COMP9444
Neural Networks and Deep Learning

2b. PyTorch
Typical Structure of a PyTorch Program

```python
# create neural network according to model specification
net = MyModel().to(device)  # CPU or GPU

train_loader = torch.utils.data.DataLoader(...)  
test_loader = torch.utils.data.DataLoader(...)  

# choose between SGD, Adam or other optimizer
optimizer = torch.optim.SGD(net.parameters,...)

for epoch in range(1, epochs):
    train(params, net, device, train_loader, optimizer)
    if epoch % 10 == 0:
        test(params, net, device, test_loader)
```
Defining a Model

class MyModel(torch.nn.Module):

 def __init__(self):
 super(MyModel, self).__init__()
 # define structure of the network here

 def forward(self, input):
 # apply network and return output
Defining a Custom Model

Consider the function \((x, y) \mapsto Ax \log(y) + By^2\)

```python
import torch.nn as nn
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.A = nn.Parameter(torch.randn((1), requires_grad=True))
        self.B = nn.Parameter(torch.randn((1), requires_grad=True))

    def forward(self, input):
        output = self.A * input[:, 0] * torch.log(input[:, 1])
        + self.B * input[:, 1] * input[:, 1]
        return output
```
Building a Net from Individual Components

class MyModel(torch.nn.Module):

 def __init__(self):
 super(MyModel, self).__init__()
 self.in_to_hid = torch.nn.Linear(2,2)
 self.hid_to_out = torch.nn.Linear(2,1)

 def forward(self, input):
 hid_sum = self.in_to_hid(input)
 hidden = torch.tanh(hid_sum)
 out_sum = self.hid_to_out(hidden)
 output = torch.sigmoid(out_sum)
 return output
Defining a Sequential Network

class MyModel(torch.nn.Module):
 def __init__(self, num_input, num_hid, num_out):
 super(MyModel, self).__init__()
 self.main = nn.Sequential(
 nn.Linear(num_input, num_hid),
 nn.Tanh(),
 nn.Linear(num_hid, num_out),
 nn.Sigmoid()
)
 def forward(self, input):
 output = self.main(input)
 return output
Sequential Components

Network Layers:
nn.Linear()
nn.Conv2d()

Intermediate Operators:
nn.Dropout()
nn.BatchNorm()

Activation Functions:
nn.Tanh()
nn.Sigmoid()
nn.ReLU()
Declaring Data Explicitly

```python
import torch.utils.data

input = torch.Tensor([[0,0],[0,1],[1,0],[1,1]])
target = torch.Tensor([[0],[1],[1],[0]])

xdata = torch.utils.data.TensorDataset(input, target)
train_loader = torch.utils.data.DataLoader(xdata, batch_size=4)
```

Note:

1. data are presented in the form of a tensor (multi-dimensional matrix)
2. for feedforward networks, data is presented “batch first” in the sense that the first dimension (dim=0) of the tensor indexes the items within a batch
3. for LSTM’s, the batch index will be the second dimension (dim=1)
Loading Data from a .csv File

```python
import pandas as pd

df = pd.read_csv("sonar.all-data.csv")
df = df.replace(’R’,0)
df = df.replace(’M’,1)
data = torch.tensor(df.values,dtype=torch.float32)
num_input = data.shape[1] - 1
input  = data[:,0:num_input]
target = data[:,num_input:num_input+1]

dataset = torch.utils.data.Dataset(input,target)
```
Custom Datasets

```python
from data import ImageFolder

dataset = ImageFolder(folder, transform)

import torchvision.datasets as dsets

mnistset = dsets.MNIST(...)
cifaret = dsets.CIFAR10(...)
celebset = dsets.CelebA(...)
```
Choosing an Optimizer

SGD stands for “Stochastic Gradient Descent”

```python
optimizer = torch.optim.SGD(net.parameters(),
                           lr=0.01, momentum=0.9,
                           weight_decay=0.0001)
```

Adam = Adaptive Momentum (good for deep networks)

```python
optimizer = torch.optim.Adam(net.parameters(), eps=0.000001,
                             lr=0.01, betas=(0.5, 0.999),
                             weight_decay=0.0001)
```
def train(args, net, device, train_loader, optimizer):

 for batch_idx, (data, target) in enumerate(train_loader):
 optimizer.zero_grad() # zero the gradients
 output = net(data) # apply network
 loss = ... # compute loss function
 loss.backward() # update gradients
 optimizer.step() # update weights
Loss Functions

```python
import torch.nn.functional as F

loss = torch.sum((output-target)*(output-target))
loss = F.nll_loss(output,target)
loss = F.binary_cross_entropy(output,target)
loss = F.softmax(output,dim=1)
loss = F.log_softmax(output,dim=1)
```

Note that `softmax` and `log_softmax` use `dim=1`, to normalize over the outputs within a single item. One common mistake is to use `dim=0`, which would instead normalize over the items in a batch.
def test(args, model, device, test_loader):

 with torch.no_grad(): # suppress updating of gradients
 net.eval() # toggle batch norm, dropout
 test_loss = 0
 for data, target in test_loader:
 output = model(data)
 test_loss += ...

 print(test_loss)
 net.train() # toggle batch norm, dropout back again
Computational Graphs

PyTorch automatically builds a computational graph, enabling it to backpropagate derivatives.

Every Parameter includes .data and .grad components, for example:

```python
A.data
A.grad
```

`optimizer.zero_grad()` sets all .grad components to zero.

`loss.backward()` updates the .grad component of all Parameters by backpropagating gradients through the computational graph.

`optimizer.step()` updates the .data components.
Controlling the Computational Graph

If we need to block the gradients from being backpropagated through a certain variable (or expression) A, we can exclude it from the computational graph by using:

$$A\text{.detach()}$$

By default, `loss.backward()` discards the computational graph after computing the gradients.

If needed, we can force it to keep the computational graph by calling:

```python
loss.backward(retain_graph=True)
```