
COMP9444 19t3 Deep Reinforcement Learning 2

Reinforcement Learning Timeline

� model-free methods

◮ 1961 MENACE tic-tac-toe (Donald Michie)

◮ 1986 TD(λ) (Rich Sutton)

◮ 1989 TD-Gammon (Gerald Tesauro)

◮ 2015 Deep Q Learning for Atari Games

◮ 2016 A3C (Mnih et al.)

◮ 2017 OpenAI Evolution Strategies (Salimans et al.)

� methods relying on a world model

◮ 1959 Checkers (Arthur Samuel)

◮ 1997 TD-leaf (Baxter et al.)

◮ 2009 TreeStrap (Veness et al.)

◮ 2016 Alpha Go (Silver et al.)

COMP9444 c©Alan Blair, 2017-19

COMP9444
Neural Networks and Deep Learning

8a. Deep Reinforcement Learning

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 3

MENACE

Machine Educable Noughts And Crosses Engine

Donald Michie, 1961

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 1

Outline

� History of Reinforcement Learning

� Deep Q-Learning for Atari Games

� Actor-Critic

� Asynchronous Advantage Actor Critic (A3C)

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 6

Martin Gardner and HALO

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 4

MENACE

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 7

Hexapawn Boxes

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 5

Game Tree (2-player, deterministic)

XX

XX

X

X

X

XX

MAX (X)

MIN (O)

X X

O

O

OX O

O

O O

O OO

MAX (X)

X OX OX O X

X X

X

X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL

XX

−1 0 +1Utility

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 10

Deep Q-Network

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 8

Reinforcement Learning with BOXES

� this BOXES algorithm was later adapted to learn more general tasks

such as Pole Balancing, and helped lay the foundation for the modern

field of Reinforcement Learning

� for various reasons, interest in Reinforcement Learning faded in the

late 70’s and early 80’s, but was revived in the late 1980’s, largely

through the work of Richard Sutton

� Gerald Tesauro applied Sutton’s TD-Learning algorithm to the game

of Backgammon in 1989

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 11

Q-Learning

Q(st ,at)← Q(st ,at)+η [rt + γ max
b

Q(st+1,b)−Q(st ,at)]

� with lookup table, Q-learning is guaranteed to eventually converge

� for serious tasks, there are too many states for a lookup table

� instead, Qw(s,a) is parametrized by weights w, which get updated so

as to minimize

[rt + γ max
b

Qw(st+1,b)−Qw(st ,at)]
2

◮ note: gradient is applied only to Qw(st ,at), not to Qw(st+1,b)

� this works well for some tasks, but is challenging for Atari games,

partly due to temporal correlations between samples

(i.e. large number of similar situations occurring one after the other)

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 9

Deep Q-Learning for Atari Games

� end-to-end learning of values Q(s,a) from pixels s

� input state s is stack of raw pixels from last 4 frames

◮ 8-bit RGB images, 210×160 pixels

� output is Q(s,a) for 18 joystick/button positions

� reward is change in score for that timestep

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 14

DQN Improvements

� Prioritised Replay

◮ weight experience according to surprise

� Double Q-Learning

◮ current Q-network w is used to select actions

◮ older Q-network w is used to evaluate actions

� Advantage Function

◮ action-independent value function Vu(s)

◮ action-dependent advantage function Aw(s,a)

Q(s,a) =Vu(s)+Aw(s,a)

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 12

Deep Q-Learning with Experience Replay

� choose actions using current Q function (ε-greedy)

� build a database of experiences (st ,at ,rt ,st+1)

� sample asynchronously from database and apply update, to minimize

[rt + γ max
b

Qw(st+1,b)−Qw(st ,at)]
2

� removes temporal correlations by sampling from variety of game

situations in random order

� makes it easier to parallelize the algorithm on multiple GPUs

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 15

Prioritised Replay

� instead of sampling experiences uniformly, store them in a priority

queue according to the DQN error

|rt + γ max
b

Qw(st+1,b)−Qw(st ,at)|

� this ensures the system will concentrate more effort on situations

where the Q value was “surprising” (in the sense of being far away

from what was predicted)

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 13

DQN Results for Atari Games

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 18

Policy Gradients and Actor-Critic

Recall:

∇θ fitness(πθ) = Eπθ
[Qπθ(s,a)∇θ logπθ(a|s)]

For non-episodic games, we cannot easily find a good estimate for

Qπθ(s,a). One approach is to consider a family of Q-Functions Qw

determined by parameters w (different from θ) and learn w so that

Qw approximates Qπθ , at the same time that the policy πθ itself is also

being learned.

This is known as an Actor-Critic approach because the policy determines

the action, while the Q-Function estimates how good the current policy is,

and thereby plays the role of a critic.

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 16

Double Q-Learning

� if the same weights w are used to select actions and evaluate actions,

this can lead to a kind of confirmation bias

� could maintain two sets of weights w and w, with one used for

selection and the other for evaluation (then swap their roles)

� in the context of Deep Q-Learning, a simpler approach is to use the

current “online” version of w for selection, and an older “target”

version w for evaluation; we therefore minimize

[rt + γQw(st+1,argmaxb Qw(st+1,b))−Qw(st ,at)]
2

� a new version of w is periodically calculated from the distributed

values of w, and this w is broadcast to all processors.

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 19

Actor Critic Algorithm

for each trial

sample a0 from π(a|s0)

for each timestep t do

sample reward rt from R (r |st ,at)

sample next state st+1 from δ(s |st ,at)

sample action at+1 from π(a |st+1)
dE
dQ

=−[rt + γQw(st+1,at+1)−Qw(st ,at)]

θ← θ+ηθ Qw(st ,at)∇θ logπθ(at |st)

w← w−ηw
dE
dQ

∇w Qw(st ,at)

end

end

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 17

Advantage Function

The Q Function Qπ(s,a) can be written as a sum of the value function

V π(s) plus an advantage function Aπ(s,a) = Qπ(s,a)−V π(s)

Aπ(s,a) represents the advantage (or disadvantage) of taking action a in

state s, compared to taking the action preferred by the current policy π.

We can learn approximations for these two components separately:

Q(s,a) =Vu(s)+Aw(s,a)

Note that actions can be selected just using Aw(s,a), because

argmaxb Q(st+1,b) = argmaxb Aw(st+1,b)

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 22

Latest Research in Deep RL

� augment A3C with unsupervised auxiliary tasks

� encourage exploration, increased entropy

� encourage actions for which the rewards are less predictable

� concentrate on state features from which the preceding action is more

predictable

� transfer learning (between tasks)

� inverse reinforcement learning (infer rewards from policy)

� hierarchical RL

� multi-agent RL

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 20

Advantage Actor Critic

Recall that in the REINFORCE algorithm, a baseline b could be subtracted

from rtotal

θ← θ+η(rtotal−b)∇θ logπθ(at |st)

In the actor-critic framework, rtotal is replaced by Q(st ,at)

θ← θ+ηθ Q(st ,at)∇θ logπθ(at |st)

We can also subtract a baseline from Q(st ,at). This baseline must be

independent of the action at , but it could be dependent on the state st .

A good choice of baseline is the value function Vu(s), in which case the

Q function is replaced by the advantage function

Aw(s,a) = Q(s,a)−Vu(s)

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 23

References

� David Silver, Deep Reinforcement Learning Tutorial,

http://icml.cc/2016/tutorials/deep rl tutorial.pdf

� A Brief Survey of Deep Reinforcement Learning,

https://arxiv.org/abs/1708.05866

� Asynchronous Methods for Deep Reinforcement Learning,

https://arxiv.org/abs/1602.01783

� Evolution Strategies as a Scalable Alternative to Reinforcement

Learning, https://arxiv.org/abs/1703.03864

� Eric Jang, Beginner’s Guide to Variational Methods,

http://blog.evjang.com/2016/08/variational-bayes.html

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Deep Reinforcement Learning 21

Asynchronous Advantage Actor Critic

� use policy network to choose actions

� learn a parameterized Value function Vu(s) by TD-Learning

� estimate Q-value by n-step sample

Q(st ,at) = rt+1 + γrt+2 + . . .+ γn−1rt+n + γnVu(st+n)

� update policy by

θ← θ+ηθ [Q(st ,at)−Vu(st)]∇θ logπθ(at |st)

� update Value function my minimizing

[Q(st ,at)−Vu(st)]
2

COMP9444 c©Alan Blair, 2017-19

