
20/6/19, 8*49 pmWeek 03 Lectures

Page 1 of 18file:///Users/jas/srvr/apps/cs9315/19T2/lectures/week03/notes.html

Week 03 Lectures

Pages

Page/Tuple Management 2/77

Some terminology 3/77

Terminology used in these slides ...

Record = sequence of bytes stored on disk (data for one tuple)
Tuple = "interpretable" version of a Record in memory
Page = copy of page from file on disk
PageId = index of Page within file = pid
pageOffsetInFile = pid * PAGESIZE
TupleId = index of record within page = tid
RecordId = (PageId, TupleId) = rid
recOffsetInPage = page.directory[tid].offset
Relation = descriptor for open relation

Reminder: Views of Data 4/77

Each tuple is represented by a record in some page

5/77

20/6/19, 8*49 pmWeek 03 Lectures

Page 2 of 18file:///Users/jas/srvr/apps/cs9315/19T2/lectures/week03/notes.html

Page Formats
A Page is simply an array of bytes (byte[]).

Want to interpret/manipulate it as a collection of Records.

Typical operations on pages and records:

buf = request_page(rel,pid) ... get page via its PageId
rec = get_record(buf,tid) ... get record from buffer
rid = insert_record(rel,pid,rec) ... add new record
update_record(rel,rid,rec) ... update value of record
delete_record(rel,rid) ... remove record

Note: rid = (PageId,TupleId), rel = open relation

Exercise 1: get_record(rel,rid) 6/77

Give an implementation of a function

Record get_record(Relation rel, RecordId rid)

which takes two parameters

an open relation descriptor (rel)
a record id (rid)

and returns the record corresponding to that rid

... Page Formats 7/77

Factors affecting Page formats:

determined by record size flexibility (fixed, variable)
how free space within Page is managed
whether some data is stored outside Page

does Page have an associated overflow chain?
are large data values stored elsewhere? (e.g. TOAST)
can one tuple span multiple Pages?

Implementation of Page operations critically depends on format.

Exercise 2: Fixed-length Records (i) 8/77

How records are managed in Pages ...

depends on whether records are fixed-length or variable-length

Give examples of table definitions

which result in fixed-length records
which result in variable-length records

create table R (...);

What are the common features of each type of table?

... Page Formats 9/77

For fixed-length records, use record slots.

insert: place new record in first available slot

20/6/19, 8*49 pmWeek 03 Lectures

Page 3 of 18file:///Users/jas/srvr/apps/cs9315/19T2/lectures/week03/notes.html

delete: mark slot as free, or set xmax

Exercise 3: Fixed-length Records (ii) 10/77

For the two fixed-length record page formats ...

Implement

a suitable data structure to represent a Page
insertion ... rid = insert_record(rel,pid,rec)
deletion ... delete_record(rel,rid)

Ignore buffer pool (i.e. use get_page() and put_page())

Page Formats 11/77

For variable-length records, must use record directory

directory[i] gives location within page of i th record

An important aspect of using record directory

location of tuple within page can change, tuple index does not change

Issue with variable-length records

managing space withing the page (esp. after deletions)
recording used and unused regions of the page

We refer to tuple index within directory as TupleId tid

... Page Formats 12/77

Possibilities for handling free-space within block:

compacted (one region of free space)
fragmented (distributed free space)

In practice, a combination is useful:

normally fragmented (cheap to maintain)
compacted when needed (e.g. record won't fit)

... Page Formats 13/77

Compacted free space ... before inserting record 7

20/6/19, 8*49 pmWeek 03 Lectures

Page 4 of 18file:///Users/jas/srvr/apps/cs9315/19T2/lectures/week03/notes.html

... Page Formats 14/77

After inserting record 7 (80 bytes) ...

... Page Formats 15/77

Fragmented free space ... before inserting record 7

... Page Formats 16/77

After inserting record 7 (80 bytes) ...

20/6/19, 8*49 pmWeek 03 Lectures

Page 5 of 18file:///Users/jas/srvr/apps/cs9315/19T2/lectures/week03/notes.html

Exercise 4: Inserting Variable-length Records 17/77

For both of the following page formats

1. variable-length records, with compacted free space
2. variable-length records, with fragmented free space

implement the insert() function.

Use the above page format, but also assume:

page size is 1024 bytes
tuples start on 4-byte boundaries
references into page are all 8-bits (1 byte) long
a function recSize(rec) gives size in bytes

Storage Utilisation 18/77

How many records can fit in a page? (denoted c = capacity)

Depends on:

page size ... typical values: 1KB, 2KB, 4KB, 8KB
record size ... typical values: 64B, 200B, app-dependent
page header data ... typically: 4B - 32B
slot directory ... depends on how many records

We typically consider average record size (R)

Given c, HeaderSize + c*SlotSize + c*R ≤ PageSize

Exercise 5: Space Utilisation 19/77

Consider the following page/record information:

page size = 1KB = 1024 bytes = 210 bytes
records: (w:int,x:varchar(20),y:char(10),z:int)
records are all aligned on 4-byte boundaries
x field padded to ensure z starts on 4-byte boundary
each record has 4 field-offsets at start of record (each 1 byte)
char(10) field rounded up to 12-bytes to preserve alignment
maximum size of x values = 20 bytes; average size = 16 bytes
page has 32-bytes of header information, starting at byte 0
only insertions, no deletions or updates

Calculate c = average number of records per page.

Overflows 20/77

Sometimes, it may not be possible to insert a record into a page:

1. no free-space fragment large enough
2. overall free-space in page is not large enough
3. the record is larger than the page
4. no more free directory slots in page

For case (1), can first try to compact free-space within the page.

If still insufficient space, we need an alternative solution ...

... Overflows 21/77

File organisation determines how cases (2)..(4) are handled.

If records may be inserted anywhere that there is free space

cases (2) and (4) can be handled by making a new page
case (3) requires either spanned records or "overflow file"

20/6/19, 8*49 pmWeek 03 Lectures

Page 6 of 18file:///Users/jas/srvr/apps/cs9315/19T2/lectures/week03/notes.html

If file organisation determines record placement (e.g. hashed file)

cases (2) and (4) require an "overflow page"
case (3) requires an "overflow file"

With overflow pages, rid structure may need modifying (rel,page,ovfl,rec)

... Overflows 22/77

Overflow pages for full buckets in a hashed file:

... Overflows 23/77

Overflow file for very large records and BLOBs:

PostgreSQL Page Representation 24/77

Functions: src/backend/storage/page/*.c

Definitions: src/include/storage/bufpage.h

Each page is 8KB (default BLCKSZ) and contains:

header (free space pointers, flags, xact data)
array of (offset,length) pairs for tuples in page
free space region (between array and tuple data)
actual tuples themselves (inserted from end towards start)
(optionally) region for special data (e.g. index data)

Large data items are stored in separate (TOAST) files (implicit)

Also supports ~SQL-standard BLOBs (explicit large data items)

... PostgreSQL Page Representation 25/77

PostgreSQL page layout:

20/6/19, 8*49 pmWeek 03 Lectures

Page 7 of 18file:///Users/jas/srvr/apps/cs9315/19T2/lectures/week03/notes.html

... PostgreSQL Page Representation 26/77

Page-related data types:

// a Page is simply a pointer to start of buffer
typedef Pointer Page;

// indexes into the tuple directory
typedef uint16 LocationIndex;

// entries in tuple directory (line pointer array)
typedef struct ItemIdData
{
 unsigned lp_off:15, // tuple offset from start of page
 lp_flags:2, // unused,normal,redirect,dead
 lp_len:15; // length of tuple (bytes)
} ItemIdData;

... PostgreSQL Page Representation 27/77

Page-related data types: (cont)

typedef struct PageHeaderData (simplified)
{
 ... // transaction-related data
 uint16 pd_checksum; // checksum
 uint16 pd_flags; // flag bits (e.g. free, full, ...
 LocationIndex pd_lower; // offset to start of free space
 LocationIndex pd_upper; // offset to end of free space
 LocationIndex pd_special; // offset to start of special space
 uint16 pd_pagesize_version;
 ItemIdData pd_linp[1]; // beginning of line pointer array
} PageHeaderData;

typedef PageHeaderData *PageHeader;

... PostgreSQL Page Representation 28/77

Operations on Pages:

void PageInit(Page page, Size pageSize, ...)

initialize a Page buffer to empty page
in particular, sets pd_lower and pd_upper

OffsetNumber PageAddItem(Page page,
 Item item, Size size, ...)

insert one tuple (or index entry) into a Page
fails if: not enough free space, too many tuples

void PageRepairFragmentation(Page page)

compact tuple storage to give one large free space region

... PostgreSQL Page Representation 29/77

PostgreSQL has two kinds of pages:

heap pages which contain tuples
index pages which contain index entries

Both kinds of page have the same page layout.

One important difference:

index entries tend be a smaller than tuples
can typically fit more index entries per page

TOAST Files 30/77

Each data file has a corresponding TOAST file (if needed)

20/6/19, 8*49 pmWeek 03 Lectures

Page 8 of 18file:///Users/jas/srvr/apps/cs9315/19T2/lectures/week03/notes.html

Tuples in data pages contain rids for long values

TOAST = The Oversized Attribute Storage Technique

Tuples

Tuples 32/77

Each page contains a collection of tuples

What do tuples contain? How are they structured internally?

Records vs Tuples 33/77

A table is defined by a collection of attributes (schema), e.g.

create table Employee (
 id integer primary key, name varchar(20),
 job varchar(10), dept number(4)
);

Tuple = collection of attribute values for such a schema, e.g.

(33357462, 'Neil Young', 'Musician', 0277)

Record = sequence of bytes, containing data for one tuple, e.g.

Bytes need to be interpreted relative to schema to get tuple

Operations on Records 34/77

Common operation one records ... access record via RecordId:

Record get_record(Relation rel, RecordId rid) {
 (pid,tid) = rid;
 Page *buf = request_page(rel, pid);
 return get_record(buf, tid);
}

Gives a sequence of bytes, which needs to be interpreted, e.g.

Relation rel = ... // relation schema
Record r = get_record(rid)
Tuple t = makeTuple(rel,r)

Once we have a tuple, we can access individual attributes/fields

Operations on Tuples 35/77

20/6/19, 8*49 pmWeek 03 Lectures

Page 9 of 18file:///Users/jas/srvr/apps/cs9315/19T2/lectures/week03/notes.html

Once we have a record, we need to interpret it as a tuple ...

Tuple t = makeTuple(rel, rec)

convert record to tuple data structure for relation rel

Once we have a tuple, we want to examines its contents ...

Typ getTypField(Tuple t, int fno)

extract the fno'th field from a Tuple as a value of type Typ

E.g. int x = getIntField(t,1), char *s = getStrField(t,2)

Scanning 36/77

Access methods typically involve iterators, e.g.

Scan s = start_scan(Relation r, ...)

commence a scan of relation r
Scan may include condition to implement WHERE-clause
Scan holds data on progress through file (e.g. current page)

Tuple next_tuple(Scan s)

return Tuple immediately following last accessed one
returns NULL if no more Tuples left in the relation

Example Query 37/77

Example: simple scan of a table ...

select name from Employee

implemented as:

DB db = openDatabase("myDB");
Relation r = openRel(db,"Employee");
Scan s = start_scan(r);
Tuple t; // current tuple
while ((t = next_tuple(s)) != NULL)
{
 char *name = getStrField(t,2);
 printf("%s\n", name);
}

Exercise 6: Implement next_tuple() 38/77

Consider the following possible Scan data structure

typedef struct {
 Relation rel;
 Page *curPage; // Page buffer
 int curPID; // current pid
 int curTID; // current tid
} ScanData;

Assume tuples are indexed 0..nTuples(p)

Assume pages are indexed 0..nPages(rel)

Implement the Tuple next_tuple(Scan) function

P.S. What's in a Relation object?

Fixed-length Records 39/77

Encoding scheme for fixed-length records:

record format (length + offsets) stored in catalogue
data values stored in fixed-size slots in data pages

Since record format is frequently used at query time, should be in memory.

20/6/19, 8*49 pmWeek 03 Lectures

Page 10 of 18file:///Users/jas/srvr/apps/cs9315/19T2/lectures/week03/notes.html

Variable-length Records 40/77

Some encoding schemes for variable-length records:

Prefix each field by length

Terminate fields by delimiter

Array of offsets

Converting Records to Tuples 41/77

A Record is an array of bytes (byte[])

representing the data values from a typed Tuple

A Tuple is a collection of named,typed values (cf. C struct)

Information on how to interpret the bytes as typed values

will be contained in schema data in DBMS catalogue
may be stored in the header for the data file
may be stored partly in the record and partly in the schema

For variable-length records, some formatting info ...

must be stored in the record or in the page directory

... Converting Records to Tuples 42/77

DBMSs typically define a fixed set of field types, e.g.

DATE, FLOAT, INTEGER, NUMBER(n), VARCHAR(n), ...

This determines implementation-level data types:

DATE time_t

FLOAT float,double

INTEGER int,long

NUMBER(n) int[] (?)

VARCHAR(n) char[]

... Converting Records to Tuples 43/77

A Tuple could be defined as

a list of field descriptors for a record instance
(where a FieldDesc gives (offset,length,type) information)
along with a reference to the Record data

typedef struct {
 ushort nfields; // number of fields/attrs
 ushort data_off; // offset in struct for data
 FieldDesc fields[]; // field descriptions
 Record data; // pointer to record in buffer
} Tuple;

Fields are derived from relation descriptor + record instance data.

... Converting Records to Tuples 44/77

Tuple data could be

a pointer to bytes stored elsewhere in memory

20/6/19, 8*49 pmWeek 03 Lectures

Page 11 of 18file:///Users/jas/srvr/apps/cs9315/19T2/lectures/week03/notes.html

... Converting Records to Tuples 45/77

Or, tuple data could be ...

appended to Tuple struct (used widely in PostgreSQL)

Exercise 7: How big is a FieldDesc? 46/77

FieldDesc = (offset,length,type), where

offset = offset of field within record data
length = length (in bytes) of field
type = data type of field

If pages are 8KB in size, how many bits are needed for each?

E.g.

PostgreSQL Tuples 47/77

Definitions: include/postgres.h, include/access/*tup*.h

Functions: backend/access/common/*tup*.c e.g.

HeapTuple heap_form_tuple(desc,values[],isnull[])
heap_deform_tuple(tuple,desc,values[],isnull[])

PostgreSQL defines tuples via:

a contiguous chunk of memory
starting with a header giving e.g. #fields, nulls
followed by the data values (as sequence of Datum)

... PostgreSQL Tuples 48/77

Tuple structure:

20/6/19, 8*49 pmWeek 03 Lectures

Page 12 of 18file:///Users/jas/srvr/apps/cs9315/19T2/lectures/week03/notes.html

... PostgreSQL Tuples 49/77

Tuple-related data types:

// representation of a data value
typedef uintptr_t Datum;

The actual data value:

may be stored in the Datum (e.g. int)
may have a header with length (for varlen attributes)
may be stored in a TOAST file

... PostgreSQL Tuples 50/77

Tuple-related data types: (cont)

// TupleDesc: schema-related information for HeapTuples

typedef struct tupleDesc
{
 int natts; // number of attributes in the tuple
 Form_pg_attribute *attrs;
 // attrs[N] is a pointer to description of attribute N+1
 TupleConstr *constr; // constraints, or NULL if none
 Oid tdtypeid; // composite type ID for tuple type
 int32 tdtypmod; // typmod for tuple type
 bool tdhasoid; // does tuple have oid attribute?
 int tdrefcount; // reference count (-1 if not counting)
} *TupleDesc;

... PostgreSQL Tuples 51/77

HeapTupleData contains information about a stored tuple

typedef HeapTupleData *HeapTuple;

typedef struct HeapTupleData
{
 uint32 t_len; // length of *t_data
 ItemPointerData t_self; // SelfItemPointer
 Oid t_tableOid; // table the tuple came from
 HeapTupleHeader t_data; // -> tuple header and data
} HeapTupleData;

HeapTupleHeader is a pointer to a location in a buffer

... PostgreSQL Tuples 52/77

PostgreSQL stores a single block of data for tuple

containing a tuple header, followed by data byte[]

typedef struct HeapTupleHeaderData // simplified
{
 HeapTupleFields t_heap;
 ItemPointerData t_ctid; // TID of this tuple or newer version
 uint16 t_infomask2; // #attributes + flags
 uint16 t_infomask; // flags e.g. has_null, has_varwidth
 uint8 t_hoff; // sizeof header incl. bitmap+padding
 // above is fixed size (23 bytes) for all heap tuples
 bits8 t_bits[1]; // bitmap of NULLs, variable length
 // OID goes here if HEAP_HASOID is set in t_infomask
 // actual data follows at end of struct
} HeapTupleHeaderData;

... PostgreSQL Tuples 53/77

20/6/19, 8*49 pmWeek 03 Lectures

Page 13 of 18file:///Users/jas/srvr/apps/cs9315/19T2/lectures/week03/notes.html

Tuple-related data types: (cont)

typedef struct HeapTupleFields // simplified
{
 TransactionId t_xmin; // inserting xact ID
 TransactionId t_xmax; // deleting or locking xact ID
 union {
 CommandId t_cid; // inserting or deleting command ID
 TransactionId t_xvac;// old-style VACUUM FULL xact ID
 } t_field3;
} HeapTupleFields;

Note that not all system fields from stored tuple appear

oid is stored after the tuple header, if used
both xmin/xmax are stored, but only one of cmin/cmax

Implementing Relational Operations

DBMS Architecture (revisited) 55/77

Implementation of relational operations in DBMS:

Relational Operations 56/77

DBMS core = relational engine, with implementations of

selection, projection, join, set operations
scanning, sorting, grouping, aggregation, ...

In this part of the course:

examine methods for implementing each operation
develop cost models for each implementation
characterise when each method is most effective

Terminology reminder:

tuple = collection of data values under some schema ≅ record
page = block = collection of tuples + management data = i/o unit
relation = table ≅ file = collection of tuples

... Relational Operations 57/77

Two "dimensions of variation":

which relational operation (e.g. Sel, Proj, Join, Sort, ...)
which access-method (e.g. file struct: heap, indexed, hashed, ...)

Each query method involves an operator and a file structure:

e.g. primary-key selection on hashed file
e.g. primary-key selection on indexed file
e.g. join on ordered heap files (sort-merge join)
e.g. join on hashed files (hash join)
e.g. two-dimensional range query on R-tree indexed file

As well as query costs, consider update costs (insert/delete).

... Relational Operations 58/77

SQL vs DBMS engine

select ... from R where C
find relevant tuples (satisfying C) in file(s) of R

insert into R values(...)

20/6/19, 8*49 pmWeek 03 Lectures

Page 14 of 18file:///Users/jas/srvr/apps/cs9315/19T2/lectures/week03/notes.html

place new tuple in some page of a file of R
delete from R where C

find relevant tuples and "remove" from file(s) of R
update R set ... where C

find relevant tuples in file(s) of R and "change" them

Cost Models

Cost Models 60/77

An important aspect of this course is

analysis of cost of various query methods

Cost can be measured in terms of

Time Cost: total time taken to execute method, or
Page Cost: number of pages read and/or written

Primary assumptions in our cost models:

memory (RAM) is "small", fast, byte-at-a-time
disk storage is very large, slow, page-at-a-time

... Cost Models 61/77

Since time cost is affected by many factors

speed of i/o devices (fast/slow disk, SSD)
load on machine

we do not consider time cost in our analyses.

For comparing methods, page cost is better

identifies workload imposed by method
BUT is clearly affected by buffering

Estimating costs with multiple concurrent ops and buffering is difficult!!

Addtional assumption: every page request leads to some i/o

... Cost Models 62/77

In developing cost models, we also assume:

a relation is a set of r tuples, with average size R bytes
the tuples are stored in b data pages on disk
each page has size B bytes and contains up to c tuples
the tuples which answer query q are contained in bq pages
data is transferred disk↔memory in whole pages
cost of disk↔memory transfer Tr/w is very high

... Cost Models 63/77

Our cost models are "rough" (based on assumptions)

But do give an O(x) feel for how expensive operations are.

Example "rough" estimation: how many piano tuners in Sydney?

Sydney has ≅ 4 000 000 people
Average household size ≅ 3 ∴ 1 300 000 households
Let's say that 1 in 10 households owns a piano
Therefore there are ≅ 130 000 pianos
Say people get their piano tuned every 2 years (on average)
Say a tuner can do 2/day, 250 working-days/year
Therefore 1 tuner can do 500 pianos per year
Therefore Sydney would need ≅ 130000/2/500 = 130 tuners

Actual number of tuners in Yellow Pages = 120

Example borrowed from Alan Fekete at Sydney University.

Query Types 64/77

Type SQL RelAlg a.k.a.

Scan select * from R R -

20/6/19, 8*49 pmWeek 03 Lectures

Page 15 of 18file:///Users/jas/srvr/apps/cs9315/19T2/lectures/week03/notes.html

Proj select x,y from R Proj[x,y]R -

Sort select * from R
order by x

Sort[x]R ord

Sel1 select * from R
where id = k

Sel[id=k]R one

Seln select * from R
where a = k

Sel[a=k]R -

Join1 select * from R,S
where R.id = S.r

R Join[id=r] S -

Different query classes exhibit different query processing behaviours.

Example File Structures 65/77

When describing file structures

use a large box to represent a page
use either a small box or tupi (or reci) to represent a tuple
sometimes refer to tuples via their key

mostly, key corresponds to the notion of "primary key"
sometimes, key means "search key" in selection condition

... Example File Structures 66/77

Consider three simple file structures:

heap file ... tuples added to any page which has space
sorted file ... tuples arranged in file in key order
hash file ... tuples placed in pages using hash function

All files are composed of b primary blocks/pages

Some records in each page may be marked as "deleted".

Exercise 8: Operation Costs 67/77

For each of the following file structures

determine #page-reads + #page-writes for each operation

You can assume the existence of a file header containing

values for r, R, b, B, c
index of first page with free space (and a free list)

Assume also

each page contains a header and directory as well as tuples
no buffering (worst case scenario)

Operation Costs Example 68/77

Heap file with b = 4, c = 4:

20/6/19, 8*49 pmWeek 03 Lectures

Page 16 of 18file:///Users/jas/srvr/apps/cs9315/19T2/lectures/week03/notes.html

... Operation Costs Example 69/77

Sorted file with b = 4, c = 4:

... Operation Costs Example 70/77

Hashed file with b = 3, c = 4, h(k) = k%3

Scanning

Scanning 72/77

Consider the query:

select * from Rel;

Operational view:

for each page P in file of relation Rel {
 for each tuple t in page P {
 add tuple t to result set
 }
}

20/6/19, 8*49 pmWeek 03 Lectures

Page 17 of 18file:///Users/jas/srvr/apps/cs9315/19T2/lectures/week03/notes.html

Cost: read every data page once

Time Cost = b.Tr, Page Cost = b

... Scanning 73/77

Scan implementation when file has overflow pages, e.g.

... Scanning 74/77

In this case, the implementation changes to:

for each page P in file of relation T {
 for each tuple t in page P {
 add tuple t to result set
 }
 for each overflow page V of page P {
 for each tuple t in page V {
 add tuple t to result set
} } }

Cost: read each data and overflow page once

Cost = b + bOv

where bOv = total number of overflow pages

Selection via Scanning 75/77

Consider a one query like:

select * from Employee where id = 762288;

In an unordered file, search for matching tuple requires:

Guaranteed at most one answer; but could be in any page.

... Selection via Scanning 76/77

Overview of scan process:

for each page P in relation Employee {
 for each tuple t in page P {
 if (t.id == 762288) return t
} }

Cost analysis for one searching in unordered file

best case: read one page, find tuple
worst case: read all b pages, find in last (or don't find)
average case: read half of the pages (b/2)

Page Costs: Costavg = b/2 Costmin = 1 Costmax = b

Exercise 9: Cost of Search in Hashed File 77/77

Consider the hashed file structure b = 10, c = 4, h(k) = k%10

20/6/19, 8*49 pmWeek 03 Lectures

Page 18 of 18file:///Users/jas/srvr/apps/cs9315/19T2/lectures/week03/notes.html

Describe how the following queries

select * from R where k = 51;
select * from R where k > 50;

might be solved in a file structure like the above (h(k) = k%b).

Estimate the minimum and maximum cost (as #pages read)

Produced: 20 Jun 2019

