Itanium
Lin Gao

Contents

1 Introduction

2 TItanium Architecture
2.1 Register State, Stack and Rotation
2.2 Instruction Decode
2.3 Speculation
2.3.1 Control Speculation
2.3.2 Data Speculation
2.4 Predication and Branch Hints

3 Itanium 2
3.1 More Execution Resources
3.2 Cache System Distinction
3.3 Pipeline Enhancements

11
12
12
13
13

CONTENTS

Chapter 1

Introduction

The Itanium is an TA-64 microprocessor developed jointly by Hewlett-Packard
(HP). The Itanium architecture is base on explicitly parallel instruction com-
puting (EPIC), where the compiler would line up instructions for parallel
execution. It provides a lot of features to support the instruction level par-
allelism (ILP), such as speculation and prediction. These features will be
discussed in detail in the following chapter.

The main structural flaw with the initial Itanium processor was the high
latency of its L3 cache. Together with other short-comings, the Itanium was
not a competitive product in the market. Itanium 2 is the successor of the
first Itanium processor. Although it delivered the performance promise with
leadership benchmark results across a wide range of workloads, recent data
from market suggests that it’s less popular than other 64-bit architectures,
like Intel’s EM64T.

However, in September 2005, a slew of major companies announced a
new ”Itanium Alliance” to promote hardware and software development for
the Itanium architecture, including HP, Hitachi, Microsoft, Silicon Graphics,
Oracle, Intel and a lot more. It indicates a warm move have taken regarding
Intel’s Itanium chips.

CHAPTER 1. INTRODUCTION

Chapter 2

Itanium Architecture

Figure 2.1 gives an overview of the Itanium architecture[l, 2].

Data Frontside
s

(2 x 133 MHz)

L3 Cache- and

Systembus
Control

Backside Bus
from / to L3 Cache

Figure 2.1: The Itanium Architecture

The [A-64 architecture was designed to overcome the performance limi-
tations of traditional architectures and provide maximum headroom for the
future. To achieve this, IA-64 has an array of features to extract greater
ILP including speculation, predication, large register files, a register stack,
advanced branch architecture, and many others. In this chapter, we will
briefly introduce some key features in Itanium architecture.

7

8 CHAPTER 2. ITANIUM ARCHITECTURE

2.1 Register State, Stack and Rotation

Itanium provides a rich set of system register resources for process control,
interruptions handling, protection, debugging, and performance monitoring.
Only registers belonging to application register state are visible to applica-
tion programs. Figure 2.2 shows the application register state, which is part
of the set of all defined privileged system register resources. The following

Application Register Sst
General Registers Floating-point Registers ~ Predicates Branch Registers Application Registers
63 0 NaTs 81 0 63 0 53 0
ar 0 (0] fr, +0.0 br, arn, | KRO |
ar, fr, +1.0 br, | L e Eor—
ar, _ fr, br, a Kll:e?
........... . L | | : | a [R
g H | | | ar,; BSP
| B L ' oo | ar, [BSPSTORE
ar; L ar, [RNAT
s, | frz: . =
I I 0 | | | Instruction Pointer ¥ FCR
! ' I I I I 63 0 | EFLAG
I B LN . R v
| | 0o | | A S o S B SSD
! ! :: | | | | Current Frame Marker @ CFLG
| | I | | | 37_ _____ 0 an F_?’s
I I I I CPM —] F
w1 to-=om ar, | TR
... User Mask T
5 0 a, | ooV
] a, UNAT
a FPSR
!
Advanced Load " Perfarmance Manitor ar,, Imc
Address Table Péc;cess Ident.{er; etéata Register@.O I
3 5 ar, Imc
"""""""""""""""""""""""""""" cpuid, |] pmd, i
cpuid, | | prd, ar,, PFS
T T 1 T ar,, LC
I I I I I I [=
[cpuid,] pod, [| -
[REIRRE

Figure 2.2: Itanium Application Register State

is a list of the registers available to application programs:

e General Registers (GRs) A set of 128 general purpose 64-bit reg-
isters (GRO-GR127) provide the central resource for all integer and
integer multimedia computation. Each general register has 64 bits of

2.1. REGISTER STATE, STACK AND ROTATION 9

normal data storage plus an additional bit, the NaT bit (Not a Thing),
which is used to track deferred speculative exceptions. GR0-GR31 are
static and visible to all procedure, while GR32-GR127 are stacked and
is local to each procedure. A programmable sized portion of stacked
register can be defined to be rotate. Rotating registers are hardware
support for software-pipelined loops.

e Floating-point Registers (FRs) A set of 128 82-bit floating-point
registers (FRO-FR127) are used for all floating-point computation.
FRO-FR31 are static and FR32-FR127 are rotating FRs. Deferred
speculative exceptions are recorded with a special register value called
NaTVal (Not a Thing Value).

e Predicate Registers (PRs) A set of 64 1-bit predicate registers
(PRO-PR63) are used to hold the results of IA-64 compare instructions.
PRO-PR15 are static and used in conditional branching. PR16-PR63
are rotating.

e Branch Registers (BRs) A set of 8 64-bit branch registers (BRO-
BRYT) are used to hold branching information, which specify the branch
target address for indirect branches.

e Instruction Pointer (IP) The IP holds the address of the bundle
which contains the current executing IA-64 instruction.

e Current Frame Marker (CFM) Each general register stack frame
is associated with a frame marker. The frame marker describes the
state of the general register stack, such as size of rotating portion of
stack frame and rotating register base for GRs. The CFM holds the
state of current stack frame.

e Application Registers (ARs) The application register file includes
special-purpose data registers and control registers for application-
visible processor functions for ISA. There are 128 64-bit application
registers (AR0O-AR127). For example, AR65 is the loop count register
(LC), which is decremented by counted-loop-type branches.

e User Mask (UM) The user mask control s memory access alignment,
byte-ordering and user-configured performance monitors.

As described above, the stacked subset of GRs is local to each procedure
and may vary in size from zero to 96 registers beginning at GR32. The
register stack mechanism is implemented by renaming register addresses as

10 CHAPTER 2. ITANIUM ARCHITECTURE

a side-effect of procedure calls and returns. The implementation of this
rename mechanism is not visible to application programs. Register stack
is automatically saved and restored by the Register Stack Engine (RSE)
without explicit software intervention. RSE use spare memory bandwith to
perform register spill and reload operations in the background when neces-
sary. Register spill and reload may cause RSE traffic. Advanced register
allocation[5] may reduce the RSE traffic.

A register stack frame is a set of stacked GRs that are visible to a given
procedure. The frame is further partitioned into two variable-size area: the
local area and the output area. After a call, the size of the local area of the
newly actived frame (related to the callee) is zero and that of the output area
is equal to the size of caller’s output area and overlays the caller’s output
area. The alloc instruction can be used to dynamically define the local and
output area of current frame. Figure 2.3 depicts the behavior of the register
stack on a procedure call from procA (caller) to procB (callee).

Instruction Execution Stacked GRs Frame Markers

CFM PFM

3 46 5
Caller's Frame (procA) Local A Output A 14 21| |x X

- | >
4—;} sof;=21
call sol,=14 |
|
' 2
Callee’s Frame (procB)
After call Outpul B |
———
! 50fyy=7
alloc : ’
|
Callee’'s F ! (] B 2 48 P
allee’s Frame (procB) I] - l]] I
After alloc Local B Output B, 16 19 14 21
L -
' sofyp=10
return I SOlyp=16
!
Caller's Fi N[- :
Gallers Frame (proch) Local A Output A

After return

000721

Figure 2.3: Register Stack Behavior on Procedure Call and Return

Register rotation is a feature of the Itanium to support software pipelin-
ing. A fixed sized area of the predicate and floating-point register files
(PR16-PR63 and FR32-FR127) and a programmable sized area of general
register file are defined to "rotate”. The general register rotating area starts
at GR32 and overlays the local and output area depending on their relevent

2.2. INSTRUCTION DECODE 11

Instruction Type | Description Execution Unit Type
A Integer ALU [-unit or M-unit
I Non-ALU integer | I-unit
M Memory M-unit
F Floating-point F-unit
B Branch B-unit
L+X Extended [-unit/B-unit

Table 2.1: Instruction Type and Execution Unit Type

sizes. The size of rotating area in GR file is determined by the alloc instruc-
tion, the size must be either zero or a multiple of 8. Registers are rotated
toward larger register numbers by one register position in a wraparound
fashion, and it occurs when a software-pipelined loop type branch is exe-
cuted. Rotation is implemented by renaming register numbers based on the
value of a rotating register base (rrb) contained in CFM. The operation of
the rotating register rename mechanism is transparent to software.

2.2 Instruction Decode

Figure 2.1 gives a brief introduce about the instruction decoding. Each IA-
64 instruction is categorized into one of six types as showed in Table 2.1.
Each instruction type may be executed on one or more execution unit types.
Extended instructions are used for long immediate integer (on I-unit) and
long branch (on B-unit) instructions.

Three instructions are grouped together into a 128-bit container called
bundle. Each bundle contains three 41-bit instruction slots and a 5-bit
template field. Instrutions cannot be arbitrarily grouped into bundles due
to the dependences and resource constraints. The template field specifies
the mapping of instruction slots to execution unit types. There are 12 basic
template types:

MII, MII, MLX, MMI, M|MI, MFI, MMF, MIB, MBB, BBB, MMB,
MFB

Each letter in a template type represents the mapping of instruction to
execution unit. For example, template MFI specifies that instructions in
slot 0, slot 1 and slot 2 of current bundle have to be dispatched to M-unit,
F-unit and I-unit respectively. A vertical bar in a template denotes an intra-
bundle stop, which indicates to the hardware that one or more instructions

12 CHAPTER 2. ITANIUM ARCHITECTURE

before the stop may have certain kinds of resource dependencies with one or
more instructions after the stop. Each basic template type has two version:
one with a stop after the slot 0 and one without. Instructions must be
placed in slots corresponding to their instruction types based on the template
specification, except for A-type instructions that can go into either I or M
slots. Bundle templates enable Itanium processors to dispatch instructions
with simple instruction decoding, and stops enable explicit specification of
parallelism.

The Itanium architecture is designed to sustain the execution of 6 in-
structions per cycle (which equals to 2 bundles per cycle), although it has
enough issue control and data paths to issue 9 instructions per cycle. Having
9 issue ports (2 I, 2 F, 3 B and 2 M issue ports) allows ports to be dedicated
to specific functions and to increase instruction dispersal efficiency.

2.3 Speculation

Memory can only be accessed through load and store instructions and spe-
cial semaphore instructions in Itanium architecture. programmer-controlled
speculation is also supported for hiding memory latency. Two kinds of spec-
ulation are control speculation and data speculation.

2.3.1 Control Speculation

Control speculation allows loads and their dependent uses to be safely moved
above branches. NaT bits attached to GRs and NaTVal values for FRs
enable control speculation. In case where data read by speculative load turns
out not to be needed, its results are simply discarded, otherwise memory
latencies are overlapped by the execution of other instructions. When a
speculative load causes an exception, the exception is deferred by setting
the NaT bit on the destination register (or writing NaTVal into the FR)
and propagating the setting across its dependent uses until a subsequent
non-speculative instruction checks for or raises the deferred exception.

An additional mechanism[6] is defined that allows the OS to control
the exception behavior of speculative loads. The OS has the option to
select which exceptions are deferred automatically in hardware and which
exceptions will be handled (and possibly deferred) by software.

2.4. PREDICATION AND BRANCH HINTS 13

2.3.2 Data Speculation

Data speculation allows loads to be moved above possibly conflicting mem-
ory references. A store that cannot be statically disambiguated relative to
a particular load is said to be ambiguous relative to that load. In such
case, compiler cannot change the original order of load and store specified
in the program. Itanium provides a special kind of load instruction called an
advanecd load, that can be scheduled to execute earlier than one or more
stores that are ambiguous relative to that load. Compiler can also spec-
ulate operations dependent on the advanced load and later insert a check
instruction that will determine whether the speculation is successful or not.
The check instruction for the advanced load can be placed anywhere the
original non-data speculative load could have been scheduled. The decision
to perform data speculation is highly dependent on the possibility and the
cost of recovering from an failed data speculation.

An additional structure called advanced load address table (ALAT) is
used to hold the state necessary for advanced loads and checks. When an
advanced load is executed, it allocates an entry in ALAT. Subsequent store
to the same memory location will removed the entry from ALAT. Later,
when a corresponding check instruction is executed, if a matching entry is
found, the data speculation succeeded, otherwise, it failed and the recovery
is performed.

2.4 Predication and Branch Hints

Predication is the conditional execution of an instruction based on a qual-
ifying predicate. A qualifying predicate is a predicate register whose value
determines whether the processor commits the results computed by an in-
struction. Predication converts control dependencies to data dependencies
by converting branch conditions to predicate registers, this simplifies com-
piler optimizations and removes associated mispredict penalties.

The execution of most Itanium instructions is gated by a qualifying pred-
icate. Only a few instructions cannot be predicated, such as alloc (allocate
stack frame), clrrrb (clear rrb) and rfi (return from interruption).

In addition to removing branches through the use of predication, some
other mechanism are provided to decrease the branch misprediction rate and
the cost of misprediction. An interesting feature of Itanium is its branch
hints, which are intended to improve branch prediction by providing in-
formation about expected branch behavior to the processor. Branch hints
provide the following list of choices:

14

CHAPTER 2. ITANIUM ARCHITECTURE

e statically or dynamically by the hardware

e predict if a branch would be taken or not taken

Chapter 3

Itanium 2

The Itanium 2 processor is the second product in Itanium Processor Family
(IPF). There are some changes have been made to Itanium 2 [4, 3]. Fig-
ure 3.1 gives the processor block diagram. The difference will be discussed
in following sections.

3.1 More Execution Resources

The Itanium architecture is designed to support the parallel execution of 6
instructions per cycle. However, the execution phase of the Itanium pro-
cessor was usually not able to effectively execute 6 instructions per cycle
because of limited execution resources.

Itanium 2 Proc. Execution Units | # Units Latency
Memory Load Ports 2 1 cycle (L1)
Memory Store Ports 2 NA
ALUs (integer) 6 1 cycle
Integer Units 2 1 cycle
Integer Shift 1 1 cycle
Multimedia ALUs 6 2 cycles
Parallel Multiply Units 1 2 cycles
Parallel Shift-Mask Units 2 2 cycles
FP FMAC (multiply-accumulate) 2 4 cycles
FP FMISC (compares, merge, etc) 2 4 cycles
Branch Unit 3 0-2 cycles

Table 3.1: Itanium 2 Execution Units

15

16 CHAPTER 3. ITANIUM 2

L1i Instruction Cache (16KB)
L1i TLB (32 entry)
Next Addr Pred. Instr. Bundle

(128 entries)
PG

rotate - TP generation

ROT

R R xéégéﬁﬁi

AR R AR R S R SR

L3 Data Pipeline

Figure 3.1: Itanium 2 Processor Block Diagram

3.1. MORE EXECUTION RESOURCES 17

Table 3.1 lists major execution units in Itanium 2 processor. Compared
to Itanium, it provides 2 additional ALU units, 2 additional multimedia
units, and 2 additional load /store memory ports. According to the 12 tem-
plate types, two bundles can include up to 4 memory operations, up to 6
ALU operations, up to 4 integer operations, up to 6 branch operations, and
up to 2 FP operations. Providing the additional execution units, Itanium
2 processor can issue nearly all combination of template types in one cycle,
and 11 issue ports (compared to 9 issue ports in Itanium) increase the in-
struction issue efficiency. Figure 3.2 compares the issue efficiency of both
architecture. Partially colored boxes indicate that if the first bundle group
has only branch hint instructions, then the second instruction bundle may
be executed in parallel. If the first bundle contains true branch instructions,
the second bundle cannot be executed in parallel.

second instruction group to issue

il duldid

Figure 3.2: Issue Combinations for 2 Bundles

18 CHAPTER 3. ITANIUM 2

3.2 Cache System Distinction

Itanium 2 have made lots of modification on cache system, including;:

e Cache Latency Itanium 2 processor cache latencies are nearly half
those of the Itanium processor for almost all caches showing in Ta-

ble 3.2.
caches Ttanium Itanium 2
L1i 2 cycles 1 cycle
Lid 2 cycles 1 cycle

L2 (I, FP) | 6,9 cycles 5,6 cycles
L3 (I, FP) | 21,24 cycles | 12, 13 cycles

Table 3.2: Cache Latencies Distinction

e Address The Itanium 2 processor supports larger virtual addresses
(64 bits compared to 50 bits in Itanium) and physical addresses (50
bits compared to 44 bits in Itanium). Expanded addresses are needed
by large commercial and technical applications.

e Line Size Cache line size in Itanium 2 is doubled for every level of
cache. This provides an implicit prefetching that reduces cache misses
and effective memory latency.

e Page Size Itanium 2 processor supports up to 4GB page sizes, com-
pared to up to 256 MB page sizes for Itanium. This allows mapping of
large databases and datasets for high-end applications.

e Bandwidth Bandwidth from the system bus to the L3, the L3 to the
L2, and L2 to the L1s are doubled compared to Itanium. This allows
faster cache line transfers.

3.3 Pipeline Enhancements

Figure 3.3 shows the pipeline of Itanium and Itanium 2. The Itanium 2
processor pipeline is 8 stages long, and is two stages shorter than the Ita-
nium processor pipeline. The instruction buffer decouples the frontend
instruction fetching from the backend execution stages. Shorter pipeline
stages leads to 4-6% performance improvement, caused by less branch mis-
prediction penalties (it takes less time to refill a shorter pipeline after a
mispredicted branch is encountered).

3.3. PIPELINE ENHANCEMENTS 19

Figure 3.3: Itanium and Itanium 2 pipelines

The reduction in frontend is the result of 1 cycle latency of instruction
fetching from L1i, which allows the instructions and control information
used to generate the next instruction address to be read out in 1 cycle.

WLD (word-line decode) stage in Itanium was not needed in Itanium
2 because of more aggressive circuit design techniques used in register file
design.

Providing all these changes to the Itanium architecture, the benchmark
results across a wide range of workloads show that Itanium 2 delivers promis-
ing performance.

20

CHAPTER 3. ITANIUM 2

Bibliography

[1]

Intel ia-64 architecture software developer’s manual — volume 1: Ia-64
application architecture. In Document Number:245317-002, 2000.

Intel ia-64 architecture software developer’s manual — volume 2: Ia-64
system architecture. Document number: 245318-002, 2000.

Inside the intel itanium 2 processor. In Hewlett Packard Technical White
Paper, 2002.

Cameron McNairy and Don Soltis. Itanium 2 processor microrchitecture.
IEEE Micro, 23(2):44-55, 2003.

Alex Settle, Daniel A. Connors, Gerolf Hoflehner, and Dan Lavery. Opti-
mization for the intel itanium architecture register stack. In Proceedings
of the international symposium on Code generation and optimization:
feedback-directed and runtime optimization, pages 115-124. IEEE Com-
puter Society, 2003.

Rumi Zahir, Jonathan Ross, Dale Morris, and Drew Hess. Os and com-
piler considerations in the design of the ia-64 architecture. In Architec-
tural Support for Programming Languages and Operating Systems, Pro-
ceedings of the ninth international conference on Architectural support
for programming languages and operating systems, pages 212-221. ACM
Press, 2000.

21

