
The IBM Power Micro-architecture
Report for COMP9244: Software View of Processor Architectures

Godfrey van der Linden

2006-08-01

Abstract

The IBM PowerPC instruction set architecture and the implementations of it have pow-
ered many different computer systems. It is a second generation RISC design that incorpo-
rates many instruction extensions designed to ease the generation of quality code by modern
compilers. The RISC design lends itself to scaling from very small implementations designed
for embedded applications, through super–computers, to standalone desktop and server ma-
chines. Although the design is fundamentally RISC, the IBM designers have explored much
of the landscape of modern computer architectures, from large super–scalar processors down
to tiny single issue pipelined processor cells, suitable for use in custom designed ASICs. This
paper explores the history of the architecture and some of the unusual instruction set choices
that the original PowerPC designers made, before investigating some of the PowerPC im-
plementations. Modern PowerPC processors, such as the POWER4, have very powerful
and general supervisor and hypervisor mode functionality. The later sections of this paper
discusses operating system design and some of the some of the issues posed by the POWER4
architecture.

1 Introduction

Continuing with IBM’s long history of com-
puter design innovation, the PowerPC archi-
tecture and the various implementations of it,
such as the POWER5, are worthy representa-
tives of their world class design. IBM lead the
way with many performance innovations in the
1950s and ’60s; it is interesting that so many of
the technologies that they invented have been
of direct use in their RISC architectures some
40 years later.

Apple Computer shocked the personal com-
puter world when they announced their inten-
tion of switching to the Intel Core Duo line of
processors. IBM and Freescale seem to be un-
concerned, certainly IBM will be shipping as
many of these processors as their fabricators
can make attempting to satisfy the insatiable
gaming console market. In a remarkable coup
both MicroSoft’s XBox 360 and Sony PlaySta-
tion 3 will be powered by PowerPC chips.
Freescale is concentrating their design efforts
with low power signal processing chips aim-
ing for the handheld embedded market, such

as mobile phones.
In this introduction we shall briefly discuss

the development history of the PowerPC(PPC)
architecture and a quick survey of the PPC ex-
tensions to traditional RISC architectures. In
two middle sections will discuss the large main-
frame desktop implementations and followed
by the smaller embedded processor variations.
Finally, in Section 4, issues and design features
will be discussed from the viewpoint of an op-
erating system designer.

In this document it is assumed that the
reader is familiar with both modern RISC pro-
cessor architectures and also with operating
system design issues.

1.1 History of the PowerPC

In 1985 IBM started working on a second
generation RISC architecture, known as the
“AMERICA architecture”, [CM90]. In 1986
the development on the RS/6000 was started,
which was the first implementation of the
AMERICA architecture, in February 1990, the
first RS/6000 machines shipped, [IBM01] with
a renamed POWER architecture. At the end

1



of development of the RS/6000 series IBM had
reduced the chip count of the CPU from eleven
chips down to a single chip in the low end ma-
chines.

In the early ’90s Apple and IBM were col-
laborating on a number of projects. During
this time IBM approached Apple to collabo-
rate on the development of a family of single–
chip processors based on the POWER archi-
tecture. Soon after, Apple asked Motorola to
join the collaboration to leverage Motorola’s
experience in manufacturing high–volume pro-
cessors. This collaboration was known as the
AIM1 alliance; the result was a modification of
POWER, known as the PowerPC instruction
set architecture(ISA). PowerPC added single–
precision floating point, general register–to–
register multiply and divide and removed some
POWER instructions, such as MQ register
based multiplies. PowerPC also added a par-
allel 64–bit instruction set mode.

The 1993, the POWER 2 was released
and the POWER3 was released in 1997. The
POWER3 was the first implementation of
the full 32 and 64–bit PowerPC ISA. The
POWER4 was released in 2001 and has be-
come the basis for later development of rela-
tively large systems. The PowerPC 970(2002)
and POWER5(2005) extending the POWER4
micro-architecture.

1.2 PowerPC instruction set archi-
tecture

The PowerPC instruction set architecture is
part of a group of second generation RISC ISAs
that were developed in the late ’80s and early
’90s. This document will concentrate on those
parts of the PowerPC ISA that are unconven-
tional. In most ways the PowerPC ISA is con-
ventionally RISC in that only load and store
operations are used to access memory; that
is, there are no memory operand addressing
modes. However unlike many RISC instruction
sets, the PowerPC has some extended instruc-
tions that are capable of modifying multiple
target registers or are inherently multi-cycle in
nature.

1.2.1 Branch registers: Link and Count

The PowerPC ISA uses a dedicated link regis-
ter, lr, to save the return address for a function
call. It is the callees responsibility to save the
lr if it isn’t a leaf function. Using a special reg-
ister for the link register can make the return
jump faster since the hardware may not need
to go through a register read pipeline stage for
function returns.

The ISA also has a dedicated register
for controlling loops, the count register ctr.
This register is automatically decremented and
tested against 0 by the branch conditional in-
structions. By using this special register the
branch processor can determine the result of
branch early in the pipeline.

In the PowerPC architecture the branch
and instruction fetch units are closely associ-
ated, in fact he branch unit is split into two
with the branch prediction unit very close —
in terms of clock cycles — to the fetch unit.
The lr and ctr registers can be implemented
in the part of the branch unit that is near the
fetch unit and the instruction set can the use
these registers to implement indirect function
calls. See [HP03, Appendix C] for details.

1.2.2 Load and Store extensions

Atomic update The Load and Re-
serve(lwarx) and Store Condi-
tional(stwcx) instructions provide the
PowerPC shared–storage atomic–update
mechanism. Lwarx instruction loads a
value from a memory location and marks
that location as reserved. The subse-
quent stwcx stores a new value, if the
reservation is still valid. A reservation
is invalidated when another processor
successfully commits a stwcx instruc-
tion. Using this mechanism a general
atomic operation suite can be built such
as atomic increment, compare and swap
and test and set. See [WSM+5b].

With update Indexed load and store instruc-
tions have a ’with update’ variant, which
updates the source index register with
the computed effective address after the
load or store is initiated. The load in-

1(A)pple, (I)BM and (M)otorola

2



struction will modify two registers; some-
thing that is unusual for RISC instruc-
tion sets. This variation is essentially a
convenience to reduce the number of in-
structions executed inside a loop itera-
tion. See [WSM+5a].

Multiple Another pair of convenience in-
structions are the load and store multi-
ple register instructions lmw/stmw. These
instructions are intended for the pream-
ble/postamble of functions to save and
restore non-volatile registers, as de-
fined by the application binary interface
(ABI ). These instruction do not really
increase program performance directly
as they still take one cycle per regis-
ter to implement but rather are used to
increase the instruction stream density.
See [WSM+5a].

String/misaligned A variation of the
Load/Store Multiple, the Load/Store
string instruction. These instructions
load a series of words from an arbitrary
byte address in to or out of multiple reg-
isters. See [WSM+5a].

Byte reversed The load/store word/halfword
instructions all support a byte swapped
variant, where the (half–)word at the
specified location can be byte–swapped
on the way to or from memory. As many
of the POWER implementations have
switchable endianess these instructions
are used to efficiently work with cross–
endian integers. See [WSM+5a].

1.2.3 Shared Storage

The PowerPC specifies a weakly consistent
storage model. This means that each proces-
sor’s hardware on the memory bus are not re-
sponsible for maintaining coherence. The de-
sign takes the approach that a programmer
must maintain a consistent view of memory
with the appropriate use of synchronisation op-
erations in code, see section 1.7 Shared Storage
of [WSM+5b].

The strength, and weakness, with the
weakly consistent memory model is that the
programmer is responsible for maintaining co-
herence across the processors by appropriate

use of memory barriers. However the de-
tails are so complex and difficult to explain
that the average programmer is left behind.
Which means that some system programmers
may utilise sophisticated synchronisation tech-
niques internally in the operating system, but
probably needs to publish quite conservative,
i.e. slow, services to external non-kernel pro-
grammers.

In PowerPC ISA there are four data
synchronisation instructions: isync, eieio,
lwsync and sync.

isync Instruction synchronise This instruc-
tion insures that all preceding instruc-
tions are completed before the isync
completes and stops all subsequent in-
structions from scheduling until comple-
tion. It also invalidates any instructions
in the I-cache with respect to any out-
standing instruction cache block invali-
dations, icbi, from the bus. In lock
acquisition, this instruction is used im-
mediately after the stwcx complete test
to guarantee that no later instructions
are executed speculatively until the re-
sults are known. In general isync can
be thought of as a load barrier.

eieio Enforce in–order execution of I/O The
behavior of this instruction depends on
the type of caching enabled in preced-
ing loads and stores. Memory mapped
device registers are mapped cache–
inhibited/guarded (see section ??). For
this type of mapped register operation,
this instruction guarantees load and store
ordering such that all preceding loads
and stores complete to main memory be-
fore the eieio completes. This only ef-
fects loads and stores, if ordering of all in-
structions is required then the sync must
be used. For the default cache–enabled
case the instruction guarantees store or-
dering but its use is deprecated in favour
of the lwsync instructions, when avail-
able, see below.

lwsync Light–weight synchronise This in-
struction guarantees order of store in-
structions, hence a memory barrier, to
system memory. However it doesn’t work

3



predictably on memory mapped device
memory, in which case the, much slower,
sync should be used. This instruction
precedes the atomic update for mutex
unlocking and guarantees that all of the
code in a critical section is complete be-
fore the lock is dropped. Only imple-
mented in the POWER4 derived micro-
architectures.

sync Heavy–weight synchronise When order-
ing against a device register is required
it is necessary to issue a sync instruction
to guarantee ordering. Sync extends the
guarantee of lwsync to include a round
trip to the system memory controller so
that outstanding bus snoops can com-
plete.

1.2.4 Miscellaneous instructions

The designers of the PowerPC ISA added a
number of unusual instructions. These instruc-
tions seem to be provided for the use of C com-
pilers to make some of the more difficult C se-
mantics easier to implement.

32–bit immediate values An immediate
32–bit value is generated using an ori
rt, r0,<low> followed by a oris rt,
rt, <high>. The first instruction loads
the low 16 bits of the value into the rt
register and the second instruction, or
immediate shifted shifts an 16bit imme-
diate to the top of the register and ors it
into the target register.

Rotate with mask A set of instructions that
can extract and insert C bitfields in a sin-
gle RISC operation. They are used to ro-
tate bits in a word to the bottom of the
register and mask a specified number of
bits out. Or the inverse operation, of ro-
tating bits and inserting them in a target
based on the specified mask.

Complemented logical operations It is
possible to complement one of the
operands for all of the bit wise logical
operations: AND, OR and XOR. The
XOR complemented instruction is also
known as equivalent eqv.

sraw/addze This pair of instructions — shift
right algebraic/add zero bit extended —
is used by a compiler to optimise an im-
mediate power of two division of signed
or unsigned integers as an algebraic shift
operation.

cntlz Count leading zeros Very useful instruc-
tion for computing the log2 of a value.
Very useful when implementing power of
two allocators or logarithmic instrumen-
tation.

Move program counter (PC ) In the Ap-
ple dynamic library system, the program
counter is required to be passed as an
argument to the dynamic code patcher.
This is an unfortunate design as RISC
architectures rarely make the PC directly
available in the ISA. Apple has been us-
ing a branch and link to the next instruc-
tion,BCL 20, 31, $+4, which stores the
PC in the link register. The PPC970
branch predictor has been specially mod-
ified to not update the link register stack
for this particular instruction.

2 POWER4 based micro-
architectures

The first machine with the POWER4(P4) pro-
cessor was released in 2001, [TDF+01]. The
basic architecture has been extended a number
of times for later processors, such as the Pow-
erPC970 family and POWER5. All P4 based
processors are all 64–bit processors with a mas-
sive out–of–order execution engine, that is typ-
ified by long pipelines and high clock rates.

The driving design principles for the P4 de-
sign was a combination of IBM server class
machine requirements, such as: SMP optimi-
sation, full system design approach, very high
clock frequencies, reliability, availability and
serviceability and finally binary compatibility
with the 32 and 64–bit PowerPC ISA.

Each P4 chip has two processor cores each
with their own L1 cache, a large L2 cache which
is split into three independent and concurrent
caches. The chip also has a dedicated intra-
chip and inter-chip communication fabric to
support a maximum of 32 processors in a SMP

4



Figure 1: Block diagram of the POWER4 processor. [BBF+01]

Figure 2: Block diagram of the Cell processor. Where: SPU means synergistic processor ele-
ment, LS is local store, EIB is element interconnect bus, PPU is PowerPC processing unit, MIC
is memory interrupt controller and BIC is I/O bus interface controller. [Kre05]

5



system. The fabric is used by the L2 cache to
communicate to an on–chip local L3 controller
and directory, with a memory controller built
in.

The internal micro-architecture of the
core is a speculative, superscalar, out–of–
order(OOO) execution design, see figure 1; it
can fetch, decode and crack up to eight instruc-
tions per cycle, issue up to five operations per
cycle and maintain a sustained completion rate
of five operations per cycle — most instruc-
tions crack to one operation, a few crack to
more than one operation. With large register
rename pools, other OOO resources and long
pipelines, the P4 can have over two hundred in-
structions in flight. To exploit instruction level
parallelism there are eight execution units each
of which can have an instruction issued each cy-
cle, though this rate can not be sustained due
to the formation of five instruction groups.

To minimise the resources used to keep
track of such a large number of instructions
in flight, the P4 decodes and schedules instruc-
tions into instruction groups of five. The group
is encoded such that each slot in the group can
only be scheduled on specific execution unit
pipelines, and the fifth slot may only contain
a branch instruction or a no–op. This group
then has rename and other OOO resources as-
sociated with it and is tracked through the en-
tire execution pipeline. Finally when every in-
struction in the group has completed the entire
group is committed, hence the sustained com-
pletion rate of five instructions per cycle.

With this micro-architecture’s power mem-
ory bandwidth could become a bottleneck. The
P4 has very large caches to minimise mem-
ory access latencies with: a 64KiB directly
mapped I-cache, 32KiB two–way set associa-
tive D-cache, 3 x 480KiB (1.41MiB total) inde-
pendent 4–8 way set associative L2 caches and
8–way set associative L3 cache directory for up
to 32MiB of off–chip L3 cache. The L1 and L2
caches are 128b per line and the L3 cache has
512b per line. Finally the memory hardware is
capable of recognising up to eight software ini-
tiated contiguous data streams and will start
scheduling pre-fetch of contiguous data.

To achieve very high potential clock rates
the P4 has a sixteen cycle instruction pipeline,
which can cause very long miss–predicted

branch stalls, so the designers introduced a
very large branch prediction unit with sophisti-
cated subroutine and other indirection logging.
The P4 uses three branch history tables: the
local predictor table has 16k 1–bit predictors,
the global predictor table also has 16k 1–bit
predictors — indexed by hashing the result of
the last 11 branches with the current branch
address and finally a selector table of 16k 1–bit
predictors — indexed the same as the global
branch table. According to [TDF+01], “This
combination of branch prediction tables has
been shown to produce very accurate predic-
tions across a wide range of workload types.”
Certainly a large number of transistors have
been dedicated to branch prediction. In addi-
tion to the branch prediction unit the P4 ar-
chitecture maintains a stack of the last link
register values for target prediction of return
addresses. Also the POWER4 has a 32 entry
direct mapped cache for count register target
address prediction.

To keep the memory flowing through the
caches of the large SMP systems, the PowerPC
ISA only specifies a weakly consistent storage
model. However a rich set of synchronisation
primitives are provided for a programmer to
optimise shared storage accesses. In subsec-
tion 4.3 the operating system issues of weakly
consistent model will be explored more com-
pletely.

As a part of IBM’s commitment to reliabil-
ity, availability and serviceability, the designers
have introduced into the P4 the ability to log-
ically partition an SMP system into a number
of logical subsystems. Each processor has a
logical partition ID, a real mode offset register
(RMOR), a real mode limit register (RMLR)
and a hypervisor RMOR. These registers and a
few others can only be modified in a new priv-
ileged mode called the hypervisor mode. Once
the RMOR/RMLR registers are set by the hy-
pervisor the processor will be incapable of ac-
cessing memory out of that range of physical
memory. With these tools the operating sys-
tem can divide a large SMP into a series of logi-
cal partitions that can be individually failed —
without bringing the entire system down – un-
til a service technician can be scheduled. This
technique has other uses too, such as processor
virtualisation.

6



2.1 PowerPC 970

The PowerPC970 family of chips are all 64–bit
PowerPC ISA microprocessors, based upon the
POWER4 micro-architecture with vector —
single–instruction, multiple–data (SIMD) —
instruction extensions known as VMX, [ppc05].
The processor is designed for desktop and low–
end servers applications for uni-processors up
to four way SMP system configurations.

Apple Computer was a big customer for the
970 design, which they marketed as the G5.
They requested a few changes in the basic P4
design, specifically the requested support for
Motorola’s SIMD instruction set, support for
a binary compatibility 32–bit execution mode
is supported for 32–bit process support and a
couple of smaller changes to support the Mac
OS X application binary interface, see Move
program counter in section 1.2.4 above. Ap-
ple had wanted to design a 970/G5 laptop sys-
tem but the power consumed and heat dissi-
pated presented insurmountable problems to
Apple’s system designers. The 2.5GHz 970MP
dual core chip has a peak power consumption
of 100W.

The primary limitation of the 970 over the
P4 architecture are in the caching hierarchy.
The 970 does not have a L3 cache and only
has a single 512KiB L2 cache, though the low–
power 970FX and dual–core 970MP expanded
it to 1MiB. Otherwise the caches are the same
structure as the P4’s.

Probably the biggest architectural differ-
ence between the P4 and the 970 family is
the addition of the VMX, Vector/SIMD Mul-
timedia eXtension, instructions. Two new
execution units were added to the architec-
ture: the vector permutation (VPERM ) and
the vector ALU (VALU ). The VPERM has a
19 stage pipeline. The VALU is further di-
vided into 3 units for fixed point, complex–
fixed and floating point instructions with 19,
22 and 25 pipeline stages respectively. The Al-
tiVec/VMX ISA seems to be very highly re-
spected in the industry in comparison to the
SIMD extensions available on other processors.

2.2 POWER5 micro-architecture

The key goal of the POWER5, was to main-
tain both binary and structural compatibil-

ity with the POWER4, [SKT+05]. The
POWER5(P5 ) is a two–way simultaneous mul-
tithreaded(SMT ) dual–core chip that has a
very similar architecture to the P4. P5 systems
are capable of running up to 64 processors or
32 chips, twice the number of processors for
P4s.

The P5 designers realised that the addition
of SMT and 64 processors SMP would present
tremendous problems to the P4 memory de-
sign where the L3 cache was between the inter–
processor fabric and the memory bus. Thus
when a processor core had an L3 hit it would
issue a memory cycle on the processor fabric,
with twice as many processors on this bus and
more fetches issuing from each chip this caused
an unacceptable degradation in memory per-
formance. The P5 has moved the L3 to di-
rectly connect to the L2 controller, so that L2
fills no longer cause transactions on the fab-
ric. In addition to moving the L3 cache, IBM
designers added an on–chip memory controller
to improve the speed of main memory access.
These two changes greatly decrease the latency
to main memory of a cache miss and also en-
hances system reliability by reducing system
chip count.

The caches were also somewhat reorganised
from the P4 architecture. The P5’s L1 caches
have been doubled in size by increasing the I-
cache and D-caches to 2–way and 4–way re-
spectively. The L2 cache is now a 10–way 128b
line with 640KiB for each of the 3 cache slices
for a total of 1.875MiB of L2 cache. The L3 di-
rectory is very different from the P4. The new
36MiB cache is divided into three slices where
each slice is organised as 12MiB, 12–way set
associative with 256b per line.

Too maintain structural compatibility the
P5 has an identical instruction pipeline to the
P4 processor. So code that is optimised to run
on the P4 will still run optimally on the P5.
However with the addition of SMT it should
be possible to maintain higher utility of the
chips execution units, the P4 usually achieved
on 25% utilisation of each of its eight execution
units. Other resources where also increased to
better support SMT for instance the various
register files where increased in size to support
much more register renaming. In IBM bench-
marks these design changes have led to a 40%

7



improvement in processor throughput over a
large test base.

To deal with potential resource starvation
for a single thread the processor supports eight
priority levels per thread. These are used to
control the relative number of decode cycles
each thread gets and hence the number of in-
structions executed. Also the processor mon-
itors various recourse such as the global com-
pletion table and the load miss queue, to de-
tect significant resource starvation. In the case
that resource starvation is found the offend-
ing resource hunger thread is throttled back
by lowering its priority.

The P5 is capable of running in a single
threaded(ST ) mode as some applications that
are execution unit or bus bandwidth limited.
In this mode all of the additional resources
needed to support SMT are devoted to the
execution of a single thread, for instance the
full 120 rename registers become available to a
single thread. The processor can dynamically
switch between ST and SMT execution modes.

Chip power is becoming an important met-
ric and such a complex chip as the P5, with its
237 million transistors, would be very power
hunger. To offset this power consumption
problem, the P5 chip has implemented a dy-
namic power management system that dynam-
ically shuts–down inactive parts of the chip.
Each unit can be clock gated into a low power
state, on a cycle by cycle bases, with no per-
formance loss.

2.3 POWER6 micro-architecture —
what is known

According to reports from the 2006 Interna-
tional Solid–State Circuits Conference in San
Francisco, IBM presented many papers on the
up–coming POWER6. It is expected to be
shipping in 2H2007 and will clock in the 4–4.5
GHz range, with speeds of 5.6GHz achieved in
the lab. Simultaneously IBM claims to have
kept a lid on power consumption; “Despite the
speeds, it will have a lower power density than
in some chips found in today’s desktops” said
Bernard Meyerson, chief technologist of IBM’s
Systems and Technology Group, [Ass06, Feb.
07].

Although we do not yet know many details
of the POWER6 micro-architecture, we sus-

pect that many of the technologies that have
been explored for the very high speed Cell
broadband engine will make their way into the
POWER6, see subsection 3.3.

3 PowerPC based micro-
architectures

In this section the smaller embedded and set–
top implementations of the PowerPC ISA will
be described. In general most of these proces-
sors continue to use the 32–bit instruction set.
The PowerPC 440 will be discussed first, fol-
lowed by the Blue Gene Compute Chip and the
Cell Broadband Engine.

3.1 PowerPC 440

The PowerPC 440 (PPC440 ) core is a rela-
tively high–performance, superscalar processor
core intended for embedded applications. The
PPC 440 core is also available as part of the
IBM ASIC library of processor cores. The tar-
get market is the usual list of embedded appli-
cations such as digital cameras, laser printers,
switches and network cards, [ppc99]. In an un-
expected twist the PPC440 core has become
the basis of the of the Blue Gene/L Compute
Chip, see section 3.2 below.

The core features a two–way superscalar
design, with 3 execution pipelines and OOO
issue, execution and completion. The pipeline
itself is 7 stages long. In addition to the stan-
dard 32–bit RISC PowerPC ISA some 24 DSP
operations are also available including a single–
cycle throughput 16x16+32 to 32 multiply ac-
cumulate instruction.

The basic design is quite modular and the
library core con be configured with a num-
ber of different subsystems including 0 - 64KiB
caches. The processor is very low power with
2.5mW/MHz or about 1.4W at 555MHz. At
the peak of 555MHz, the processor delivers
1000 MIPS using the Dhrystone 2.1 bench-
mark.

The 3 execution units are: a load/store
pipeline, simple integer pipeline and com-
plex integer pipeline. The pipeline itself has
seven stages: instruction fetch, pre-decode,
decode/issue, read registers, execution stage
1/EA address compute, execution stage 2/data

8



cache access and register writeback. The lack
of renaming registers is a serious limitation for
exploiting any ILP that may be available.

The PPC440 has separate instruction and
data caches, factory configurable up to 64KiB
and are highly associative, the 64KiB cache
is 128–way set associative, the associatively
varies with cache size. With the high associa-
tively advanced cache partitioning is possible.
The caches can be separated into normal, tran-
sient and locked regions, where: normal regions
have traditional cache replacement, transient
regions are used temporarily then not used
again — typical of data streams and locked re-
gions is used for code that is not to be cast out
of the cache.

As with most embedded system designs,
the PPC440 is designed with a number of ex-
ternal interfaces:

Processor local bus (PLB) Three separate
PLB interfaces are used to access system
resources: one for instruction fetches,
one for data reads and the last fro data
writes. Each PLB controller is a 128–bit
bus master.

Device control register bus (DCR) The
DCR bus is a configuration bus for com-
ponents external to the core. The DCR
bus is used to manage status and configu-
ration registers and reduces PLB traffic.
System resources on the DCR bus are
protected to some extent as they are not
part of the system memory map.

Auxiliary processor unit (APU ) Instruc-
tions within the PowerPC ISA have been
reserved for APUs to execute instructions
in the stream. The APU interface pro-
vides a dual–issue pipeline design and
can use a full 128–bit load/store path to
the D-cache. Some uses of the APU is to
implement a full PowerPC Floating Point
Unit, multimedia macros, DSP or other
custom functions.

External interrupt control (EIC ) The
EIC can extend the PPC440 interrupt
system to external interrupt systems.
These external interrupts are level sen-
sitive and can be wired to critical or
non-critical interrupts internally.

Debug There are two debugging interfaces on
the PPC440 core, the JTAG and instruc-
tion trace ports.

3.2 Blue Gene/L Supercomputer

The fully populated IBM Blue Gene/L system
installed at Lawrence Livermore National Lab-
oratories in Livermore, CA topped the Novem-
ber 2005 TOP500 Supercomputer list with
a sustained 280.6 TFlops. At the time no
other system exceeded 100 TFlop/s and the
Blue Gene/L is expected to top the next few
TOP500 lists. The Blue Gene/L system is
an unorthodox entry into the supercomputer
field, in that it uses slow unsophisticated pro-
cessors as its workhorse compute engine. Each
Blue Gene/L compute chip is a 4MiB DRAM
with a pair of 700MHz PowerPC440 proces-
sor cores sharing the DRAM as a L3 cache.
Each core has 2 FPUs, 32KiB I and D-caches,
a very small 2KiB L2 cache and 16KiB of lo-
cal scratch SRAM. They also share some I/O
related subsystems for inter-processor commu-
nication. Each chip can be thought of as a
4MiB DRAM cache with a small compute core
in one corner of it, [IJEBP+05].

In Blue Gene/L two chips are packaged
with 2x512MiB of RAM onto a single proces-
sor board. These boards are collected together
into a processor ’card’. These cards are col-
lected into a cabinet with 1024 nodes, or 2048
processors, drawing a total of 29kW and has a
performance of 2.9/5.8 TFlops. A fully config-
ured Blue Gene/L system has 64k processing
nodes, draws a tiny 1.8MW and achieves an
astounding 76 MFlops/W, [cF05].

In comparison the ASC Purple using
10240 POWER5 processors draws 7.5MW and
achieves 63.3TFlops or 8.4 MFlops/W. The
ASC Purple machine is typical of the high–
power compute node based high performance
systems and also typical has required quite
carefully designed cooling systems. Of course
the choice of slow processing nodes means
that only problems that are massively par-
allel will benefit, in fact it is easy to con-
ceive of workloads that would run slower on
the Blue Gene/L than more traditional high–
performance computers even though they do
not compare to the Blue Gene/L in processing
power.

9



3.3 Cell broadband engine

The Cell broadband engine is the product of a
collaboration between IBM, Sony and Toshiba.
The design goal of the chip is to support
the next generation of Sony PlayStation gam-
ing console. Sony required substantial perfor-
mance of the design and it seems that IBM has
achieved this goal, the chip has a design fre-
quency of 4.0GHz and can achieve a startling,
though theoretical, peak single–precision per-
formance of 192GFlops at 3.0GHz2. The mem-
ory interface has also been redesigned and is ca-
pable of an I/O bandwidth of some 25.6GB/s,
provided by two Rambus XDR memory con-
trollers, [Kre05].

A Cell chip is IBM’s first instantiation of a
architecture known as the ’Broadband Proces-
sor Architecture’ (BPA). The new architecture
was designed for specific workloads such as:
cryptography, graphics and lighting, physics,
fast–Fourier, matrix computations and other
scientific tasks. This instantiation is a multi–
processor on a chip, with a completely re-
designed 64–bit PowerPC core and eight ’Syn-
ergistic Processor Elements(SPEs)’, which are
SIMD signal processors. It would seem that
IBM had an additional design goal of maximis-
ing floating point performance per watt even
though the architecture runs at very high fre-
quency. The block diagram, figure 2, from
[Kre05], shows the structure of the Cell chip;
as you can see the Cell is a multi–SIMD pro-
cessor, or a MIMD.

With the Cell IBM has reworked the 64–
bit PowerPC core, which is the controlling
processor or (PPU ). It implements the 64–
bit PPC instruction set, though internally the
PPU has a much simpler design than the
super–scalar POWER4 designs with their com-
plex multi–functional–unit out–of–order issue
architecture. Instead the Cell implements two
thread SMT with dual, in–order, instruction
issue to a three computation functional units.
Like the POWER4, the Cell was designed for
a very fast clock, some 4.0GHz for the Cell
and has a long, 21 stage, pipeline. However as
the Cell is not super–scalar to any extent IBM
has limited instruction hazard and cache miss
penalties: a branch misprediction takes eight

cycles to unwind and data loads have a four
cycle latency. Like the 970 the Cell’s PPU does
implement the complete VMX/AltiVec SIMD
instructions set. The PPU is intended to run
the operating system and control the work flow
through the SPUs and the new memory flow
controller.

Each SPE has a vector processing unit,
known in IBM inimitable three letter acronym
way as an SPU, and 256KiB of local static
RAM. The design of the SPU The SPUs,
are derived and ’inspired’ from and by
the VMX/AltiVec implementation and Sony
PlayStation 2’s ’Emotion Engine’. The vec-
tor instruction set mostly traditional with per-
haps an unusual number of registers. The SPU
supports 128 128–bit wide registers. With this
large register set and the fast local store the
designers have not implemented caches in the
processor. The designer hope that a carefully
designed algorithm should not need a cache.
The local store is populated using dedicated
SPE local DMA controllers. The DMA engines
can access both main memory and other pro-
cessors local stores. Although the DMA trans-
actions are coherent, once the data is cached in
an SPE’s local store its coherence is not main-
tained, leaving coherence and synchronisation
to the programmer, see section 4.3.

Intra-chip communications use the element
interconnect bus (EIB). The EIB consists of
four busses, two clockwise and two anticlock-
wise. Each bus is sixteen bytes wide and data
clocks every two processor clocks, or a theoret-
ical maximum bandwidth of 128BiB/second.
The EIB is organised as a token ring where
each processor on the ring is no more than five
steps away from any other processor. How-
ever, the bus will automatically partition itself
if necessary when two non-overlapping proces-
sors are communicating. For example if proces-
sor A is moving data to B and C is communi-
cating with C they can share the same proces-
sor bus as B’s DMA engine does not transmit
packets targeted for itself on the bus.

In conclusion, the Cell’s potential is enor-
mous but its unconventional architecture will
make severe demands on tool and software de-
signers to try to make use of this potential.

2IBM has not stated the power consumption of the Cell processor yet, but Microprocessor Report reckons
that it will be 80W or peak 2400MFlop/W

10



4 Software considerations for
operating systems on the
POWER4

While researching the POWER architecture
several features of the design suggested them-
selves as being of interest or concern to oper-
ating system designers. In this section some
of those areas will be explored. The 32–
bit PowerPC440 based architectures are tra-
ditional pipelined RISC processors and do not
implement many of the features here discussed.
Hence this section will concern itself with the
64–bit POWER family, such as the POWER4,
PowerPC970 and Cell processors.

In subsection 4.1 we will discuss the en-
hanced memory management options available
using the new two level effective–address to
real–address translation using segment tables.
Subsection 4.2, will explore a new API for con-
text dependant pre-fetching of cache data or
alternatively structuring data in such a way
that automatic pre–fetching is triggered. Sub-
section 4.3, explores the implications of the
POWER families weakly consistent memory
models. Subsection 4.4, covers issues result-
ing from large branch misprediction penalties
and interactions with typical operating sys-
tem designs. The hypervisor facilities of the
POWER architecture are the subject of sub-
section 4.5. Subsection 4.6, discusses the inter-
nal implementation of the POWER architec-
ture and how structuring code carefully may
greatly enhance performance. Finally in sub-
section 4.7, we will briefly introduce the reader
to some of the performance tools available to
the reader for analysing PowerPC970 perfor-
mance.

4.1 Segmented Memory

A 64–bit virtual address spaces is too huge
to maintain a traditional 4KiB page table for
each process. The 64–bit PowerPC architec-
ture specifies a virtual storage model where the
user address space (effective address or EA) is
a subset of an OS maintained virtual memory
address space. An effective address maps into
the virtual address space using 256MiB seg-
ments, where each segment maps an effective
address ID ESID and effective address to spec-

ify a virtual memory address. The segment ta-
ble is backed by a small fully–associative SLB
cache and the virtual memory has the tradi-
tional TLB. Finally there are small cache’s for
performing direct EA to real address conver-
sion.

This structure allows the operating system
to maintain a single much larger 65–bit virtual
address space which combines segment table
provided virtual specifier IDs (VSIDs) with ef-
fective address to specify a real address. The
designers intended the segmentation to allow
for large portions of the virtual address space
to be shared between different user tasks. For
instance to mapping large shared libraries, an
OS kernel, a micro-kernel and rootserver com-
bination or even large shared memory pools
created and manipulated directly by client pro-
cesses through such APIs as mmap. A single seg-
ment can map single use effective address space
into a VSID, but an entire segment table will
map into many different VSID specified parts
of the VM. It should be possible to limit the
number of TLB interactions using this design.

The VM page table itself has been en-
hanced to support multiple page sizes, on
POWER4 they can be 4KiB and 16MiB, but
the Cell can support 64KiB, 1MiB and 64MiB
pages. Use of these new page sizes should be
explored for the operating system as a whole,
though it is obvious that the kernel/rootserver
and large user shared libraries can make imme-
diate use of them.

The POWER family has had a long stand-
ing problem with slow TLB interactions. Any
operating system engineer designing an imple-
mentation on the POWER architecture should
spend considerable time characterising the per-
formance of the many levels of look–aside
buffers implemented in this segmented mem-
ory model.

We believe that it will be worthwhile to ex-
periment with the new feature to determine if
TLB sharing between processes is practical and
performant. With judicious uses of the VSID
identifier an operating system may be designed
that will only infrequently require a TLB inval-
idation.

11



4.2 Cache pre-fetching

An argument could be made 3 that an
operating system is a massive multi-
plexer/demultiplexer engine. Good system
call design usually limits the number of en-
try points into an OS and each entry point is
as general as possible. Hardware interrupts are
also demultiplexed and routed to appropriate
drivers. Traditionally all of this demultiplexing
is implemented using C’s very efficient pointer
to function. Once a demultiplex has been
decided the layer of code probably has some
context that needs to be re-established. If the
decision point could also arrange for the con-
text to be pre-loaded, later cache misses may
be avoided.

We propose a new API allows a system en-
gineer to register not only a pointer to function
and data context pointer, but also the context
size with a parent data provider. The parent
could decide whether it implemented the de-
cision or not, but it is responsible for passing
the request onto the ultimate decision maker.
The decision maker would associate the set of
addresses with a particular result and pre-load
context data. These pre-load requests would
be made before the data is requested by the
normal stream of instructions, and thus should
shorten the data cache delays.

Consider as a concrete example of the use
of this API a PCI device driver. At the time
when the driver registers its interrupt handler
and data context, it would also associate the
context length with the interrupt handler. The
interrupt demultiplexer would store a handler
function, a context data pointer and the con-
text’s length. When an interrupt for the card
occurs, the interrupt controller would quickly
spin over the data context once per cache line
touching the entire context into data cache, be-
fore branching to the handler function. By the
time the indirect function call is resolved at
the context data should be closer to the caches
than would otherwise occur.

It would appear at first glance that the pro-
posed API constitutes an unnecessary layer vi-
olation, after all each interrupt handler could
easily pre-load its own data directly. But that
means that all well designed interrupt handlers

would need to add this functionality. If every
client needs the functionality then good design
demands that the functionality must be pushed
up to the service provider. This mechanism of
associating a function pointer with the com-
plete context data could be made a general
service provided by the operating system and
coded as efficiently as possible.

Many processors that conform to the later
64–bit POWER design also have hardware de-
tected data and instruction streaming. When
the cache controller notices that a series of
cache–misses have been contiguous, controller
automatically issues pre-fetch requests. With
this facility in mind we should investigate
mechanisms to identify associated data and at-
tempt to group all of the data required sequen-
tially. This is easy within one module but if we
can identify opportunities across several API
layers the rewards may be significant. To iden-
tify such cases we may be able to run an in-
strumented version of software to identify sep-
arate layer data structures, by profiling per-
haps, then try to arrange this memory to live
in a single allocated data structure. Interest-
ingly the hardware can identify cache–missing
streams in either direction, which means that
both up calls and down calls through a stack
would benefit.

Extensive profiling would be required to
prove that the pre-fetching technology dis-
cussed in this section do not have a detrimen-
tal impact on the system due to an increase in
worthless cache invalidation. Further research
could define probability bounds where a cache–
line that is pre-fetched is sufficiently likely to
be used.

4.3 Shared Storage

The POWER architecture specifies a weakly
consistent storage model. Later processors
do extensive instruction and write buffer re-
ordering. Data–hazards are dealt with by the
internal instruction dispatcher and the cache
snooping will deal with cache–line inconsisten-
cies. However store re-ordering is independent
of the caching specified on the memory, the
CPU never guarantee’s the order of stores.

Although it is possible to describe this is-
3But not here!

12



sue in only a few sentences, the implications
of it are wide ranging and performance criti-
cal. A system designer, considering POWER,
should devote some time experimenting with
the weakly consistent storage model, research-
ing interactions and performance impact on a
particular platform/memory controller combi-
nation. This research should be carefully doc-
umented and distilled, ideally in such a way
that an average programmer can grasp enough
of the subtleties to seek expert advice when
required.

Given weakly consistent memory, the pro-
grammer is expected to implement sufficient
synchronisation between different entities on a
modern computer system; for instance between
processes that can run on different cores but on
the same caches, on different processors on the
same memory, or on a NUMA machine. Com-
municating with devices on the system bus also
presents different but related synchronisation
issues.

Optimising synchronising performance is
the real issue, IBM engineers having ducked
consistency, have left consistency to the pro-
grammer and system designers. If a naive, but
safe, consistency model is used, such as using
the sync instruction exclusively it would ut-
terly destroy the performance of the system;
the POWER core would be reduced to little
better than early non-pipelined CPU perfor-
mance without even a cache as all memory op-
erations must complete. Hence it is natural for
system designers to choose the weakest, that
is highest performance, of the many synchro-
nisation options provided be the architecture
as possible. However the experience at Apple
Computer (conversations with Apple [Eng06])
with these barrier operations lwsync, sync,
eieio and the instruction order barrier isync
has been painful. Each revision of the CPU
and memory controller combination has had
subtly different semantics. Apple spent sig-
nificant amounts of time and effort to achieve
a high–performance, consistent, set of barrier
operations. The task is so complex that it is
unlikely even now that Apple achieved either
cross processor generation portability or opti-
mal performance.

It may be impossible to design a simple set

of rules that the general programming commu-
nity could follow and that are optimal. To cer-
tain of a safe, near optimal consistency solution
would require a team of application, operating
system and platform hardware engineers. The
solution developed with would only be nar-
rowly optimal, another revision of the proces-
sor or memory system would probably invali-
date the synchronisation and may even lead to
inconsistent data.

At Apple Computer, we had the Mac OS
X kernel running for some six months, before
we discovered the cause of a rare bug where
two threads could both modify lock protected
data. We knew that each thread took the lock,
yet the corruption still occurred. It was dis-
covered that write re-ordering could unlock a
lock before some memory stores are completed,
thus defeating the lock. At that time we de-
cided to use the sync operation before mutex
unlock. sync before unlocking a mutex. Years
later, after gaining more experience, we deter-
mined that a sync was unnecessary and the
higher performance lwsync instruction would
be sufficient.

4.4 Indirect function performance

The design goal of achieving a very high pro-
cessor frequency, required the POWER4 to im-
plement very long instruction pipelines. This
long pipelines implies that branch mispredic-
tion will be expensive. They are, take twelve
cycles to resolve, [BBF+01]. As the POWER4
architecture is super–scalar, with up to ten
functional units, it is possible that a hun-
dred instructions must be unrolled4. To limit
these penalties the branch prediction unit, on
POWER4 derived architectures, is one of the
most sophisticated such units implemented on
any RISC processor, see section 2.

PowerPC implements pointers to functions
by using the count register(CTR) with the
bcctr instruction. The CTR and, related, link
register(LR) can be located in the instruction
fetch unit. The fetch unit can use these regis-
ters to determine its path through the instruc-
tion stream. On the POWER4, these archi-
tectural registers are backed by sixteen physi-
cal rename registers and so some care must be

4This does not occur due to the instruction grouping, see subsection 4.6.

13



taken by the fetch unit to use the appropriate
physical register.

In subsection 4.2, we noted that much of
the demultiplexing performed by an operating
system is implemented using C function point-
ers. The performance of these instructions is
critical. Software designers on the POWER4
platforms should be aware of the very high cost
of branch misprediction, however they may
not know that all bcctr indirect branches use
the branch predictor’s target address predictor.
The nature of demultiplexing will often result
in high miss rates on branch target predictions.
This is a shame; if the designers required al-
lowed the actual value to be used rather than
the predicted value it is often possible to order
instructions so as to make the target available
early. Consider that many indirect functions
have two or more arguments. Just marshalling
the arguments would give sufficient time for the
CTR value to become available.

As the CTR register cache is direct mapped
and indexed by the instruction address of the
branch the indirect function call will often have
different target addresses and will be mispre-
dicted. This is especially problematic for C++
virtual function calls which all indirect through
a class’s virtual table.

Given the deep pipeline in the POWER4
micro-architecture, mispredicted branches can
take twelve cycles to resolve; it would be bet-
ter to use an extension to the bcctr instruction
that disables the branch target prediction. Al-
though we will pay the twelve cycle penalty and
stall the pipeline, we are no worse off and the
processor has not spent a lot of energy com-
puting values that it will then discard.

4.5 POWER family hypervisor

IBM were probably the first company to ex-
plore virtualisation, their 370 series of com-
puters which introduced the concept of totally
independent virtual machines in the VM/370
operating system in 1972. In recent years Intel
processors have also become so powerful that it
has become practical to run multiple instances
of an operating system on one computer. The
POWER4 derived hardware implements virtu-
alisation enhancements, known collectively as
hypervisor functions. A hypervisor is a sort
of a small ’operating system’ system. In other

words it does not deal with user tasks directly
but rather controls and services various oper-
ating systems on the platform, [AAB+05].

With the POWER4 IBM introduced the
first phase of their virtualisation solution,
which culminated in the POWER5. The
POWER4 only had limited hypervisor func-
tionality, in the form of logical partitioning of
a system. A system’s memory could be par-
titioned into smaller contiguous chunks. The
processor’s memory management unit (MMU)
enforces a mapping of real addresses onto this
partition. While a process is executing in a
partition, the MMU is incapable of generat-
ing real addresses that are not in the partition.
The hypervisor kept track execution state and
switched the MMU mapping when switching
to a new state in a different partition. This
required a total TLB invalidation, as the pre-
vious virtual memory mapping would be use-
less. Hence the performance of switching par-
titions would probably be very slow. A sched-
uler which has a concept of processor/partition
affinity is required. Or, alternatively, a multi-
processor system could be mapped such that
processors are assigned to logical partitions
and only occasionally would an administrator
switch the configuration around.

With the POWER5 the limitations of
the POWER4’s virtualisation have been ad-
dressed. The design criteria was to enable ef-
ficient and flexible virtualisation to hypervisor
aware operating systems, this design technique
is sometimes known as paravirtualisation. The
client operating systems be assigned exclusive
access to particular PCI slots or can share I/O
resources with other clients.

IBM has an implementation of a hyper-
visor on their iServer and pServer systems.
They needed to design a solution that could
efficiently share I/O systems across multiple
logical partitions. A traditional design would
locate drivers in hypervisor space, but that
would lead to a less robust hypervisor and
could potentially compromise security. It was
decided to dedicate a logical partition to hard-
ware drivers and to cede sufficient privilege to
this partition to allow it to issue remote logical
partition DMAs. The approach was to allow
a partition to instantiate virtual I/O adapters
in its local partition. The virtual adapter has

14



such definitions as DMA windows, interrupts
and other adapter information such as real
physical hardware would have. In addition hy-
pervisor operations allows partitions to pass
their virtual adapter details to the I/O service
in a secure way, which passes a capability to
the I/O partition to perform the physical I/O.

The design that IBM developed has many
similarities with a modern micro-kernel such
as L4. L4 could be a hypervisor that con-
trols the various logical partitions. Certain
enhancements would have to be made to L4
to support the POWER5 completely, such as
address translation for remote partition DMA
and scheduling with processor/partition affin-
ity. A root-server task would be used to control
the assignment of processor, memory and I/O
resources to each logical partition all of which
would be mediated by the micro-kernel.

4.6 Instruction grouping

Large super–scalar processors such as the
POWER4 derived designs have some unex-
pected similarities with VLIW and EPIC archi-
tectures, in that they both benefit greatly from
appropriate instruction scheduling. Otherwise
it is unlikely that the processor could discover
sufficient instruction level parallelism to keep
the functional units as saturated. Although
the typical operating system engineers will not
be impacted by such details, they should be
aware that a compiler’s code generation qual-
ity will impact significantly the performance of
their OS. Most operating systems have a small
amount of assembler for particularly time criti-
cal functions, and hand-coding these optimally
is difficult..

POWER4 derived processors have up to
ten functional units, see figure 1, which are
fed by several issues queues. If every opera-
tion is treated seperately then processor con-
trol would become too complex and expensive.
The IBM designers decided to combine oper-
ations into groups of five, with a single group
issued on each cycle and then it is tracked un-
til entirely completed. We have been careful to
refer to operations rather than instructions, as
some PowerPC instructions need to be broken
up into multiple operations, for example the
store multiple registers instructions is issued
as a separate operation per register.

A group can not be formed arbitrarily, only
certain operation types may appear in each of
the five slots, this simplifies the routing of op-
erations among the different issue queues. As
only a single group can be issued per cycle, it
is very important for instructions to be sched-
uled in such a way as to maximise the util-
ity of each group, however these instructions
must also conform to the group formation lim-
itations. For a compiler to do a good job of
instruction scheduling it will need to model the
complex instruction cracking and group forma-
tion architecture.

This is very difficult as the processor is so
complex and is probably out of reach for hand
coding of large amounts of assembler. In sec-
tion 4.7 we shall discuss some of the tools avail-
able to the programmer for optimising their
code. With the aid of the performance tools
it should be possible for an assembler engineer
to iteratively approach optimal code, in much
the same way that [GCC+05] did for the Ita-
nium, we suspect that very similar improve-
ments can be achieved over the code generated
by the GCC group of compilers.

IBM are reported to have made extensive
changes to the GCC compilers to better sup-
port POWER instruction scheduling but they
discovered that the GCC compiler’s internal
model was not powerful enough to accurately
model the POWER family. The IBM XL fam-
ily of compilers do not suffer from this limi-
tation. If high performance is critical to your
application then the use of the IBM provided
compilers will generate much better code than
GCC and is highly recommended.

4.7 PowerPC performance tools

As just mentioned the easiest way of gaining
high performance is to use one of the IBM XL
family of compilers, these compilers accurately
model the instruction break up and operation
grouping on POWER processors. IBM have
also published an excellent book, [BBF+01],
that describes the architecture of the proces-
sors and its caches, and has many code ex-
amples optimising performance for particular
tasks. One of the nicest features of this book
is a small table of optimal implementations for
certain numerical kernels. This table can al-
low a developer to determine where they can

15



achieve real performance improvements in their
algorithm. Apple has provided a less detailed
guide to optimising for the PowerPC970 in
[App].

In addition to the standard Unix tools such
as prof and gprof to determine hotspots in
applications, an operating system may choose
to publish the PowerPC performance regis-
ters. AIX makes them available through the
pmcount infrastructure. This allows a program
to record details of its own performance for a
programmer to analyse. Unfortunately it takes
a lot of skill to interpret these raw numbers in
a meaningful way.

Apple has developed a highly regarded
suite of software, Computer Hardware Under-
standing Developer (CHUD), which they pro-
vide free as part of the Apple development
suite. It is used to optimise applications run-
ning on the PowerPC970 or ’G5’ processors
that power their machines. CHUD has an ex-
tension to the MacOSX kernel that collects
statistics in the kernel’s privileged space. A
performance monitoring application interfaces
with the CHUD extension to start and stop
data collection. These data are then com-
bined with fully symbolled object code by the
Shark application to identify problematic lines
of source code. Shark can even be configured
to collect statistics within the kernel itself and
provided with kernel symbols it can be used
to identify expensive kernel operations — al-
though it finds that the kernel seems to spend
a lot of time in the enable interupt function
much to the confusion to non-kernel program-
mers. Other performance application in the
suite can collect complicated call graphs.

Apple has also made a cycle accurate G5
simulator, [App], known as Amber, available
for developers. Although not useful to identify
problem code in a large application, once an
area of concern has been identified it is invalu-
able in analysing and optimising especially crit-
ical sections of code. A combination of Amber
and hand–coded assembler will allow a talented
engineer to iteratively approach an optimal so-
lution for the POWER4 derived architectures.

It should be noted that optimal code is pro-
cessor architecture dependant, changing such
things as the size of the caches or the internal
architecture will invalidate most of the optimi-

sations. For instance highly performant Pow-
erPC7400 code — the previous generation of
chips that Apple called the G4’ — will not per-
form optimally on the 970. This means that it
is impossible for a single app. to be optimal
over many generations of a CPU, despite the
fact that the CPUs are binary compatible with
each other.

5 Conclusion

Like other RISC platforms, the PowerPC ar-
chitecture has been found to be flexible and
adaptable; from the small PowerPC440 ASIC
core up to the massive super–scalar POWER5
and everything in between. The POWER4
derived architectures are particularly well de-
signed, it is interesting that IBM managed to
compress what is essentially a mainframe pro-
cessor and ship it as the PowerPC970 micro-
processor for use in desktop computers.

Given the 20 year history of the architec-
ture, it is likely that IBM will continue to
evolve the PowerPC for the foreseeable future.
It is ironic that Apple computer has dropped
the PowerPC at the same time as MicroSoft
and Sony have committed to developing their
respective third generation of gaming consoles
based with it.

The instruction set architecture has stood
up to the test of time remarkably well, IBM’s
designers obviously realised that C would be
the most important programming language to
support and tailored the instruction set to suit
this language well. The bit masking instruc-
tions demonstrate their commitment to opti-
mising C, these instructions are obviously tai-
lor made for the C bit-field manipulation.

If the PowerPC architecture has fault it
would be the weakly consistent memory model.
Even talented programmers get lost in the
complexity and design trade-offs required to
write highly performant and correct code. This
is a failure of design, the decision to leave syn-
chronisation up to software requires an exten-
sive and difficult training period for the average
engineer. If, as Hennesey claims, it is possible
to develop a high performance processor with-
out store re-ordering and strongly consistent
memory this would be ideal. In IBM’s defence
however it should be possible to achieve greater

16



code efficiency with their flexible synchronisa-
tion model, if a software engineer knows pre-
cisely the context under which the code will
run.

It is interesting that IBM is continuing with
the development of very high clock frequen-
cies processors after their main desktop com-
puter competitors Intel and AMD have both
retreated from it and are trying to change the
marketing ground to performance/Watt. IBM
will be shipping the Cell broadband engine
chips with an astounding 4.0GHz clock fre-
quency, and should be available early in the
third quarter of this year, 2006. The POWER6
is also due to be released soon and, given the
performance of the Cell, it seem likely that
IBM will achieve their very aggressive goal of
4.5 to 5.0GHz frequencies. Even at this incred-
ibly high frequency the Cell processor should
only draw some 80 Watts, which is reasonable
for a desktop system. Cooling the PlayStation
3 will be quite a dilemma for the Sony design-
ers.

A final observation on all modern proces-
sors, is the trend towards very complicated
super–scalar processors with deep pipelines
and other VLIW style limitations. The impor-
tance of a good compiler can not be minimised,
scheduling instructions to avoid pipeline stalls
has never been so difficult, nor so essential.
Code that is extensively scheduled, however,
will not be optimal on different instantiations
of the hardware even with 100% instruction
set compatibility. Logically, a developer should
optimise for the slowest processor, as the slow-
est processor needs the most help compared to
later, faster processors. However this usually
leaves some of the new generation hardware ca-
pability unexploited, not something that prod-
uct marketers ever like selling. The only alter-
native is unpalatable, to ship multiple object
code with each image scheduled for a partic-
ular processor implementation. There are ob-
vious limits to this approach, should a devel-
oper release different images depending on each
cache’s size too?

References

[AAB+05] W. J. Armstrong, R. L. Arndt, D. C. Boutcher, R. G. Kovacs, D. Larson, K. A.
Lucke, N. Nayar, and R. C. Swanberg. Advanced virtualization capabilities of
POWER5 systems. IBM Journal of Research and Development, 49(4/5):523–532,
July 2005.

[App] Apple Developer Connection. G5 performance programming.

[Ass06] Associated Press. IBM unveils super-fast microprocessor, 2006.

[BBF+01] Steve Behling, Ron Bell, Peter Farrell, Holger Holthoff, Frank O’Connell, and
Will Weir. The POWER4 Processor Introduction and Tuning Guide. IBM
Redbooks, 2001.

[cF05] Wu chun Feng. The importance of being low power in high performance
computing. CTWatch Quarterly, 1(3), August 2005.

[CM90] John Cocke and V. Markstein. The evolution of RlSC technology at IBM. IBM
Journal of Research and Development, 34(1):4–11, 1990.

[Eng06] Apple CoreOS Engineers. Conversations with Apple CoreOS engineers over an
eight year period. Private communications, 1997-2006.

[GCC+05] Charles Gray, Matthew Chapman, Peter Chubb, David Mosberger-Tang, and
Gernot Heiser. Itanium—a system implementor’s tale. In Proceedings of the
USENIX Annual Technical Conference, 2005.

[HP03] John L. Hennessy and David A. Patterson. Computer Architecture — A
Quantitative Approach, chapter Appendix-C, pages C1–C44. Morgan Kaufmann,
third edition, 2003.

17



[IBM01] IBM. A brief hstory of RISC, the IBM RS/6000 and the IBM eServer pSeries.
IBM Archives 2416RS01, IBM, 2001.

[IJEBP+05] S. S. Iyer, Jr. J. E. Barth, P. C. Parries, J. P. Norum, J. P. Rice, L. R. Logan,
and D. Hoyniak. Embedded dram: Technology platform for the blue gene/l chip,
2005.

[Kre05] Kevin Krewell. Cell moves into the limelight. Microprocessor Reports, February
2005.

[ppc99] The PowerPC 440 Core. IBM Microelectronics Division, Research Triangle Park,
NC, 1999.

[ppc05] IBM PowerPC 970FX RISC Microprocessor User’s Manual. IBM, version 1.6
edition, December 2005.

[SKT+05] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner.
POWER5 system microarchitecture, 2005.

[TDF+01] Joel M. Tendler, Steve Dodson, Steve Fields, Hung Le, and Balaram Sinharoy.
POWER4 system microarchitecture. White paper, IBM Server Group, 2001.

[WSM+5a] Joe Wetzel, Ed Silha, Cathy May, Brad Frey, Junichi Furukawa, and Giles
Frazier. PowerPC User Instruction Set Architecture Book 1. IBM, version 2.02
edition, January 2005a.

[WSM+5b] Joe Wetzel, Ed Silha, Cathy May, Brad Frey, Junichi Furukawa, and Giles
Frazier. PowerPC Virtual Environment Architecture Book II. IBM, version 2.02
edition, January 2005b.

18


	Introduction
	History of the PowerPC
	PowerPC instruction set architecture
	Branch registers: Link and Count
	Load and Store extensions
	Shared Storage
	Miscellaneous instructions


	POWER4 based micro-architectures
	PowerPC 970
	POWER5 micro-architecture
	POWER6 micro-architecture --- what is known

	PowerPC based micro-architectures
	PowerPC 440
	Blue Gene/L Supercomputer
	Cell broadband engine

	Software considerations for operating systems on the POWER4
	Segmented Memory
	Cache pre-fetching
	Shared Storage
	Indirect function performance
	POWER family hypervisor
	Instruction grouping
	PowerPC performance tools

	Conclusion

