Features

– Registers
– Instructions
– Speculation
– Predication and Hints

• Itanium 2 vs. Itanium
– Execution Units
– Cache system
– Pipeline

History
• 1994: Intel and HP began working on Merced
• 2001: released Itanium processor at 733, 800MHz
• 2002: released Itanium 2 processor at 900MHz and

1GHz, codenamed McKinley
• 2003:

– Madison was introduced with three version
– Hondo was announced as the HP mx2 dual-processor module
– Deerfield was released as the first low voltage Itanium processor

• 2004:
– released first processor in Madison 9M series
– Fanwood core debuted

• Upcoming: Montecito

Application Register State
• 128 General Registers

– GR0 = 0 (read-only)
– GR0-GR31 are static, GR32-GR127 are stacked

• 128 Floating-point Registers
– FR0 = 0.0 (read-only), FR1 = 1.0 (read-only)
– FR0-FR21 are static, FR32-FR127 are rotating

• 64 Predicate Registers
– PR0 = 1 (read-only)
– PR0-PR15 are static, PR16-PR63 are rotating

• 8 Branch Registers
– Holds target address for indirect branches

• 128 Application Registers

2

Application Register State (cont)

• Current Frame Marker

• Instruction Pointer
• User Mask

mfh mfl ac up be rv

5 4 3 2 1 0

rrb.pr rrb.fr rrb.gr sol sofsor

067131417182425313237

7777 46

rv: Reserved
be: IA-64 big-endian memory access enable
up: User performance monitor enable
ac: Alignment check for data memory references
mfl: Lower floating-point registers written
mfh: Upper floating-point registers written

Register Stack

Register Stack (cont)

• Register stack frame can be resized using
alloc instruction

• Register Stack Engine (RSE)
– Automatically save and restore register stack

without explicit software intervention
– Use spare memory bandwidth in the

background
– Spill and fill may cause RSE traffic
– RSE traffic degrades performance

Register Rotation
• Register renaming mechanism that enables the

concurrent execution of multiple iterations of a
loop

• Rotating register
– PR32-PR127, FR32-FR127, programmable sized GR

starting from GR32
– Size of rotating area in GR file determined by alloc

instruction (size either be 0 or 8x)
– Rotate toward larger register number
– Renaming register number = rotate register number +

value of rrb

Register Rotation (cont)
L1: ld8 r32=[ra], 8

st8 [rb]=r34, 8
swp_branch L1;;

a b ec d f g h i jra

rb

r32 r33 r34

a
r32 r33 r34

b a
r32 r33 r34

c b a
r32 r33 r34

d c b
r32 r33 r34

e d c
r32 r33 r34

cycle 0

cycle 1

cycle 2

cycle 3

cycle 4

cycle 5

rb

rb

rb

arb

a brb

a b crb

Instruction Types

Example:
A : add, or F : fadd
I : mov, shl B : br, brp
M : load L+X: brl

3

Bundle and Template

• Three instructions are grouped together into a
128-bit container called bundle

• Template
– 12 basic types: MII, MI|I, MLX, MMI, M|MI, MFI,

MMF, MIB, MBB, BBB, MMB, MFB

– Mapping of instruction to execution unit
– Stop

instruction slot 2 template

04545468687127

5414141

instruction slot 1 instruction slot 0

Control Speculation

• Overlap long load latency
• NaT/NaTVal support

…… …… recovery:
if (a > b) { ld.s target, addr ld target, addr

ld target, addr if (a > b) { br next
…… chk.s target, recovery

} next :
……

}

ld.s – control speculative load
chk.s – check instruction

Data Speculation

• ALAT (advanced load address table)
– Invalidating ALAT entries: by advanced load, certain

instructions ,or events that alter memory state

//other instruction

st8 [r4] = r12
ld8 r6 = r[8];;
add r5 = r6, r7;;
st8 [r18] = r5

ld8.a r6 = r[8];;
//other instruction
add r5 = r6, r7;;
//other instruction
st8 [r4] = r12
chk.a.clr r6, recovery back:
st8 [r18] = r5

// somewhere else in program
Recovery:

ld8.a r6 = r[8];;
add r5 = r6, r7
br back

•Advanced load (ld.a, ldf.a and ldfp.a)
-compute ALAT register tag
-if ALAT entry exists, removes it
-allocate a new ALAT entry
-load the value into target register

•Advanced load check
-looks for a matching ALAT entry, if
found, falls through to next instruction
otherwise branches to the recovery

•Two kinds of compiler-generated recovery
-check load instructions: ld.c, ldf.c or ldfp.c
-Advanced load check: chk.a

Predication

• Conditional execution of an instruction
base on a qualifying predicate
– Convert branch conditions to predicate

registers
– Convert control dependences to data

dependences
• Most instructions can be predicated

Branch Hints

• Mechanism to decrease the branch
misprediction rate

• Do not affect the functional behavior of the
program and may be ignored by the processor

spnt

sptk

dpnt

dptk

Static Not-Taken

Static Taken

Dynamic Not-Taken

Dynamic Taken

Ignore this branch, do not allocate prediction resources
for this branch.
Always predict taken, do not allocate prediction
resources for this branch.
Use dynamic prediction hardware. If no dynamic history
information exists for this branch, predict not-taken.
Use dynamic prediction hardware. If no dynamic history
information exists for this branch, predict taken.

4

Execution Resources Issue Combinations for 2 Bundles

Cache System Distinction
• Cache Latency

– L1i/L1d 2 cycles => 1 cycle
– L2 (I, FP) 6, 9 cycles => 5, 6 cycles
– L3 (I, FP) 21, 24 cycles => 12, 13 cycles

• Virtual address and physical address
– 50-bit => 64-bit for virtual address
– 44-bit => 50-bit for physical address

• Cache line size
– Doubled for every level of cache

• Page size
– Up to 4GB, used to be up to 256MB

• Cache line transfer bandwidth
– Doubled

Pipeline

• In-order pipeline
• Pipeline deduction leads to 4-6% performance improvement

IPG=instruction pointer, FET=Fetch, ROT=Rotate, EXP=Expand,
REN=Rename, WLD=Word-line decode, REG=Register read,
EXE=Execute, DET=Exception detect, WRB=Write-back

