9b. Autoencoders

Textbook, Chapter 14
Outline

- Autoencoder Networks (14.1)
- Regularized Autoencoders (14.2)
- Stochastic Encoders and Decoders (14.4)
- Generative Models
- Variational Autoencoders (20.10.3)
Recall: Encoder Networks

- identity mapping through a bottleneck
- also called N–M–N task
- used to investigate hidden unit representations

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td>01000</td>
<td>01000</td>
</tr>
<tr>
<td>00100</td>
<td>00100</td>
</tr>
<tr>
<td>00010</td>
<td>00010</td>
</tr>
<tr>
<td>00001</td>
<td>00001</td>
</tr>
</tbody>
</table>
Autoencoder Networks

- output is trained to reproduce the input as closely as possible
- activations normally pass through a bottleneck, so the network is forced to compress the data in some way
- like the RBM, Autoencoders can be used to automatically extract abstract features from the input
Autoencoder Networks

If the encoder computes $z = f(x)$ and the decoder computes $g(f(x))$ then we aim to minimize some distance function between x and $g(f(x))$

$$E = L(x, g(f(x)))$$
Autoencoder as Pretraining

- after an autoencoder is trained, the decoder part can be removed and replaced with, for example, a classification layer
- this new network can then be trained by backpropagation
- the features learned by the autoencoder then serve as initial weights for the supervised learning task
Greedy Layerwise Pretraining

- Autoencoders can be used as an alternative to Restricted Bolzmann Machines, for greedy layerwise pretraining.

- An autoencoder with one hidden layer is trained to reconstruct the inputs. The first layer (encoder) of this network becomes the first layer of the deep network.

- Each subsequent layer is then trained to reconstruct the previous layer.

- A final classification layer is then added to the resulting deep network, and the whole thing is trained by backpropagation.
Avoiding Trivial Identity

- If there are more hidden nodes than inputs (which often happens in image processing) there is a risk the network may learn a trivial identity mapping from input to output.

- We generally try to avoid this by introducing some form of regularization.
Regularized Autoencoders (14.2)

- autoencoders with dropout at hidden layer(s)
- sparse autoencoders
- contractive autoencoders
- denoising autoencoders
Sparse Autoencoder (14.2.1)

- One way to regularize an autoencoder is to include a penalty term in the loss function, based on the hidden unit activations.

- This is analogous to the weight decay term we previously used for supervised learning.

- One popular choice is to penalize the sum of the absolute values of the activations in the hidden layer

\[E = L(x, g(f(x))) + \lambda \sum_{i} |h_i| \]

- This is sometimes known as L₁-regularization (because it involves the absolute value rather than the square); it can encourage some of the hidden units to go to zero, thus producing a sparse representation.
Contractive Autoencoder (14.2.3)

- Another popular penalty term is the L_2-norm of the derivatives of the hidden units with respect to the inputs

$$ E = L(x, g(f(x)) + \lambda \sum_i ||\nabla_x h_i||^2 $$

- This forces the model to learn hidden features that do not change much when the training inputs x are slightly altered.
Denoising Autoencoder (14.2.2)

Another regularization method, similar to contractive autoencoder, is to add noise to the inputs, but train the network to recover the original input.

repeat:
 sample a training item $x^{(i)}$
 generate a corrupted version \tilde{x} of $x^{(i)}$
 train to reduce $E = L(x^{(i)}, g(f(\tilde{x})))$
end
We saw previously how the loss (cost) function at the output of a feedforward neural network (with parameters θ) can be seen as defining a probability distribution $p_\theta(x)$ over the outputs. We then train to maximize the log of the probability of the target values.

- squared error assumes an underlying Gaussian distribution, whose mean is the output of the network
- cross entropy assumes a Bernoulli distribution, with probability equal to the output of the network
- softmax assumes a Boltzmann distribution
For autoencoders, the decoder can be seen as defining a conditional probability distribution $p_{\theta}(x|z)$ of output x for a certain value z of the hidden or “latent” variables.

In some cases, the encoder can also be seen as defining a conditional probability distribution $q_{\phi}(z|x)$ of latent variables z based on an input x.

We have seen an example of this with the Restricted Boltzmann Machine, where $q_{\phi}(z|x)$ and $p_{\theta}(x|z)$ are Bernoulli distributions.
Generative Models

- Sometimes, as well as reproducing the training items \(\{x^{(i)}\} \), we also want to be able to use the decoder to generate new items which are of a similar “style” to the training items.

- In other words, we want to be able to choose latent variables \(z \) from a standard Normal distribution \(p(z) \), feed these values of \(z \) to the decoder, and have it produce a new item \(x \) which is somehow similar to the training items.

- Generative models can be:
 - explicit (Variational Autoencoders)
 - implicit (Generative Adversarial Networks)
Gaussian Distribution (3.9.3)

$$P_{\mu, \sigma}(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$\mu = \text{mean}$

$\sigma = \text{standard deviation}$

Multivariate Gaussian:

$$P_{\mu, \sigma}(x) = \prod_i P_{\mu_i, \sigma_i}(x_i)$$
Entropy and KL-Divergence

- The **entropy** of a distribution $q()$ is
 \[H(q) = \int q(\theta)(-\log q(\theta))d\theta \]

- In Information Theory, $H(q)$ is the amount of information (bits) required to transmit a random sample from distribution $q()$

- For a Gaussian distribution,
 \[H(q) = \sum_i \log \sigma_i \]

- KL-Divergence
 \[D_{KL}(q \parallel p) = \int q(\theta)(\log q(\theta) - \log p(\theta))d\theta \]

- $D_{KL}(q \parallel p)$ is the number of extra bits we need to transmit if we designed a code for $p()$ but the samples are drawn from $q()$ instead.

- If $p(z)$ is Standard Normal distribution, minimizing $D_{KL}(q_\phi(z) \parallel p(z))$ encourages $q_\phi()$ to center on zero and spread out to approximate $p()$.
Variational Autoencoder (20.10.3)

Instead of producing a single z for each $x^{(i)}$, the encoder (with parameters ϕ) can be made to produce a mean $\mu_{z|x^{(i)}}$ and standard deviation $\sigma_{z|x^{(i)}}$. This defines a conditional (Gaussian) probability distribution $q_\phi(z|x^{(i)})$. We then train the system to maximize

$$E_{z \sim q_\phi(z|x^{(i)})} \left[\log p_\theta(x^{(i)}|z) \right] - D_{KL}(q_\phi(z|x^{(i)})\|p(z))$$

- the first term enforces that any sample z drawn from the conditional distribution $q_\phi(z|x^{(i)})$ should, when fed to the decoder, produce something approximating $x^{(i)}$.
- the second term encourages $q_\phi(z|x^{(i)})$ to approximate $p(z)$.
- in practice, the distributions $q_\phi(z|x^{(i)})$ for various $x^{(i)}$ will occupy complementary regions within the overall distribution $p(z)$.

© Alan Blair, 2017-19
Variational Autoencoder Digits
Variational Autoencoder Digits

1st Epoch

9th Epoch

Original
Variational Autoencoder Faces
Variational Autoencoder

- Variational Autoencoder produces reasonable results
- Tends to produce blurry images
- Often end up using only a small number of the dimensions available to \(z \)
References

http://kvfrans.com/variational-autoencoders-explained/