COMP9444 Neural Networks and Deep Learning 4. Variations on Backprop

Textbook, Sections 3.1-3.6, 3.9-3.11, 5.2.2, 5.5, 8.3

Outline

- Probability (3.1-3.6, 3.9.3, 3.10)
- Cross Entropy (5.5)
- Bayes' Rule (3.11)
- Weight Decay (5.2.2)
- Momentum (8.3)

1

Probability (3.1)

Begin with a set Ω – the sample space (e.g. 6 possible rolls of a die)

 $\omega \in \Omega$ is a sample point/possible world/atomic event

A probability space or probability model is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t.

$$0 \le P(\omega) \le 1$$

 $\sum_{\omega} P(\omega) = 1$
e.g. $P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = \frac{1}{6}$

An event *A* is any subset of Ω

$$P(A) = \sum_{\{\omega \in A\}} P(\omega)$$

e.g. $P(\text{die roll} < 4) = P(1) + P(2) + P(3) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$

Random Variables (3.2)

A random variable (r.v.) is a function from sample points to some range (e.g. the Reals or Booleans)

For example, Odd(3) = true.

P induces a probability distribution for any r.v. *X*:

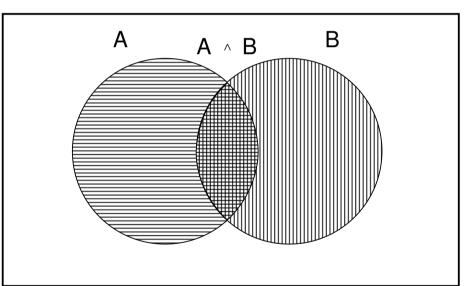
$$P(X = x_i) = \sum_{\{\omega: X(\omega) = x_i\}} P(\omega)$$

e.g., $P(\text{Odd} = \text{true}) = P(1) + P(3) + P(5) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$

Probability and Logic

Logically related events must have related probabilities

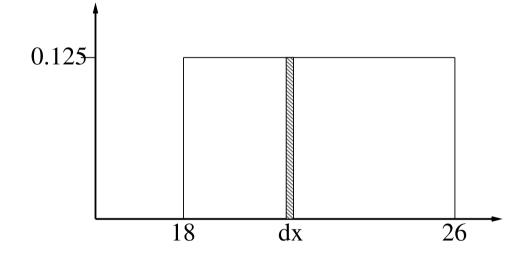
For example, $P(a \lor b) = P(a) + P(b) - P(a \land b)$



True

Probability for Continuous Variables

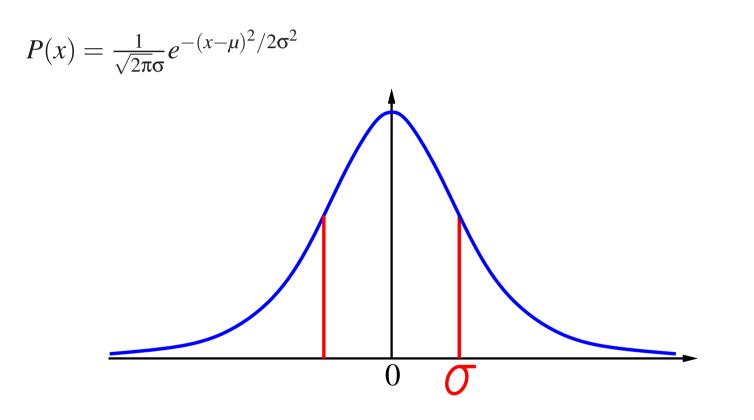
e.g. P(X = x) = U[18, 26](x) = uniform density between 18 and 26



Here *P* is a density; integrates to 1. P(X = 20.5) = 0.125 really means

$$\lim_{dx \to 0} P(20.5 \le X \le 20.5 + dx)/dx = 0.125$$

Gaussian Distribution (3.9.3)



Variations on Backprop

- Cross Entropy
 - problem: least squares error function unsuitable for classification, where target = 0 or 1
 - mathematical theory: maximum likelihood
 - solution: replace with cross entropy error function
- Weight Decay
 - ▶ problem: weights "blow up", and inhibit further learning
 - mathematical theory: Bayes' rule
 - solution: add weight decay term to error function
- Momentum
 - problem: weights oscillate in a "rain gutter"
 - solution: weighted average of gradient over time

Cross Entropy

For classification tasks, target t is either 0 or 1, so better to use

$$E = -t \log(z) - (1 - t) \log(1 - z)$$

This can be justified mathematically, and works well in practice – especially when negative examples vastly outweigh positive ones. It also makes the backprop computations simpler

$$\frac{\partial E}{\partial z} = \frac{z-t}{z(1-z)}$$

if $z = \frac{1}{1+e^{-s}},$
 $\frac{\partial E}{\partial s} = \frac{\partial E}{\partial z}\frac{\partial z}{\partial s} = z-t$

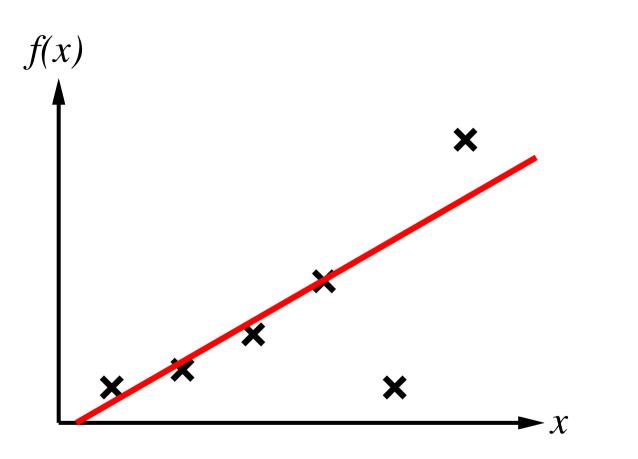
Maximum Likelihood (5.5)

H is a class of hypotheses

P(D|h) = probability of data *D* being generated under hypothesis $h \in H$.

- $\log P(D|h)$ is called the likelihood.
- ML Principle: Choose $h \in H$ which maximizes the likelihood, i.e. maximizes P(D|h) [or, maximizes $\log P(D|h)$]

Least Squares Line Fitting



Derivation of Least Squares

Suppose data generated by a linear function h, plus Gaussian noise with standard deviation σ .

$$P(D|h) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(d_i - h(x_i))^2}$$

$$\log P(D|h) = \sum_{i=1}^{m} -\frac{1}{2\sigma^2}(d_i - h(x_i))^2 - \log(\sigma) - \frac{1}{2}\log(2\pi)$$

$$h_{ML} = \operatorname{argmax}_{h \in H} \log P(D|h)$$

$$= \operatorname{argmin}_{h \in H} \sum_{i=1}^{m} (d_i - h(x_i))^2$$

(Note: we do not need to know σ)

©Alan Blair, 2017-18

Derivation of Cross Entropy

For classification tasks, *d* is either 0 or 1. Assume *D* generated by hypothesis *h* as follows:

$$P(1|h(x_i)) = h(x_i)$$

$$P(0|h(x_i)) = (1 - h(x_i))$$
i.e.
$$P(d_i|h(x_i)) = h(x_i)^{d_i}(1 - h(x_i))^{1 - d_i}$$

then

$$\log P(D|h) = \sum_{i=1}^{m} d_i \log h(x_i) + (1 - d_i) \log(1 - h(x_i))$$

$$h_{ML} = \operatorname{argmax}_{h \in H} \sum_{i=1}^{m} d_i \log h(x_i) + (1 - d_i) \log(1 - h(x_i))$$

(Can be generalized to multiple classes.)

COMP9444

Joint Probability Distribution

We assume there is some underlying joint probability distribution over the three random variables Toothache, Cavity and Catch, which we can write in the form of a table:

	toothache		⊐ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Note that the sum of the entries in the table is 1.0.

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

Inference by Enumeration

Start with the joint distribution:

	toothache		¬ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega\models\phi} P(\omega)$$

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Inference by Enumeration

	toothache		<i>¬ toothache</i>	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

 $P(\text{cavity} \lor \text{toothache})$

= 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28

Conditional Probability (3.5-3.6)

If we consider two random variables *a* and *b*, with $P(b) \neq 0$, then the conditional probability of *a* given *b* is

$$P(a|b) = \frac{P(a \wedge b)}{P(b)}$$

Alternative formulation: $P(a \land b) = P(a|b)P(b) = P(b|a)P(a)$

When we consider a sequence of random variables at successive time steps, they can be chained together using this formula repeatedly:

$$P(X_n, \dots, X_1) = P(X_n | X_{n-1}, \dots, X_1) P(X_{n-1}, \dots, X_1)$$

= $P(X_n | X_{n-1}, \dots, X_1) P(X_{n-1} | X_{n-2}, \dots, X_1)$
= $\dots = \prod_{i=1}^n P(X_i | X_{i-1}, \dots, X_1)$

Conditional Probability by Enumeration

	toothache		¬ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

$$\begin{split} P(\neg \texttt{cavity} | \texttt{toothache}) &= \frac{P(\neg \texttt{cavity} \land \texttt{toothache})}{P(\texttt{toothache})} \\ &= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4 \end{split}$$

Bayes' Rule (3.11)

The formula for conditional probability can be manipulated to find a relationship when the two variables are swapped:

$$P(a \wedge b) = P(a \mid b)P(b) = P(b \mid a)P(a)$$

$$\rightarrow$$
 Bayes' rule $P(a | b) = \frac{P(b | a)P(a)}{P(b)}$

This is often useful for assessing the probability of an underlying cause after an effect has been observed:

$$P(\text{Cause}|\text{Effect}) = \frac{P(\text{Effect}|\text{Cause})P(\text{Cause})}{P(\text{Effect})}$$

Example: Medical Diagnosis

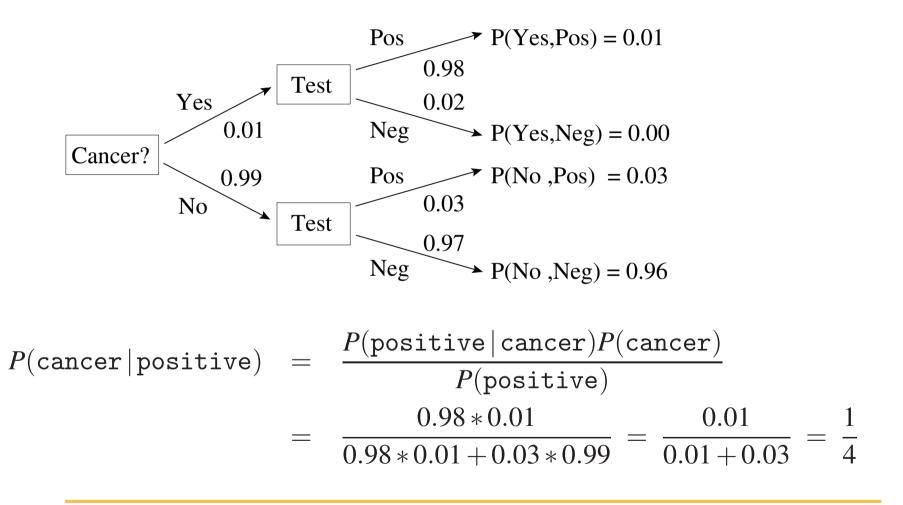
Question: Suppose we have a test for a type of cancer which occurs in 1% of patients. The test has a sensitivity of 98% and a specificity of 97%. If a patient tests positive, what is the probability that they have the cancer?

Answer: There are two random variables: Cancer (true or false) and Test (positive or negative). The probability is called a prior, because it represents our estimate of the probability before we have done the test (or made some other observation). The sensitivity and specificity are interpreted as follows:

P(positive | cancer) = 0.98, and $P(\text{negative} | \neg \text{cancer}) = 0.97$

COMP9444

Bayes' Rule



Example: Light Bulb Defects

Question: You work for a lighting company which manufactures 60% of its light bulbs in Factory A and 40% in Factory B. One percent of the light bulbs from Factory A are defective, while two percent of those from Factory B are defective. If a random light bulb turns out to be defective, what is the probability that it was manufactured in Factory A?

Answer: There are two random variables: Factory (A or B) and Defect (Yes or No). In this case, the prior is:

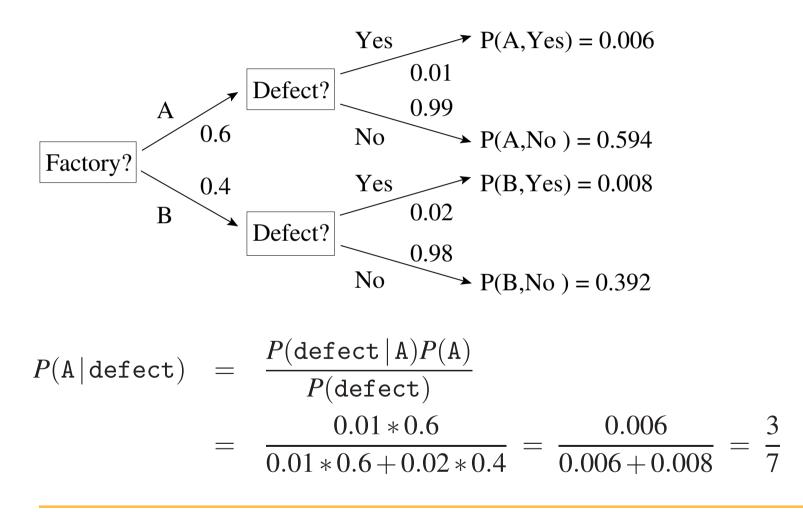
 $P(A) = 0.6, \qquad P(B) = 0.4$

The conditional probabilities are:

P(defect | A) = 0.01, and P(defect | B) = 0.02

COMP9444

Bayes' Rule



Bayes Rule in Machine Learning

P

H is a class of hypotheses

P(D|h) = probability of data *D* being generated under hypothesis $h \in H$. P(h|D) = probability that *h* is correct, given that data *D* were observed. Bayes' Theorem:

$$(h|D)P(D) = P(D|h)P(h)$$
$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

P(h) is called the prior.

Weight Decay (5.2.2)

Assume that small weights are more likely to occur than large weights, i.e.

$$P(w) = \frac{1}{Z} e^{-\frac{\lambda}{2}\sum_{j} w_{j}^{2}}$$

where *Z* is a normalizing constant. Then the cost function becomes:

$$E = \frac{1}{2} \sum_{i} (z_i - t_i)^2 + \frac{\lambda}{2} \sum_{j} w_j^2$$

This can prevent the weights from "saturating" to very high values.

Problem: need to determine λ from experience, or empirically.

Momentum (8.3)

If landscape is shaped like a "rain gutter", weights will tend to oscillate without much improvement.

Solution: add a momentum factor

$$\delta w \leftarrow \alpha \, \delta w + (1 - \alpha) \frac{\partial E}{\partial w}$$
$$w \leftarrow w - \eta \, \delta w$$

Hopefully, this will dampen sideways oscillations but amplify downhill motion by $\frac{1}{1-\alpha}$.

Conjugate Gradients

Compute matrix of second derivatives $\frac{\partial^2 E}{\partial w_i \partial w_j}$ (called the Hessian). Approximate the landscape with a quadratic function (paraboloid). Jump to the minimum of this quadratic function.

Natural Gradients (Amari, 1995)

Use methods from information geometry to find a "natural" re-scaling of the partial derivatives.