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Outline

� Image Datasets and Tasks

� Convolution in Detail

� AlexNet

� Weight Initialization

� Batch Normalization

� Residual Networks

� Dense Networks

� Style Transfer
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MNIST Handwritten Digit Dataset

� black and white, resolution 28×28

� 60,000 images

� 10 classes (0,1,2,3,4,5,6,7,8,9)
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CIFAR Image Dataset

� color, resolution 32×32

� 50,000 images

� 10 classes
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ImageNet LSVRC Dataset

� color, resolution 227×227

� 1.2 million images

� 1000 classes
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Image Processing Tasks

� image classification

� object detection

� object segmentation

� style transfer

� generating images

� generating art

� image captioning
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Object Detection
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LeNet trained on MNIST

The 5×5 window of the first convolution layer extracts from the original

32×32 image a 28×28 array of features. Subsampling then halves this

size to 14×14. The second Convolution layer uses another 5×5 window

to extract a 10×10 array of features, which the second subsampling layer

reduces to 5×5. These activations then pass through two fully connected

layers into the 10 output units corresponding to the digits ’0’ to ’9’.
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ImageNet Architectures

� AlexNet, 8 layers (2012)

� VGG, 19 layers (2014)

� GoogleNet, 22 layers (2014)

� ResNets, 152 layers (2015)
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AlexNet Architecture

� 5 convolutional layers + 3 fully connected layers

� max pooling with overlapping stride

� softmax with 1000 classes

� 2 parallel GPUs which interact only at certain layers
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AlexNet Details

� 650K neurons

� 630M connections

� 60M parameters

� more parameters that images→ danger of overfitting
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Enhancements

� Rectified Linear Units (ReLUs)

� overlapping pooling (width= 3, stride= 2)

� stochastic gradient descent with momentum and weight decay

� data augmentation to reduce overfitting

� 50% dropout in the fully connected layers
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Data Augmentation

� ten patches of size 224×224 are cropped from each of the original

227×277 images (using zero padding)

� the horizontal reflection of each patch is also included.

� at test time, average the predictions on the 10 patches.

� also include changes in intensity to RGB channels

COMP9444 c©Alan Blair, 2017-18



COMP9444 18s2 Image Processing 13

Convolution Kernels

� filters on GPU-1 (upper) are color agnostic

� filters on GPU-2 (lower) are color specific

� these resemble Gabor filters
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Dealing with Deep Networks

� > 10 layers

◮ weight initialization

◮ batch nomalization

� > 30 layers

◮ skip connections

� > 100 layers

◮ identity skip connections
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Statistics Example: Coin Tossing

Example: Toss a coin once, and count the number of Heads

Mean µ = 1
2 (0+1) = 0.5

Variance = 1
2

(

(0−0.5)2+(1−0.5)2)
)

= 0.25

Standard Deviationσ =
√

Variance= 0.5

Example: Toss a coin 100 times, and count the number of Heads

Mean µ = 100∗0.5 = 50

Variance = 100∗0.25= 25

Standard Deviationσ =
√

Variance= 5

Example: Toss a coin 10000 times, and count the number of Heads

µ= 5000, σ =
√

2500 = 50
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Statistics

The mean and variance of a set ofn samplesx1, . . . ,xn are given by

Mean[x] =
1
n

n

∑
k=1

xk

Var[x] =
1
n

n

∑
k=1

(xk−Mean[x])2 =
(1

n

n

∑
k=1

x2
k

)

−Mean[x]2

If wk, xk are independent andy=
n
∑

k=1
wk xk then

Var[y] = nVar[w]Var[x]
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Weight Initialization

Consider one layer (i) of a deep neural network with weightsw(i)
jk

connecting the activations{x(i)k }1≤k≤ni at the previous layer to

{x(i+1)
j }1≤ j≤ni+1 at the next layer, whereg() is the transfer function and

x(i+1)
j = g(sum(i)

j ) = g
( ni

∑
k=1

w(i)
jk x(i)k

)

Then
Var[sum(i) ] = niVar[w(i)]Var[x(i)]

Var[x(i+1)]≃ G0 niVar[w(i)]Var[x(i)]

WhereG0 is a constant whose value is estimated to take account of the
transfer function.
If some layers are not fully connected, we replaceni with the average
numbernin

i of incoming connections to each node at layeri +1.

COMP9444 c©Alan Blair, 2017-18



COMP9444 18s2 Image Processing 18

Weight Initialization

If the nework hasD layers, with inputx= x(1) and outputz= x(D+1), then

Var[z]≃
( D

∏
i=1

G0 nin
i Var[w(i)]

)

Var[x]

When we apply gradient descent through backpropagation, the differen-
tials will follow a similar pattern:

Var[
∂
∂x

]≃
( D

∏
i=1

G1 nout
i Var[w(i)]

)

Var[
∂
∂z
]

In this equation,nout
i is the average number of outgoing connections for

each node at layeri, andG1 is meant to estimate the average value of the
derivative of the transfer function.

For Rectified Linear Units, we can assumeG0 = G1 =
1
2

COMP9444 c©Alan Blair, 2017-18



COMP9444 18s2 Image Processing 19

Weight Initialization

In order to have healthy forward and backward propagation, each term in
the product must be approximately equal to 1. Any deviation from this
could cause the activations to either vanish or saturate, and the differentials
to either decay or explode exponentially.

Var[z]≃
( D

∏
i=1

G0 nin
i Var[w(i)]

)

Var[x]

Var[
∂
∂x

]≃
( D

∏
i=1

G1 nout
i Var[w(i)]

)

Var[
∂
∂z
]

We therefore choose the initial weights{w(i)
jk } in each layer (i) such that

G1nout
i Var[w(i)] = 1
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Weight Initialization

� 22-layer ReLU network (left),G1 =
1
2 converges faster thanG1 = 1

� 30-layer ReLU network (right),G1 =
1
2 is successful whileG1 = 1

fails to learn at all
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Batch Normalization

We cannormalizethe activationsx(i)k of nodek in layer (i) relative to the
mean and variance of those activations, calculated over a mini-batch of
training items:

x̂(i)k =
x(i)k −Mean[x(i)k ]

√

Var[x(i)k ]

These activations can then be shifted and re-scaled to

y(i)k = β(i)
k + γ(i)k x̂(i)k

β(i)
k ,γ(i)k are additional parameters, for each node, which are trainedby

backpropagation along with the other parameters (weights)in the network.

After training is complete, Mean[x(i)k ] and Var[x(i)k ] are either pre-computed
on the entire training set, or updated using running averages.
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Going Deeper

If we simply stack additional layers, it can lead to higher training error

as well as higher test error.

COMP9444 c©Alan Blair, 2017-18



COMP9444 18s2 Image Processing 23

Residual Networks

Idea: Take any two consecutive stacked layers in a deep network and add a

“skip” connection which bipasses these layers and is added to their output.
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Residual Networks

� the preceding layers attempt to do the “whole” job, makingx as close

as possible to the target output of the entire network

� F(x) is a residual component which corrects the errors from previous

layers, or provides additional details which the previous layers were

not powerful enough to compute

� with skip connections, both training and test error drop as you add

more layers

� with more than 100 layers, need to apply ReLUbeforeadding

the residual instead of afterwards. This is called anidentity skip

connection.
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Dense Networks

Recently, good results have been achieved using networks with densely

connected blocks, within which each layer is connected by shortcut

connections to all the preceding layers.

COMP9444 c©Alan Blair, 2017-18



COMP9444 18s2 Image Processing 26

Texture Synthesis
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Neural Texture Synthesis

1. pretrain CNN on ImageNet (VGG-19)

2. pass input texture through CNN; compute feature mapF l
ik for ith filter

at spatial locationk in layer (depth)l

3. compute the Gram matrix for each pair of features

Gl
i j = ∑

k

F l
ikF l

jk

4. feed (initially random) image into CNN

5. compute L2 distance between Gram matrices of original andnew image

6. backprop to get gradient on image pixels

7. update image and go to step 5.
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Neural Texture Synthesis

We can introduce a scaling factorwl for each layerl in the network, and

define the Cost function as

Estyle=
1
4

L

∑
l=0

wl

N2
l M2

l
∑
i, j
(Gl

i j −Al
i j )

2

whereNl , Ml are the number of filters, and size of feature maps, in layerl ,

andGl
i j , Al

i j are the Gram matrices for the original and synthetic image.
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Neural Style Transfer

content + style → new image
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Neural Style Transfer
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Neural Style Transfer

For Neural Style Transfer, we minimize a cost function whichis

Etotal = α Econtent + β Estyle

=
α
2 ∑

i,k

||F l
ik(x)−F l

ik(xc)||2+
β
4

L

∑
l=0

wl

N2
l M2

l
∑
i, j
(Gl

i j −Al
i j )

2

where

xc,x = content image, synthetic image

F l
ik = ith filter at positionk in layer l

Nl , Ml = number of filters, and size of feature maps, in layerl

wl = weighting factor for layerl

Gl
i j , Al

i j = Gram matrices for style image, and synthetic image
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